David's Brief Guide to Radio Observations

Journal Club – November 19, 2010

The Radio Regime

- Wavelengths 100 m ~
 0.1 mm
- No one single telescope ideal to effectively cover full range
- Wide variety of radiation mechanisms and low attenuation make it advantageous for study of the universe

Radio Telescope Design

- Basic design similar to most optical telescopes
- These telescopes need to be big to obtain
 - Resolution ($\theta \sim \lambda/d$)
 - Sensitivity
- Size can be an issue...

Radio Telescope Design

Certain telescopes get around this issue

SKA: Array of smaller dishes working together

Arecibo: Non-moving primary mirror

Design Considerations

- Effect of gravity on dish
 - Deformation limits available wavelengths
 - Difficult to get GBT sized mmwave telescopes
- Secondary mirror placement:
 - Aperture blockage affects beam pattern
 - Secondary mirror plus support structure can scatter ground radiation into detector

Actuators on the GBT dish counter the effects of gravity

GBT – off axis design \rightarrow no blockage

Feed Horns

- Feed horns are waveguides that focus EM waves towards the antenna
- Size of waveguide wavelength dependent

L-band feed horn

Radiometers

- Radiometers measures average power received by a radio telescope a desired frequency range and time
- Basic components
 - 1) bandpass filter only allows specific frequencies through
 - Similar concept to U,B,V,R,I
 - 2) Square-law detector (P~V²)
 - 3) amplifier strengthens extremely weak radio signals

GBT Receiver Room

Radiometers

4) Integrator – average the signal over the desired period

Many receivers employ a local oscillator

- Combines incoming signal with known tunable sinusoidal signal: result passed to rest of receiver
- Remaining components can operate at a fixed frequency

Beam Pattern

- Single-dish telescopes are effectively single-pixel cameras
- Most flux comes from "main beam", but flux collected from all directions (side-lobes/stray radiation)
- Low resolution
 - e.g. Arecibo at 1.4GHz: FWHM ~ 3.5'
 - e.g. IRAM 30m at 115
 Ghz: FWHM ~ 22"

Calibration

- Use a standard source (e.g. Cas A)
- Alternatively:
 - Inject a known level of noise into system
 - Cover feed with blackbody of known temperature

Cas A

Detector Sensitivity

Noise of the system summarized by "system temperature"

 Side-note: radio astronomers measure noise and signals in units of temperature; proportonal to flux density

$$T_{\rm sys} = T_{\rm cmb} + \Delta T_{\rm source} + T_{\rm atm} + T_{\rm spillover} + T_{\rm rcvr} + \dots$$

- Liquid helium cooling is a must!
- Gain fluctuations
 - Reach a point where longer exposures increase uncertainty
 - Can reduce this by constantly calibrating telescope (Dicke Switching)

Atmospheric Transmission

Atmospheric transmission

- Particularly important in the sub-mm
- Site an important factor (high and dry ideal)

ALMA site in the Atacama Desert

Atmospheric transmission at the IRAM 30m telescope

The Varying Atmosphere

- Water vapor not well mixed with the atmosphere
 - Leads to fluctuations in sky
 - Aleviate this with position switching or frequency switching
 - ...but double you're observing time

RFI – Radio Frequency Interference

Single-Dish Mapping

- Mapping can be done ("on-thefly"), but is very time consuming
- Low resolution means mapping limited to large targets
- Multi-beam receivers (e.g. ALFA on Arecibo or HERA on IRAM 30m) increase efficiency of mapping
 - But these are not small (don't expect any 12 megapixel radio telescopes)

The Smith Cloud (Lockman et al. 2008) mapped with the GBT

ALFA beam pattern on Arecibo

Interferometers

- Interferometers are becoming increasingly dominant
- Advantages:
 - Resolution (e.g. EVLA at 21cm = .15", ALMA at 115 Ghz = 0.03")
 - Collecting area can be arbitrarily large)
 - Simpler engineering
 - Less sensitive to gain/atmosphere fluctuations

Single-dish versus interferometer resolution

Interferometers

- Disadvantages:
- Traditionally less sensitive
 - Small filling factors of large baselines
 - Minimum spacing of dishes (miss flux at scales > λ/D_{min})
- Demanding data analysis due to more artifacts (e.g. Side-lobe effects)

What's New in Radio Astronomy

- Massive arrays dominating current radio projects (e.g. ALMA, SKA and its precursers)
 - Designed with compact (for flux recovery) and dispersed (for resolution) configurations
 - Higher sensitivity (by factors of ~10-20) and resolution (possibly better than HST)
 - Wider window in the submm

What's New in Radio Astronomy

- More advanced multi-pixel receivers
 - Yield much faster imaging
 - e.g. APERTIF
 - 112 element focal plane array for WSRT

FOV

FOV increased 25x

References

- Burke, B. F. And Graham-Smith, F., "An Introduction to Radio Astronomy", Cambridge University Press, 1997.
- Condon, J. J. and Ransom, S. M., "Essential Radio Astronomy", http://www.cv.nrao.edu/course/astr534/ERA.shtml
- NRAO Website, http://www.nrao.edu/index.php/learn/
- Rohlfs, K. and Wilson, T. L., "Tools of Radio Astronomy", Springer, 2004
- ASTRON website: APERTIF, http://www.astron.nl/general/apertif/apertif