
Below are the UNC Department of Physics and Astronomy Qualifying exams from the 
years 1999 through 2012. Due to changes in the exam format and poor record keeping, 
some of the sections are ambiguously labeled or missing. Numbers in red are best guesses 
about the exact exam. Years with missing problems are labeled by how many are 
included in this packet. This packet starts with the 2012 exam and moves backwards. 
 
1999 
CM, EM1 
 

May 2000 
CM, SM, QM1, EM1 
 

Spring 2001 
CM, SM, EM1, QM1 
 

Winter 2001 
EM2, QM2 
 

Spring 2002 
CM, SM, EM1, QM1 
 

Winter 2002 
EM1, QM1, Stars, HE 
 

Spring 2003 
CM, SM, EM1, QM1 
 

Winter 2003 
EM2, QM2, HE 
 

Winter 2004 
EM2, QM2, Stars, HE 
 

Spring 2004 
CM, SM, EM1, QM1 
 

Spring 2005 
CM, SM, EM1, QM1 
 

Winter 2005 
EM2, QM2 
 

2006 
CM, SM, EM1, QM1,  
EM2, QM2, HE (1/5) 
 

2007 
CM, SM, EM1, QM1,  
EM2, QM2, Stars, HE 
 

2008 
CM (4/5), SM, QM2 (3/5), EM2 (2/5), 
Stars (3/5), Galaxies (3/5) 
 

2009 
CM, SM, EM1, QM1,  
EM2, QM2, Stars, Galaxies 
 

2010 
CM, SM, EM1, QM1,  
EM2, QM2, Stars, HE 
 

2011 
CM, SM, EM1, QM1,  
EM2, QM2, Stars, Galaxies 
 

2012 
CM, SM, EM1, QM1,  
EM2, QM2, Stars, HE 
 

 

 
 
 
 



                UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL    

 

                   Doctoral Written Examination in Physics,  2012                                 
 

                    Part I: Classical mechanics and Statistical mechanics 

 

                    Saturday, May 12, 2012  

 

 

Instructions:  Please work in the assigned room, but take a break outside anytime you 

want to. Mathematical handbooks and electronic calculators are allowed. 

Begin each answer on a new sheet and write only on one side of each sheet.  

Identify each sheet by: 

 

Page___________ of Question___________Student’s # (PID)_________________   

 

 

                                                           CM:  Classical Mechanics 

                                                                   Work out 3 out of 5 problems 

 

                                                           SM:  Statistical Mechanics 

                                                                   Work out 3 out of 5 problems 

 

 

                                                           (Partial credit will be given for partial answers) 
 

 

My work is completed in full observance of the Honor code: 

 

 

 Signature_________________________  

 

 

 

 

Print name____________________________ 

 

 

 

 

 

 

 

 

 

 

                 



                UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL    

 

                   Doctoral Written Examination in Physics,  2012                                 
 

                    Part II: Electromagnetism I and Quantum mechanics I 

 

                    Monday, May 14, 2012  

 

 

Instructions:  Please work in the assigned room, but take a break outside anytime you 

want to. Mathematical handbooks and electronic calculators are allowed. 

Begin each answer on a new sheet and write only on one side of each sheet.  

Identify each sheet by: 

 

Page___________ of Question___________Student’s # (PID)_________________   

 

 

                                                           EMI:  Electromagnetism I 

                                                                   Work out 3 out of 5 problems 

 

                                                           QMI:  Quantum Mechanics I 

                                                                   Work out 3 out of 5 problems 

 

 

                                                           (Partial credit will be given for partial answers) 
 

 

My work is completed in full observance of the Honor code: 

 

 

 Signature_________________________  

 

 

 

 

Print name____________________________ 

 

 

 

 

 

 

 

 

 

 

 



                UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL    

 

                   Doctoral Written Examination in Physics,  2012                                 
 

                    Part III: Electromagnetism II and Quantum mechanics II 

 

                    Monday, May 14, 2012  

 

 

Instructions:  Please work in the assigned room, but take a break outside anytime you 

want to. Mathematical handbooks and electronic calculators are allowed. 

Begin each answer on a new sheet and write only on one side of each sheet.  

Identify each sheet by: 

 

Page___________ of Question___________Student’s # (PID)_________________   

 

 

                                                           EMII:  Electromagnetism II 

                                                                   Work out 3 out of 5 problems 

 

                                                           SM:  Quantum mechanics II 

                                                                   Work out 3 out of 5 problems 

 

 

                                                           (Partial credit will be given for partial answers) 
 

 

My work is completed in full observance of the Honor code: 

 

 

 Signature_________________________  

 

 

 

 

Print name____________________________ 

 

 

 

 

 

 

 

 

 

 

                 



             UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL    

 

                   Doctoral Written Examination in Physics,  2012                                 
 

                    Part III: Astro I and II 

 

                    Monday, May 14, 2012  

 

 

Instructions:  Please work in the assigned room, but take a break outside anytime you 

want to. Mathematical handbooks and electronic calculators are allowed. 

Begin each answer on a new sheet and write only on one side of each sheet.  

Identify each sheet by: 

 

Page___________ of Question___________Student’s # (PID)_________________   

 

 

                                                           Astro I:  

                                                                   Work out 3 out of 5 problems 

 

                                                           Astro II:   

                                                                   Work out 3 out of 5 problems 

 

 

                                                           (Partial credit will be given for partial answers) 
 

 

My work is completed in full observance of the Honor code: 

 

 

 Signature_________________________  

 

 

 

 

Print name____________________________ 

 

 

 

 

 

 

 

 

 

 

 



CM-1 

 

 
CM-2 

 

 



CM-3 

 

 
 

 

 

CM-4 

 

 
 

 



CM-5 

 

 
 

 

SM-1  

 
 

 

SM-2  

 
 

 

 

 

 



SM-3 

 
 

SM-4 

 
 

SM-5 
A cylinder of radius R and length L contains N molecules of mass m of an ideal gas at 

temperature T. The cylinder rotates about its axis with an angular velocity ω.  

Find a change in the free energy of the gas ΔF, as compared to that at rest. 



 

 
 

 
EMI-4 

Consider two straight parallel wires, carrying static charge with linear charge density 

of and , respectively. The wires are along the z-direction, one is located at  

and the other at . 

(a) Find the electric potential and the electric field everywhere in space. 

(b) Simplify your expression for the region far away from the wire, and express the field 

in terms of the linear dipole density p=a. 



EMI-5 

Consider two parallel plane electrodes (regarded as infinite) separated by a distance d. 

The cathode located at  with electric potential of  is capable if 

emitting unlimited electrons (charge e and mass m) when an electric field is applied to it. 

The electrons leaving the cathode with zero initial velocity are accelerated toward the 

anode located at  with electric potential of  . In the steady state there 

will be a constant electric current flowing from the cathode to the anode.  

(a) Find a relationship between the current density , the space charge density  and 

the electric potential  in the space between the two electrodes. Is J a constant or a 

function of x, why? 

(b) Derive a differential equation that determines the electric potential . 

(c) Assuming a power law solution (  is proportional to ), solve for the potential 

density J in terms of e, m, d, and . 

 

 
QM I-2 

 



 
 

 

QMI-4  

 
 

 

 

 

 

 

 

 



 

 

QMI-5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

EMII-1 

 

 
 

EMII-2 

 
 

 

EMII-3 

 
 

 

 ε2 

 

ε1 

 
Perfect conductor 

Z= -a/2 Z=0 



 

 

EMII-4 

 
  

 

 

EMII-5 

 
 

 

 

 

QMII-1 

a) Assuming that the hamiltonian is invariant under time-reversal,   

prove that the wavefunction for a spinless non-degenerate system at any given 

instant of  time can always be chosen to be real. 

b)  The wavefunction for a plane wave state at t=0 is given by a  

complex function e 
i px 

. Why does this not violate time reversal invariance? 

 

 

 

 

 



 

 

 

QMII-2 

 

A p-orbital electron characterized by |n, l=1, m = + 1, -1, 0>  (ignore spin)  is subjected to 

a potential V = λ (x
2
 – y

2
) where  λ =constant. 

a) Obtain the ‘correct’ zero-order energy eigenstates that diagonalize the 

perturbation. You don’t need to evaluate the energy shifts in detail, but show that 

the original 3-fold degeneracy is now completely removed. 

b) Because V is invariant under time reversal and because there is no longer any 

degeneracy, we expect each of the energy eigenstates obtained in (a) to go into 

itself, (up to a phase factor) under time-reversal. Check this point explicitly. 

 

 

QMII-3 

Work  out the quadratic Zeeman effect for the ground state of hydrogen atom,  

[<x|0> =  1 / (a0
3
)

1/2
 e 

–r/a
0  ] due to the neglected term “ e

2
 A

2
 / 2mec

2
 “ in the 

hamiltonian taken to first order. Write the energy shift as =  - B
2
/2 

and obtain an expression for  “  ” .  

This is a useful integral:    ∫
∞

0e 
–ar

 r
n
 dr  = n! /(a

n+1
).   

 

 

 

 

QMII-4 

Three spin -0 particles are situated at the corners of an equilateral triangle.  Let us define 

the z-axis to go through the center and in the direction normal to the plane of the triangle. 

The whole system is free to rotate about the z-axis. Using statistics considerations, obtain 

restrictions on the magnetic quantum numbers corresponding to  Jz  . 

 

 

QMII-5 

Consider scattering from the delta-shell potential  V(r)  =  g δ (r  -  r0 ). 

a) First determine the boundary conditions at r = 0 and r = r0  , then make a suitable 

ansatz, apply the boundary conditions, and compute the s-wave scattering 

amplitude.  

b) Determine the s-wave bound states of an infinite spherical well of radius r0. 

Comment on the relation of the delta –barrier resonance and these bound states. 

What happens to the s-wave scattering length when the incident k-value sweeps 

across the “k” corresponding to one of these quasi bound state 

 



AstroI-1     White Dwarfs 

 

a) The pressure integral:      



0

)(
3

1
dpppvnP

 

allows you to calculate pressure given a distribution in momentum n(p)dp.  

Assuming that a completely degenerate electron gas has the electrons packed as 

tightly as possible, so that their separation is of order ne
-1/3

, use the Heisenberg 

uncertainty principle to estimate the momentum of an electron in terms of ne.  By 

further assuming that p = mev (non-relativistivic) and that all the electrons have 

the same momentum (to make the integral trivial), derive the exponent  in the 

power law equation of state: 

    
0TP   

 

(For this problem, don’t worry about the constants of proportionality, they’ll be 

wrong under the constant momentum assumption anyway.) 

 

b) Now use your understanding of this equation of state and hydrostatic equilibrium 

and mass conservation in scaling law form to plot white dwarf cooling curves on a 

log Teff,- log L (H-R) diagram.  Work in solar units and use the normalization 

that an 0.6 solar mass white dwarf has a radius of 0.01 Rsun at solar Teff.  Plot 

curves for 0.2, 0.6, 0.8 1md 1.0 solar mass white dwarfs. 

 

c) Now write the mass-luminosity relationship for non-relativistic white dwarfs in 

power law form. 

 

AstroI-2       Deuterium burning in stars 

 

a) In the formation of a main sequence star from a protostar there is a phase in which 

primordial Deuterium is fused.  This happens at a temperature of 10
6
 degrees 

rather than the 15 x 10
6
 required for P-P reactions.  Use hydrostatic equilibrium 

and mass conservation, along with the ideal gas law, to compare the radius of a 1 

solar mass protostar in its D burning phase to its radius on the main sequence. 

You need to assume the density profiles of the two stars are identical (one can be 

scaled to the other). 

 

b) Referring to the curve of binding energy below, estimate the total energy 

available from D burning for a solar mass star if the primordial D abundance is 

0.013% of P, and occurs in the inner 10% of the star. (Deuterium fuses via 1H + 

2H  3He +  
 

c) Compare the D-burning timescale to the Kelvin Helmholtz (gravitational 

contraction) timescale. 



 
 

AstroI-3   Lifetime, luminosity, mass scaling  

 
a) Use the plot below to estimate the exponent for a power law relation for main 

sequence lifetime in terms of stellar mass: 
ML  

 

b) Assuming that all main sequence stars convert the same fraction of their total mass 
to He, what is the expected Mass-Luminosity relation on the main sequence?  How 
closely do the luminosities expected from this relation match the luminosities seen 
in the H-R diagram depicted?  Comment. 

 

c) Assuming the gas in these stars is ideal (a fairly good assumption) and that the 
central temperature is proportional to the effective temperature (not so good), use 
the assumption of hydrostatic equilibrium and the Mass-Luminosity relation from 
above to estimate the temperature dependence of the nuclear reactions (assume 
negligible density dependence).      

 



Astro I-4 

 
AstroI-5 

 

 



AstroII-1  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AstroII-2  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 



 
 



 
 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Useful facts: 
F = Gm1m2/d

2 
G=4.3 x 10-6 kpc (km/s)2/Msun  
1kpc = 1Gyr x 1km/s 
Virial Theorem 2KE+PE=0 

Poisson Equation  G42   

Wien’s Law T = 3 mm∙K / peak 

centripetal force F=mV2/r (uniform circular motion) 

Faber-Jackson Relation L  4  
Dynamical time tdyn=√2tff 
Crossing time tcross = R/V = 1 Gyr (R in kpc/V in km/s) 
Relaxation time trelax = 0.1N / ln(N) tcross = 106 yr x 0.1N/ln(N) x (R in pc/V in km/s) 
 

Numerical Constants: 

 

Solar Mass (Msun):      1.989 x 10
33

 g 

Solar Radius (Rsun):     6.96 x 10
10

 cm 

Solar Luminosity:  3.847 x 10
33

 erg/s 

Gravitational Constant (G) 6.6726 x 10
-8

 cm
3
/g/s

2 

Proton mass   1.6726 x 10
-24

 g = 938.27 MeV/c
2
 

Yield of p-p reactions (Q)  26.7 MeV = 4.28 x 10
-5

 ergs 

Boltzmann constant                1.38 x 10
-16

 erg/K 

Planck’s Constant                   6.626 x 10
-27

 erg-s 

Electron mass                         9.109 x 10
-28

 g 

mp = 1.6726 x 10
-24

 g 
 

 



                UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL    

 

                   Doctoral Written Examination in Physics,  2011                                 
 

                    Part I: Classical mechanics and Statistical mechanics 

 

                    Friday, May 7, 2011  

 

 

Instructions:  Please work in the assigned room, but take a break outside anytime you 

want to. Mathematical handbooks and electronic calculators are allowed. 

Begin each answer on a new sheet and write only on one side of each sheet.  

Identify each sheet by: 

 

Page___________ of Question___________Student’s # (PID)_________________   

 

 

                                                           CM:  Classical Mechanics 

                                                                   Work out 3 out of 5 problems 

 

                                                           SM:  Statistical Mechanics 

                                                                   Work out 3 out of 5 problems 

 

 

                                                           (Partial credit will be given for partial answers) 
 

 

My work is completed in full observance of the Honor code: 

 

 

 Signature_________________________  

 

 

 

 

Print name____________________________ 

 

 

 

 

 

 

 

 

 

 

                 



                UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL    

 

                   Doctoral Written Examination in Physics,  2011                                 
 

                    Part II: Electromagnetism I and Quantum mechanics I 

 

                    Monday, May 9, 2011  

 

 

Instructions:  Please work in the assigned room, but take a break outside anytime you 

want to. Mathematical handbooks and electronic calculators are allowed. 

Begin each answer on a new sheet and write only on one side of each sheet.  

Identify each sheet by: 

 

Page___________ of Question___________Student’s # (PID)_________________   

 

 

                                                           EMI:  Electromagnetism I 

                                                                   Work out 3 out of 5 problems 

 

                                                           QMI:  Quantum Mechanics I 

                                                                   Work out 3 out of 5 problems 

 

 

                                                           (Partial credit will be given for partial answers) 
 

 

My work is completed in full observance of the Honor code: 

 

 

 Signature_________________________  

 

 

 

 

Print name____________________________ 

 

 

 

 

 

 

 

 

 

 

 



                UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL    

 

                   Doctoral Written Examination in Physics,  2011                                 
 

                    Part III: Electromagnetism II and Quantum mechanics II 

 

                    Monday, May 9, 2011  

 

 

Instructions:  Please work in the assigned room, but take a break outside anytime you 

want to. Mathematical handbooks and electronic calculators are allowed. 

Begin each answer on a new sheet and write only on one side of each sheet.  

Identify each sheet by: 

 

Page___________ of Question___________Student’s # (PID)_________________   

 

 

                                                           EMII:  Electromagnetism II 

                                                                   Work out 3 out of 5 problems 

 

                                                           SM:  Quantum mechanics II 

                                                                   Work out 3 out of 5 problems 

 

 

                                                           (Partial credit will be given for partial answers) 
 

 

My work is completed in full observance of the Honor code: 

 

 

 Signature_________________________  

 

 

 

 

Print name____________________________ 

 

 

 

 

 

 

 

 

 

 

                 



             UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL    

 

                   Doctoral Written Examination in Physics,  2011                                 
 

                    Part III: Astro I and II 

 

                    Monday, May 9, 2011  

 

 

Instructions:  Please work in the assigned room, but take a break outside anytime you 

want to. Mathematical handbooks and electronic calculators are allowed. 

Begin each answer on a new sheet and write only on one side of each sheet.  

Identify each sheet by: 

 

Page___________ of Question___________Student’s # (PID)_________________   

 

 

                                                           Astro I:  

                                                                   Work out 3 out of 5 problems 

 

                                                           Astro II:   

                                                                   Work out 3 out of 5 problems 

 

 

                                                           (Partial credit will be given for partial answers) 
 

 

My work is completed in full observance of the Honor code: 

 

 

 Signature_________________________  

 

 

 

 

Print name____________________________ 

 

 

 

 

 

 

 

 

 

 

 



 

CM-1 

A point particle of mass m and charge q is attached to the end of a massless pendulum of 

length l. The motion of the pendulum is confined to a plane. Let the pivot of the 

pendulum be fixed at a height h above an infinite horizontal conducting surface, with h > 

l. Ignore gravity in considering the motion of the pendulum. 

1. Use an angular coordinate and obtain the Lagrangian. 

2. Find the frequency of small amplitude motion. 

 

 

 

CM-2 

A particle of unit mass moves under the influence of gravity on the inner surface of the 

paraboloid of revolution x
2
 + y

2
 = z, which is assumed to be frictionless. (z is the vertical 

direction.) 

1. Obtain the equations of motion in cylindrical coordinates. (You do not have to solve 

them.) 

2. What angular momentum must be given to the particle so that it describes a horizontal 

circle at the height z = 1? 

 

 

 

CM-3 

Consider a satellite in circular Earth orbit and the stability of its orientation relative to the 

Earth. Let the mass of the Earth be M and the radius of the orbit be r0. By Kepler’s third 

law the angular frequency of the orbit satisfies 

Ω
2
 = GM/r0

3
. 

The satellite is an extended rigid body that can be idealized as two masses, m, separated 

by a massless rigid rod of length 2a. The rod lies initially in the orbital plane and you 

should consider only motion in that plane. The satellite may rotate in the plane and 

therefore could corotate with its orbit, maintaining a fixed orientation with respect to the 

Earth. 

1. Let the angle between the rigid rod and the direction to the Earth be given by Ψ. Write 

down the kinetic energy of motion relative to the circular orbit of the center of mass (i.e., 

you are to take the center of mass motion as known). 

2. Write down the potential energy of the rigid body and expand it in powers of a/r0 to 

find the leading non-vanishing Ψ dependent terms. 

3. Write down the Lagrangian and obtain the equation of motion for satellite orientation 

(relative to the Earth; i.e., for motion in  Ψ). 

4. Via an effective potential or other means find the equilibrium orientation angles. 

Which of these equilibria are stable and which are unstable? 

 

 

 

 

 



CM-4 

 
CM-5 

 
 

 

 

SM-1  

The phonon modes of a crystal are treated as 3N independent harmonic oscillators. The 

associated energy is given by    
3

1

1/ 2
N

i i i
i

E n n 


   and 0,1,2...in  , and the 

distribution function of modes in angular frequency is given 

by  g  where  
0

3g d N 


 . Show that the entropy associated with the phonons is 

given by      /

/

0 0

1
ln 1

1

kT

kT
S g d k e g d

T e






   

 

  
   

 



SM-2  

Compare two situations: (1) a charge q interacts with an electric dipole p  that has a fixed 

orientation and is at a distance r, and (2) a charge q interacts with a dipole p that orients 

freely over all possible angles at a distance r. For case (1) the potential energy is given by 

  2

0

cos 1

4

qp
u r

r




  where 0 is the permittivity and  is shown below. Show that the 

interaction in case (2) is shorter-ranged than case (1) by showing that in case (2) 

 
2

4

0

1 1

3 4

qp
u r

kT r

 
   

 
. Here, assume that |u(r)|<<kT, so that / 1 /u kTe u kT   . 

 
 

SM-3 

The partition functions of N particle (of mass m) classical ideal gas contained in a volume 

V and at temperature T is given by   3

1
,

!

N

N

V
Q V T

N 

 
  

 
where / 2h mkT  . Show 

that the partition function of an ideal Fermi gas of two particles is 

 
2 3

3 3/2

1 1
, 1

2! 2
N

V
Q V T

V





  
    

   
.  Useful integral: 

22

3/2

0

1 1

2 2

xx e dx 




  . 

 

SM-4 

A particle of mass m with momentum  , ,x y zp p p  and coordinates  , ,x y z  moves freely 

in a volume V. (a) Find the normalized distribution function  xf p  of the x-component 

of the momentum according to the classical micro-canonical ensemble with energy E.  

(b) The corresponding canonical distribution (with temperature chosen to give averaged 

energy =E) is quite different from the micro-canonical distribution (you do NOT have to 

show this). Why do you think the two distributions are so different? 

 

SM-5 

A long vertical tube with a cross-section area A contains a mixture of n different ideal 

gases, each with the same number of particles N, but of different masses mk, k=1,…n. 

Find a vertical position of the center of mass of this system in the presence of the Earth’s 

gravity, assuming a constant altitude-independent free fall acceleration g. 

 

 

 



EMI-1 

Consider a very long solenoid with radius R, N  turns per unit length, and current I. 

Coaxial with the solenoid are two long cylindrical shells of length l  - one, inside the 

solenoid at radius a, carries a charge +Q  uniformly distributed over its surface; the other, 

outside the solenoid at radius b,  carries charge –Q;  l  is supposed to be much greater 

than b > R > a. (Assume there is an electric field only in the region between the 

cylinders.)  When the current in the solenoid is gradually reduced, the cylinders begin to 

rotate. 

a) What are the torques on the outer cylinder and on the inner cylinder? 

b) After the current is switched off, how much angular momentum have the two 

cylinders picked up? 

c) Before the current is reduced, what is the total angular momentum in the fields? 

 

EMI-2 
A constant charge per unit length λ = dQ/dz is distributed along  

an infinite-length insulator of negligible cross section.  A charge q is  

present in the vicinity of the line charge. 

1. Find the electric field and electric potential due to the line charge. 

2. Determine how much work W is done on the point charge q if its  

distance from the line charge increases from cylindrical distance R = a to  

distance R = b. 

3. As b→∞, what happens to the work on the particle? 

4. If the line charge were truncated to a finite total length of L  

(with ends at z=  ± L/2), give an approximate expression for the total  

work W done if the charge is taken radially away from z=0 and R=a to 

R=∞. 

 

 

EMI-3 

Calculate the interacting force between a dipole moment and a conducting sphere 

of radius a. The dipole moment is at a distance R (>a) away from the center of the 

sphere. 

 

 

EMI-4 

A charged sphere with radius a is placed in a media with dielectric constant . The charge 

distribution inside the sphere is given by .  

a) Show that the electric scalar potential along the z-axis outside the sphere is given 

by .  



b) Using the result in a) to find the general expression of the scalar potential 

everywhere outside the sphere. 

EMI-5 

A spherical shell of permeability μ is placed in a uniform field Bo. If the internal and 

external radius of the shell are a and b, respectively.  

a) Find the magnetic field in the hollow interior. Be sure your solution reduces to the 

obvious result when a =b (the shell is gone).   

b) Show that in the limit of large permeability the field is of order Bo/ μ, thus this 

shell can act as a magnetic shield.  

 

QM1-1 

A spin-1/2 particle with magnetic moment µ  is in an eigenstate of Sx with eigenvalue h/2 

at time t = 0. At that time it is placed in a magnetic field of magnitude B pointing in the 

z-direction and allowed to precess for time T. At that time the magnetic field is rotated 

very, very rapidly, so that it now points in the y-direction. After another time interval T, 

Sx is measured. What is the probability that it is found to be  h/2? 

 

 

QMI-2  

Four electrons are each localized to separate atoms in a crystal. 

The atoms are located at the corners of a regular tetrahedron, which 

is a triangular pyramid where each face is an equilateral triangle. The 

length of each edge is a. Find the correction to the energy levels of 

the four electron system due to the spin-spin interaction between the 

electrons. You may assume that the spin-spin interaction term between 

any two electrons i and j is of the form:   

 
where A is a constant and rij is the distance between the two electrons. You may also 

assume that a is much larger than the spatial extents of the electrons' wave functions, in 

other words the electrons are distinguishable by their atom's locations on the crystal 

lattice. 

 

 

QMI-3 

Consider a particle of mass m trapped in a one-dimensional simple 

harmonic oscillator well with a resonance angular frequency ω 

 Let |z> be a normalized eigenstate with eigenvalue z of the raising operator a: 



 
Note that a is not a hermitian operator, hence z can be a complex number. 

(a)Show that |z> satisfies the following relationship:  

 
 

(b) Show that |z> satisfies the minimum uncertainty relationship between x and p. You 

may find the result from part (a) useful for this part. 

Comment: |z> is known as a coherent state and has many interesting properties. 

 

 

QMI-4  
Consider three distinguishable particles with spin 1/2 (and no spatial degrees of freedom). 

(a) What are the possible values for the total angular momentum of all three particles? 

Are there any values that have more than one multiplet associated with them? 

(b) Write explicit expressions for all the states in the basis that has definite values of the 

total angular momentum and z-projection. 

 

 

QMI-5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EMII-1 

 

 
 

 

EMII-2 

 

 
 

 

 

 

 

 

 

 



EMII-3 

 

 
 

EMII-4 

 

 
 

 

 

 

 

 

 



EMII-5 

 
 

 

 

QMII-1 

 

A particle of mass m is trapped in a 2-dimensional infinite potential 

well with sides of length a. The well is centered on the origin and the 

edges are parallel to the coordinate axes. The particle also experiences 

a “Gaussian wall" potential perturbation given as: 

 
where b << a and A is a constant with appropriate units. Use first order perturbation 

theory to find the ground and first excited state 

energy levels and their degeneracies. Approximate any integrals that 

you cannot evaluate easily. You may find the following integral useful: 

 
 
QMII-2 

 

In the interaction picture, the state |Ψ(t)> I satisfies the equation i d|Ψ(t)>/dt=HI (t)|Ψ(t)>I 

a)  Derive an equation for the interaction picture evolution operator U(t; t0) where 

|Ψ(t)>I = U(t; t0)|Ψ(t0)>I with U(t; t) = 1. 

b) Solve the equation you have derived in (a) for U(t; t0) when the Hamiltonian HI (t) 



satisfies [HI (t1), HI (t2)] ≠ 0 for t1 ≠ t2. Define all symbols you use, and show why your 

solution is true. 

 

 

QMII-3 

Consider a charge particle with mass m and charge q in a one dimensional simple 

harmonic oscillator potential . Initial the particle is in the ground state. 

Between  the particle is subject to a constant electric field  perturbation. 

Using the first order time dependent perturbation theory, calculate the probability of the 

particle in the eigenstate |n> at the end of a perturbation period . 

 

QMII-4 

(a) Under the parity operation  how the coordinate , momentum , and angular 

momentum  transform? 

(b)The ground state of a SHO  is known to be parity even. Show that, in general, the 

excited state  is parity even/odd, depending on whether  is an even or odd integer. 

(c) Under time reversal operation , how the coordinate , momentum , and angular 

momentum  transform? 

(d) A spin half particle is in a state . What condition does one need 

to impose on the complex numbers  if the state is invariant under time reversal 

symmetry? 

 

QMII-5 

An isolated hydrogen atom has a hyperfine interaction between the proton and electron 

spins (S1 and S2, respectively) of the form JS1.S2. The two spins have magnetic moments 

α S1 and β S2, and the system is in a uniform magnetic field B. Consider only the orbital 

ground state. 

(a) Find the exact energy eigenvalues of this system and sketch the hyperfine splitting 

spectrum as a function of magnetic field. 

(b) Calculate the eigenstates associated with each level. 

 

 



 

AstroI-1 

Basic Astronomy 

1. A new planet is discovered! Planet X is observed to orbit the sun every 300 years. 

What is the semi-major axis of Planet X's orbit in AU? 

 

2. Planet X is in a circular orbit. Given that 1 AU = 1.5 × 1011 m, what is the 

distance to Planet X in meters when at closest approach to Earth? 

 

3. When at closest approach to Earth, Planet X is observed to be 3.8 arcseconds in 

diameter. What is Planet X's diameter in meters? 

 

4. What is the diameter of Planet X in Earth diameters and in AU? (The diameter of 

Earth is 1.3 × 107 m.) 

 

5. Planet X is observed to have a small moon. This moon is observed to orbit the 

planet once per month at a distance of 15 Planet X diameters. What is the mass of Planet 

X in solar masses? (Assume that the mass of the moon is negligible in comparison.) 

 

6. What is the mass of Planet X in kilograms and in Earth masses? (The mass of the 

sun is 2.0 × 1030 kg. The mass of Earth is 6.0 × 1024 kg.) 

 

7. What is the average density of Planet X in kg/m3? 

 

8. Based only on your calculated values for the diameter, mass, and density of Planet 

X, it is probably a: 

 

A. Large comet 

B. Large asteroid   

C. Kuiper belt object similar to Pluto 

D. Terrestrial planet similar to Earth 

E. Jovian planet similar to Saturn 

F. Jovian planet similar to Jupiter 

G. Jovian planet similar to a giant Jupiter 

H. Small star 

 

 

AstroI-2 

Consider a model star in which the density is a linear  function of radius: 

 Rrr c /1)(   ,  where c is the central density and R is the total stellar radius at 

which P(R) = T(R) = 0. 

 

 

a. Find an expression for the central density in terms of total radius R and total 

mass M 



b. Use the equation of hydrostatic equilibrium and zero boundary conditions to 

find pressure as a function of radius. Write an expression for the central 

pressure in terms of R and M 

c. What is the central temperature (assume ideal monoatomic gas equation of 

state). 

d. Verify that this linear density model obeys the corollary to the virial theorem: 

U = -/2 where U is the total internal energy and  is the gravitational 

potential energy. 

 

AstroI-3 

Equilibrium of White Dwarfs 

 

 a. Derive the equation of hydrostatic equilibrium 

 

 b. Use dimensional arguments and the result of part a to derive the mass-radius  

     relationship for a fully (non-relativistic) degenerate white dwarf 

 

c. What is the slope of a white dwarf cooling track in the Log L, Teff plane (H-R 

diagram)?  Make a plot of a white dwarf cooling track in this diagram.  For 

this exercise you may assume a 0.6 solar mass white dwarf passes through 

solar temperature with a radius of  0.01 Rsun. 

 

d. Now plot cooling tracks for white dwarfs of 1.1, 0.8 and 0.4 solar masses.  

Write the expression for the dependence of Log L on M for constant T. 

 

 

AstroI-4 

Virial Theorem 

There is a commonly-cited corollary to the virial theorem as applied to spherical stars in 

hydrostatic equilibrium with ideal mono-atomic gas equations-of-state.   

 

a. Re-derive this theorem under the following assumptions: 

 

Ideal diatomic gas 

  Completely relativistic gas 

 

b.  The corollary to the Virial Theorem is often used to claim that a star powered 

by gravitational contraction will use ½ of the gravitational energy released to heat 

up, and the other half is radiated away.  Explain why this is true for the ideal 

mono-atomi gas, and modify the statement for the two cases you have derived. 

 

c. Physically speaking, why can there be no simple expression or statement like 

this for non-relativistic electron degenerate stars (i.e. white dwarfs). 

 

 

 



AstroI-5 
Lifetimes of Stars 

 

a. Assuming the mass-luminosity relationship on the main sequence is 5.3ML , 

derive a relationship for lifetime on the main sequence in terms of total M under the 

assumption that all stars have the same fraction of their H mass available for nuclear 

burning 

 

b. Derive a similar relationship for stars powered by gravitational contraction alone 

(your expression will contain total mass and total radius). 

 

c. Draw an H-R diagram that shows rough isochrones for co-eval populations 1, 5 and 

10 Gyr after birth. 

 

d. Now suppose there exist clusters made of pure iron stars with masses like those of 

normal stars.  Describe the evolution of these stars as they follow Kelvin-Helmholtz 

contraction, and draw some isochrones for different age populations (please give the 

age in years for the isochrones you show, which obviously requires that you calculate 

the Kelvin-Helmholtz timescale with real numbers) 

 

 

AstroII-1  

Relaxation in a Galaxy Cluster 

 

Consider an idealized galaxy cluster in which all galaxies have the same mass (10
12

 

Msun). The cluster contains 2000 galaxies within a radius of 2Mpc and has line-of-sight 

velocity dispersion 1000 km/s (somewhat like the Virgo Cluster). 

 

(a) Draw a diagram of a two-galaxy encounter in the weak encounter limit (impulse 

approximation), in the rest frame of one of the galaxies. Call their relative velocity v. 

Show the impact parameter b, and use a long arrow to indicate the trajectory of the non-

rest-frame galaxy. 

 

(b) What is the change in velocity for each galaxy (make sure to answer for both)? 

Distinguish the parallel and perpendicular components. Note that dx/(c1+c2x
2
)
3/2

 

=2/(c1√c2) for integration limits of x= to +. 

 

(c) The weak encounter approximation breaks down if v ~ v, the typical 3D velocity of 

a galaxy in the cluster. What impact parameter does this breakdown occur at? Compare 

this “strong encounter” impact parameter to the typical distance between galaxies. 

 

(d) Approximately calculate the two-body relaxation time for this cluster. Comparing this 

number to the age of the Universe, comment on how the cluster has achieved a relaxed, 

roughly spherical configuration. 

 

 



AstroII-2  

Closed Box Star Formation 

 

(a) Demonstrate that an exponential star formation history results from the assumption 

that the star formation rate is proportional to the gas mass in a “closed box” system, i.e. 

that )()( tkMt
dt

dM
g

s  . 

(b) Assume the metallicity Z increases as the gas is consumed with yield p, such that 

)0(

)(
ln)(

g

g

M

tM
ptZ  .  Derive the time dependence of Z in terms of p and k. Compute the 

yield p for which the enrichment timescale for the metallicity to reach the solar value 

Z=0.02 is the same as the gas depletion timescale over which the gas drops by 1/e. 

(c) If we allow for external gas infall (open box model), in which direction will the yield 

change from the value you computed in part b? 

 

AstroII-3  

A Young Massive Star Cluster 

A massive (7x10
7
Msun) star cluster with a light-weighted simple stellar population age of 

~500 Myr is 6 kpc away on-sky from an elliptical galaxy with multiple tidal streams and 

shells, at the same redshift. The galaxy has dispersion ~135 km/s, equivalent to rotation 

velocity ~200 km/s. 

(a) In the Chandrasekhar approximation, the drag force on this star cluster from 

dynamical friction with particles in a dark matter halo is  ln
4

2

2
2




sat

sat
df

V

MG
F , 

where  is the mass density of dark matter particles and 3~ln . Prove that if the cluster 

starts on a nearly stable circular orbit, the time for the cluster to sink to the center of the 

galaxy is 
sat

k
GM

Vr
t

18

2

sin  , where V is the galaxy rotation velocity (which may be 

assumed constant at all radii). 

(b) If the cluster stellar population is indeed “simple,” is the light-weighted age surprising 

compared to the value of the sinking time, evaluated from the equation in part a? What if 

the stellar population turns out to be composite? Comment on how your answers are 

affected by the fact that the 6kpc distance is actually a lower limit due to projection on 

the sky. 

(c) The cluster is virialized and its light profile resembles a cE like M32. Will it follow 

the Faber-Jackson relation of elliptical galaxies, or if not, how will it deviate? In your 

answer, explicitly discuss each assumption required to derived the Faber-Jackson 

relation. 

 

AstroII-4  

Spherical Gas Clouds 

(a) A pressureless, uniform-density spherical gas cloud collapses under gravity in the 

free-fall timescale tff. Show that )32/(3  Gt ff  using Kepler’s 3
rd

 Law 32 aP  , 



where  is the density of the cloud, P is the period of an orbit around a point mass, and a 

is the semi-major axis of an orbit around a point mass. 

(b) Now suppose the cloud is not pressureless, but is supported by internal random 

motions with typical dispersion equal to the sound speed v. Write down an order-of-

magnitude inequality describing the range of cloud sizes that remain unstable to collapse. 

(c) A borderline stable molecular cloud has density A, size lA=2rA, and internal sound 

speed vA. If cloud B is 6x smaller and 16x denser, prove that its sound speed vB must be 

0.67vA to achieve the same borderline stability. 

(d) If the speed of sound vs is related to temperature T in a molecular gas cloud by 

mTkv B /4.1 where m is the mass of a typical molecule and kB is Boltzmann’s 

constant, how do the wavelengths of peak blackbody emission for the two clouds in part c 

compare? What properties of the clouds suggest assuming blackbody emission is 

reasonable? 

 

AstroII-5  

Vertical Motion in a Spiral Galaxy Disk 

A gas cloud plunges through a spiral disk that has scale height hz = 350pc. The 

interaction creates young star clusters in the spiral disk, extending above it by ~100pc. 

The cloud emerges at z=500 pc.  

Assume that at small heights z above the disk, the spiral disk potential takes the 

approximate form ||44 0

||

2
0 zhGehG z

h

z

z
z  



. For a realistic mass density 0  ~ 

0.1Msun/pc
3
 this means 25~4)0( 2

0 zhGz   km/s. 

 

(a) Expand the potential in a Taylor series around z=0 to show that the force equation 

is 









zh

z
zGF

2
14 0 . 

(b) Will the newly formed star clusters experience simple harmonic motion? What is the 

third integral that is conserved for their orbits? What about the gas cloud? 

(c) Use the Poisson equation appropriate for a thin-disk system to determine . 

(d) Show that the surface mass density is 2hz0. 

 

Useful facts: 
F = Gm1m2/d

2 
G=4.3 x 10-6 kpc (km/s)2/Msun  
1kpc = 1Gyr x 1km/s 
Virial Theorem 2KE+PE=0 

Poisson Equation  G42   

Wien’s Law T = 3 mm∙K / peak 

centripetal force F=mV2/r (uniform circular motion) 

Faber-Jackson Relation L  4  
Dynamical time tdyn=√2tff 
Crossing time tcross = R/V = 1 Gyr (R in kpc/V in km/s) 
Relaxation time trelax = 0.1N / ln(N) tcross = 106 yr x 0.1N/ln(N) x (R in pc/V in km/s) 
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Appendix A (The 2007 Qualifier) 
 

NOTE:  The 2007 Qualifier questions have been copied word-for-word as they appeared on the qualifier, including grammatical errors and misspellings. 

 
 
CM-1  

 
Consider a ball of mass m dropped and energy E bouncing elastically up and down (so that energy is conserved). 
 
 (a)  Sketch the trajectories in phase space 

(b)  Express the Hamiltonian in terms of the action variable J and calculate the frequency of oscillation in 
terms of E. 

 

 

 

CM-2 

 
Consider a massless rigid rod of length l with a ball of mass m at each end, rotating around an axis that runs through the 

center of mass as shown ( <90˚).  The radius of each ball is negligibly small. 
 

 
 
 (a)  What are the principal moments of inertia Ii in the body-fixed frame? 

(b)  The components of w are constant in the body-fixed frame.  Find the components of L in that frame, and 
draw the direction of L. 
(c)  Use Euler’s equations to find the direction of the torque N (in the body-fixed frame) required to keep the 
object rotating as in the figure.  Draw the direction of N. 
 
 
 

CM-3 

 
Consider the “point” transformation from the coordinates q1...qN to another set x1...xn.  Show that if Langrage’s 
equations hold for the q’s they also hold for the x’s provided the functions xi(q1...qN, t), i=1, N satisfy a certain 
mathematical condition.  What is the condition and what does it mean physically? 
 
 
 

CM-4 

 
A particle of mass m is subject to a central force F(r) = -V’(r).  Assume the particle moves on a circular orbit of radius 
r=R, and that in that orbit its angular momentum is L. 
 
Assume very little specific information about the potential away from r=R except that is has a Taylor series expansion 
 

 
 

(a)  Determine the angular momentum L, energy E, and angular velocity of the circular orbit. 
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(b)  Consider a nearly circular orbit with the same angular momentum.  Work out the linear perturbation 
equation for radial motion. 
(c)  What condition on the derivative V’(R) and second derivative V’’(R) must hold for the perturbed orbit to be 
stable? 

(d)  After finding the frequency  of radial motion, give an expression for the change in apsidal angle  
that occurs per radial oscillation. 
 
 

 

 

CM-5 

 
The motion of a relativistic particle of mass m in a static potential V(x) can be obtained from the Lagrangian 
 

 
 (a)  Write out Lagrange’s Equations. 
 (b)  Find the canonical momentum p and write out the Hamiltonian H(x

i
,pi)(in terms of position and 

momentum). 
 (c)  Is H a constant of the motion? 
 
 
 
 

EM I – 1 

 
The figure below shows an infinite checkerboard in the x-y plane in which the grey boxes are held at a potential +Vo 
and the white boxes are at -Vo.  The boxes have dimensions a x b as shown.  Find the potential at all points z > 0, 
assuming the z=c plane is held at zero potential. 

 
 

EM I – 2 

 
A straight, cylindrical conductor carries a constant current densityJ.  A cylindrical cavity of radius a is cut into the 
conductor, along an axis parallel to that of the conductor and offset by a distance c.  A cross-sectional view is shown 
below.  Assuming J is directed into the page, what is the magnitude and direction of the magnetic field at a point P 
within the cavity? 
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EM I – 3 

 

Consider a uniformly charged sphere of radius 2a and charge density .  Assume the sphere contains a spherical cavity 
or radius a/2 that is centered at (0, 0, 3a/2), while the larger sphere is centered at the origin.  Find the force on a point 
charge of charge q located at (0, 0, a). 
 
 
 

EM I – 4 

 
Consider a point charge of charge q that is located at a height h above a large pool filled with a perfectly conducting 

fluid that has a mass density .  The pool is located at the surface of the earth.  Assume that the deviation of the 
surface caused by the electrostatic force from the charge is much smaller than h.   
  
 1.  Find the electric field at the surface of the fluid. 
 2.  The electrostatic force per unit area experienced by a surface charge density at a surface where the electric 
field is discontinuous is given by: 

 
 

where and are the electric fields at the two sides of the surface.  Given this, find the equation of the surface the 
fluid assumes under the electrostatic force of the charge. 
 
 
 

EM I – 5 
 
A conductor at potential V=0 has the shape of an infinite plane except for a hemispherical bulge of radius a.  A charge q 
is placed above the center of the bulge, a distance p from the plane (or p – a from the top of the bulge).  What is the 
force on the charge? 
 
 
 
 
 

QM I – 1 
 

Consider the coherent state of a one-dimensional simple harmonic oscillator , where is a number 
and a+ is the creation operator.  (a)  Show that the coherent state satisfy the minimum uncertainty product for x and p.  

(b)  Do an order-or-magnitude estimate for the value of  for a macroscopic pendulum oscillator with string length of 
1m, ball mass of 1kg, and oscillation amplitude of 10 degrees. 
 
 
 

QM I – 2 
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Answer these questions briefly: 
 

(a)  Write down the relationship between the wave function in the coordinate space and that in the momentum 
space. 

 (b)  Describe briefly what is the Aharnorov-Bohm effect. 
 (c)  Write down the Wigner-Eckart theorem. 
 (d)  Describe briefly the experiment that demonstrates the gravity-induced quantum interference effect. 
 (e)  Derive the equation of motion for the time evolution of the density operator. 
 
 
 

QM I – 3 

 

Consider a beam of spin ½ particles in the pure state , where n is a unit vector with polar angle  and azimuthal 

angle .  Use the eigenvector of Sx, ,  as the basis. 

(a)  Show explicitly that  is the eigenstate of Sn=S•n with the eigenvalue 

? 
(b)  A Sy Stern-Gerlach-type measurement is performed on the beam.  What is the probability of finding the 

value ? 
(c)  If the measurement of Sx was done first, independent of its outcome the measurement of Sy is done next.  

What is the probability of finding the value ? 
 
 

 

QM I – 4 

 

Consider a particle of charge e and mass m in constant crossed E and B fields: 
 

E = (0, 0, E), B = (0, B, 0), r = (x, y, z) 
 

 (a)  Write the Schrödinger equation, in a convenient gauge. 
 (b)  Separate variables and reduce it to a one-dimensional problem. 

(c)  Calculate the expectation value of the velocity in the x-direction in any energy eigenstate sometimes called 
the drift velocity. 

 

 

 

QM I – 5 

 

A particle of mass m and charge q sits in a harmonic oscillator potential .  At time t=-∞ the 
oscillator is in its ground state.  It is then perturbed by a spatially uniform time-dependent field 
 

 
 

Where A and are constant.  Calculate in lowest-order perturbation theory the probability that the oscillator is in an 
excited state at t=+∞. 
 

 
 
SM – 1 

 

Consider a molecule as a rigid motor with moment of inertia I.  Its energy levels associated with rotation are given by 
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 with generacy  and j=0,1,2,... 
 

Show that the heat capacity per molecule associated with rotation is given by 
 

 

when T<< .  Reminder:  . 
 
 
 

 

SM – 2 

 

Consider an ideal gas in a one-dimensional channel of length L.  The energy of the particle is given by .  
 (a)  Show, using the classical approach, that the partition function of one particle is given by 

 .  Reminder:   
 (b)  What is the partition function of N indistinguishable particles (just write down the answer)? 
  

(c)  Calculate the chemical potential of this system of N particles at temperature T. 
 
 
 

SM – 3 

 

Consider a system of N non-interacting particles that have two possible energy states,  or .  Find the 
temperature of the system as a function of the total energy.  What happens to the temperature of the system when the 

total energy is greater than ?  Assume N to be a large number. 
 
 
 

SM – 4 

 

A gas obeys the following equation of state (the Dieterici equation): 

 
where v=V/N and a and b are constants.  Find the critical point (Pc, Tc, vc) for this gas, if it exists. 
 
 
 
 
 

SM – 5 

 

A wire of length l and mass per unit length  is fixed at both ends and tightened to a tension .  What is the rms 
fluctuation, in classical statistical mechanics, of the midpoint of the wire when it is in equilibrium with a heat bath at 
temperature T?  A useful series is  
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QM II – 1  

Consider a charged particle with charge q in a 2-D isotropic harmonic potential .  A weak electric field 
E is applied along the diagonal direction (making 45 degree with x axis).   (a) Using perturbation theory to calculate the 
ground state energy to the second order in E.  (b) Solve the problem exactly and compare the result with part (a).  
 
 

QM II – 2  

 
Using the variation principle to estimate the ground state energy of the 1-D simple harmonic oscillator.  Explain your 
choice of the trial wave function.   
 
 
 

QM II – 3 

 

 Consider the scattering of a plan wave (with momentum k) by a 3-dimensional spherical potential. 
 

(a) If the potential is a hard sphere with a radius R what is the phase shift and the total scattering cross 
section for the s-wave scattering. 

(b) If the potential is such that the phase shift of s, p, d, wave scattering are �/2, �/4, �/6, what is the total 
scattering cross section. 

 

 

 

QM II – 4 

 
An isolated hydrogen atom has a hyperfine interaction between the proton and the electron spins (S1  and S2, 
respectively) of the form J S1. S2.  The two spins have magnetic moments αS1 and  βS2, and the system is in a uniform 
magnetic field B.  Consider only the orbital ground state. 
 

(a)   Find the exact energy eigenvalues of this system and sketch the hyperfine splitting spectrum as a                    
 function of magnetic field. 

 
(b)   Calculate the eigenstates associated with each level. 

 
 
 
 

QM II – 5 

 

 A particle of total energy moves in a series of N contiguous one-dimensional regions.  The potential 

in the nth region is ,   where  
 

All regions are equal width �/〈 except for the first and the last, which are of effectively infinite extent.  Calculate the 
transmission coefficients for a particle incident from either end. 
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EM II – 1 

 

A thin, straight, conducting wire is centered on the origin, oriented along the z-axis and carries a current I=I0cosω0t  

everywhere along its length l.  Define . 
 

a) What is the electric dipole moment of the wire? 
 

b) What are the scalar and vector potentials everywhere outside the source region (r » l).  State your gauge and 

make no assumptions about the size of λ0. 
 

c) Consider the potentials in the regime r » l » λ0.  Describe (qualitatively) the radiation pattern and compare it to 

the standard dipole case, where r » λ0 » l. 

 

 

EM II – 2 

 

A ⊗+ hadron decays at rest into a proton and a pion, 

        . 

The rest mass of the ⊗ resonance is assumed to be m⊗ = 1620 MeV/c2, while the rest mass of the proton is mp = 938 

MeV/c2 and the pion has m� = 135 MeV/c2. 
 

(a) Using energy-momentum four-vectors, obtain the final state energy Ep, Lorentz factor p, and the speed 
vp/c for the proton. 

(b) Obtain the comparable quantities for the pion, E�, �, and v�/c. 

 

 

 

EM II – 3 

 
Consider a circular current loop of radius a and of infinitesimal cross section that is confined to the z = 0 plane.  Let 
there be a sinusoidally varying current Iexp(-iωt) in the wire, giving rise to a complex amplitude for the current density 

  . 
 
a) Show that the complex amplitude of the magnetic moment is 
 

  . 
 
In the multipole expansion, a time-varying magnetic dipole gives rise to a vector potential field in the radiation zone of, 

   . 
 

b) Use this to compute the distant (kr » 1) magnetic field and electric field. 

 
c) Compute the angular distribution of the radiated power dP/dΩ and sketch the antenna pattern. 
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EM II – 4 

 

The general expression for the radiated energy spectral-angular distribution of a relativistic electron is 

, 

 

which is derived using the Lienard-Wiechart expression for the radiative part of the electric field. 
 
Consider a nucleus that suddenly emits a beta particle.  The sudden appearance of the beta decay electron is associated 
with a burst of electromagnetic radiation also, called appearance radiation.  It arises because the electron’s velocity and 
position are defined only for t’ > 0: 
 

 for t’ > 0, 
and 

 for t’ > 0. 
 

With the observation direction taken to be , show that the appearance radiation for beta decay is given 
by 
 

. 
 
 

EM II – 5 

 

A tenuous plasma consists of free electric charges of mass m and charge e.  There are n charges per unit volume.  
Assume that the density is uniform and that the interactions between the charges may be neglected.  Electromagnetic 

plane waves (frequency , wave number k) are incident on the plasma. 
 

(a) Find the conductivity ⌠  as a function of . 
(b) Find the dispersion relation, i.e., the relation between k and . 

(c) Find the index of refraction as a function of .  The plasma frequency is defined by . 

What happens if  < p ? 

 

 

 

 

 

 

Astro I – 1.  Energy transport 
 
The equation of radiative transfer in a plane parallel, gray atmosphere can be written as: 
 

  
 

where I is intensity,  is the optical depth measured vertically from the surface, and S is the source function. 
 

a) The source function S describes how propagating photons are removed and replaced by photons from the 
gas. Mathematically it is the ratio of the emission coefficient to the absorption coefficient. In local 
thermodynamic equilibrium it is equal to the Planck function B. Under what conditions (i.e. at what place in a 
star) is the intensity I also equal to B? Explain your answer. 
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b) Starting with the equation above, derive the equation of transport used in stellar interiors: 

 

  
 
c) Use the condition for convection to show the limiting case for radiative transport is: 

 

  
 

 (Hint: You will need the adiabatic relation , and the equation of hydrostatic equilibrium to get the 
result in this form) 
 

 
 

 

Astro I – 2.  Stellar dimensional analysis 
 
a) Use the equation of hydrostatic equilibrium in difference form to derive the dependence of stellar central pressure on 
total stellar mass and radius. Assuming an ideal gas equation of state, what is the mass and radius dependence of central 
temperature? (assume constant composition, homologous density profiles) 
 
b) Now assume that nuclear fusion is a "perfect thermostat" that keeps the core temperature identical for all hydrogen 
burning stars. What is the predicted mass-radius relationship for the main sequence? 
 
c) Use the equation of radiative transport in difference form to derive the mass-luminosity relationship under these 
assumptions. (You may use the approximation that Tcentral – Tsurface = Tcentral) 
 
d) Use the relations from b and c to predict the slope of the main sequence for "constant central temperature" stars (the 
observed value for real stars is between 7 and 8). Comment on this result and upon the importance of understanding 
nuclear burning to predict the slope of the main sequence. 
 
 
 
Astro I – 3.  Virial theorem 
 
The virial theorem can be written as: 
 

, 
 
where P is the pressure and Ω is the gravitational potential energy. For an ideal, nonrelativistic gas this becomes 2K + Ω 
=0. 
 

a) Use the virial theorem to explain why adding significant energy to a star will cause it to cool. 
 
b) We know a white dwarf will heat up if energy is added. How can this be consistent with the virial theorem? 
(Hint: the first term now has two components, one for the electrons and one for the ions) 

 

 

 

Astro I – 4.  Observational astronomy 
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a) The absolute v magnitude of the sun is about 4.8. Based on the Hipparcos H-R diagram (above), what is the B-V 
color of the sun? 
 
b) Explain how to convert this B-V color into a temperature under the assumption that the sun is a blackbody. 
 
c) What is the magnitude of a star with a B-V of 0.0? How many times more luminous than the sun is such a star? 
 
d) If the sun is 6000K and has its spectral peak at 5500 angstroms, what is the temperature of a star with B-V of 0.0? 
 
 

 

Astro I – 5.  Nuclear Reactions 
 
Nuclear reaction rates are proportional to 
 

, 
 
where the b parameter is proportional to the product of the nuclear charges of the reactants and the square root of the 
reduced atomic mass A=A1A2/(A1+A2) 
 

a) For non-resonant reaction rates, the S(E) can be treated as a constant, S0, and the exponential approximated 
as a Gaussian. Explain where the two terms e-E/kT and e-b/sqrt(E) come from. Sketch them separately and then 
sketch their product. 
 
b) Show that the integrand has a maximum at E0 = (bkT/2)2/3 
 
c) Helium burning is a two stage reaction, he first step of which is He4+He4=Be8. It occurs at core temperatures 
about 10 times higher than for hydrogen fusion. How much higher in energy is the reaction peak? How is the 
peak otherwise changed? 
 
d) The temperature dependence of the triple alpha reaction under discussion is T41, much higher than the 
hydrogen burning sensitivity to T. Given your answer to c, how could this be true? 
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Numerical Constants: 
 
Solar Mass (Msun):   1.989 x 1033 g 
Solar Radius (Rsun):   6.96 x 1010 cm 
Solar Luminosity:   3.847 x 1033 erg/s 
Gravitational Constant (G)  6.6726 x 10-8 cm3/g/s2 
Proton mass    1.6726 x 10-24 g = 938.27 MeV/c2 
Yield of p-p reactions (Q)   26.7 MeV = 4.28 x 10-5 ergs 
Boltzmann constant   1.38 x 10-16 erg/K 
Planck's Constant   6.626 x 10-27 erg-s 
Electron mass    9.109 x 10-28 g 
Proton mass    1.6726 x 10-24 g 
 
 
 

 

 

 

 

 

 

NOTE:  Due to the recent change of the graduate-level astronomy curriculum, the Astro II section of the 2007 
Qualifier, which corresponded to the High-Energy Astrophysics class, will be replaced by a Galactic Dynamics section 
starting in 2008. 
 

 

 

 

 

Astro II – 1.  Wigner-Seitz Approximation 

 

Consider a degenerate electron gas about an ion lattice. 
 
 (a)  Consider a neutral, spherical cell of radius ro about an ion of charge Ze.  Assume that the electrons are 
 distributed uniformly and write down an expression for the charge q of the electrons within radius r. 

 
 (b)  Calculate the potential energy Ee-e of the electron-electron interactions (i.e., the energy it takes to assemble 

a uniform sphere of Z electrons). 
  

 (c)  Calculate the potential energy Ee-i of the electron-ion interactions. 
 
 (d)  The total Coulumb energy of the cell is then Ec = Ee-e + Ee-i.  Write down an expression for Ec as a function 

of Z and the electron density .   

 (e)  The Coulomb correction to the ideal, degenerate electron gas pressure Po is then 
.  As electron density increases does P/P0 = (P0 + Pc)/P0 increase, decrease, or stay the same (a) in the non-
relativistic limit and (b) in the extreme relativistic limit? 

 
 
 
 

 

Astro II – 2.  White Dwarf Equilibrium and Stability 
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Consider a white dwarf of total energy E=Eint+Egrav+Eint+EGR, where Eint = AM ρc 
1/3 is the internal energy of an n=3 

polytrope, Egrav = -BM
5/3

ρc 
1/3 is the Newtonial gravitational potential energy of an n=3 polytrope, ∆Eint=CM ρc

-1/3 is the 
correction to the internal energy due to the electrons not being completely relativistic, ∆EGR=-DM

7/3
ρc

2/3 is the 
correction to the gravitational potential energy due to general relativity, and M and ρc are the mass and central density, 
respectively.  In cgs units, A = 8.566*10

14
(µe/2)

–4/3
, B = 4.264*10

-8
, C = 4.950*10

19
(µe/2)

-2/3
, and D = 4.549*10

-36
. 

 
 (a)  Assume equilibrium and write down another relationship between A, B, C, D, M, and ρc. 
  
 (b)  Ignore the correction terms in (a) and solve for M in solar masses.  What is this mass? 
  
 (c)  Do not ignore the correction terms and assume borderline instability to write down another relationship 
 between A, B, C, D, M, and ρc. 
 
 (d)  Substitute (a) into (c) and eliminate AM-BM

5/3. Substitute (b) and eliminate M.  Solve for ρc  in g/cm3. 
 
 (e)  Inverse ß-decay occurs if ρc ≥1.14 * 109 g/cm3 for iron white dwarfs, 3.90 * 1010 g/cm3 for carbon white 
 dwarfs, and 1.37 * 1011 g/cm3 for helium white dwarfs.  Does inverse ß-decay or GR-induced instability 
 terminate the sequence of (a) iron, (b) carbon, and (c) helium white dwarfs? 
 
 Msun = 1.99 * 10
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Astro II – 3.  Pulsar Magnetic Dipole Model 

 

Consider a neutron star that rotates at a frequency  with a magnetic dipole moment m that is oriented at an angle  
to the rotation axis. 
 
 (a)  The magnitude of m is BpR

3/2, where Bp is the magnetic field strength at the magnetic pole and R is the 
 radius of the neutron star.  Write m as the sum of three orthogonal vectors, one along the rotation axis that 

 depends on |m| and , and two that also depend on  and time t.  
 

 (b)  Calculate the rate at which the neutron star loses rotational energy:   . 
 

 (c)  The neutron star’s rotational energy is E=I
2
/2, where I is the moment of inertia.  Take a derivative 

 and substitute into (b) to eliminate . 
 

 (d)  Write an expression for the characteristic age of the pulsar:  , where and  are 
 current values. 
 

 (e)  Integrate (c) from  at t=0 to  at t=to.  Solve for to  as a function of T, , and .  
 

 (f)  For the Crab pulsar, T is measured to be 2556 years.  Assume that  and calculate the pulsar’s 
 age.  How accurate is your answer? 
 

 

 

Astro II – 4.  Neutron Star Accretion 
 
Consider accretion onto a neutron star with a dipole magnetic field. 
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 (a)  The magnetic field will begin to dominate the flow of the in-falling gas at the Alfvén radius, where the                  
 energy density of the magnetic field becomes comparable to the kinetic energy density of the gas.  Write  
 down a simple expression for the energy density of the magnetic field in terms of field strength B and a  

 simple expression for the kinetic energy density of the gas in terms of gas density and speed v.  
 

 (b)  For a dipole magnetic field, , where  is the magnetic moment.  Assume that , the  

 free-fall speed, and that , where is the accretion rate.  Write down a simple expression  
 for vff in terms of the mass M of the neutron star and r.  Substitute these expressions into (a) and solve for  
 the Alfvén radius r=rA. 

 

 (c)  As the in-falling gas flows to the surface, gravitational potential energy is converted to kinetic energy  
 and when it strikes the surface the kinetic energy is converted to luminosity.  Write down a simple  

 expression for L in terms of , , and R.  Substitute this expression into (b) and eliminate . 
 

 (d)  Take ~10
30 cgs and L to be on the order of the Eddington luminosity.  Ballpark rA. 

 

 (e)  For a dipole magnetic field, field lines are given by constant.  The in-falling gas is funneled 
to  what fraction of the neutron star’s surface? 
 
 G = 6.67259*10

-8
 cm

3
 g

-1
 s

-2
 

 Msun = 1.99 * 10
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Astro II – 5.  Aberration of Light 
 
Consider the Lorentz transformation: 
 

     

     

     
 
 (a)  Write down the velocity transformation. 
 

 (b)  Let .  Write down an expression for  as a function of u, , and v (the aberration  
 formula).  Let u=c and write down the aberration of light formula. 
 
 (c)  HST images a star as it orbits at a speed of v=7.56 km/s, completing an orbit every 97 minutes.  By  
 how many arcseconds does the position of the star appear to change as the angle between the telescope’s  
 pointing and motion changes from -90° to +90°?  Ground-based telescope have to track at a rate of 900  
 arcsec/min to compensate for the earth’s rotation.  At what average rate does HST have to “track” to  
 compensate for aberration of light? 
 
 (d)  Suppose that you are traveling through space at 1% of the speed of light.  All objects with 90° of your                 
 direction of motion (half of the sky) will appear to be concentrated within how many degrees of your  

 direction of motion?  What if you are traveling at ? 
 


























































































































































































































