Below are the UNC Department of Physics and Astronomy Qualifying exams from the
years 1999 through 2012. Due to changes in the exam format and poor record keeping,
some of the sections are ambiguously labeled or missing. Numbers in red are best guesses
about the exact exam. Years with missing problems are labeled by how many are
included in this packet. This packet starts with the 2012 exam and moves backwards.
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UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Doctoral Written Examination in Physics, 2012
Part I: Classical mechanics and Statistical mechanics
Saturday, May 12, 2012
Instructions: Please work in the assigned room, but take a break outside anytime you

want to. Mathematical handbooks and electronic calculators are allowed.
Begin each answer on a new sheet and write only on one side of each sheet.

Identify each sheet by:

Page of Question Student’s # (PI1D)
CM: Classical Mechanics

Work out 3 out of 5 problems
SM: Statistical Mechanics

Work out 3 out of 5 problems

(Partial credit will be given for partial answers)

My work is completed in full observance of the Honor code:

Signature

Print name




UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Doctoral Written Examination in Physics, 2012
Part I1: Electromagnetism | and Quantum mechanics I

Monday, May 14, 2012

Instructions: Please work in the assigned room, but take a break outside anytime you
want to. Mathematical handbooks and electronic calculators are allowed.
Begin each answer on a new sheet and write only on one side of each sheet.

Identify each sheet by:

of Question Student’s # (PID)

Page

EMI: Electromagnetism |
Work out 3 out of 5 problems

QMI: Quantum Mechanics |
Work out 3 out of 5 problems

(Partial credit will be given for partial answers)

My work is completed in full observance of the Honor code:

Signature

Print name




UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Doctoral Written Examination in Physics, 2012
Part I111: Electromagnetism 11 and Quantum mechanics |1
Monday, May 14, 2012
Instructions: Please work in the assigned room, but take a break outside anytime you

want to. Mathematical handbooks and electronic calculators are allowed.
Begin each answer on a new sheet and write only on one side of each sheet.

Identify each sheet by:

Page of Question Student’s # (PID)
EMII: Electromagnetism Il

Work out 3 out of 5 problems
SM: Quantum mechanics Il

Work out 3 out of 5 problems

(Partial credit will be given for partial answers)

My work is completed in full observance of the Honor code:

Signature

Print name




UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Doctoral Written Examination in Physics, 2012
Part I11: Astro | and 11

Monday, May 14, 2012

Instructions: Please work in the assigned room, but take a break outside anytime you
want to. Mathematical handbooks and electronic calculators are allowed.
Begin each answer on a new sheet and write only on one side of each sheet.

Identify each sheet by:

of Question Student’s # (PID)

Page

Astro I
Work out 3 out of 5 problems

Astro II:
Work out 3 out of 5 problems

(Partial credit will be given for partial answers)

My work is completed in full observance of the Honor code:

Signature

Print name




CM-1

A point particle of mass m moves in a plane in response to the following
Lagrangian

L=1im(2* + 7 + 2aiy) — 3k (2* + v* + 2B2y)

where k = 0 Is a spring constant and a and /3 are two other time-independent
parameters.

(a) Find the normal mode frequencies, w 5.

(b) What conditions must be placed on & and 3 so that the motion is always
a bounded, stable oscillation?

(c) Find the eigenvectors of the system.

(d) Sketch the motion in the x and y coordinate system for the two eignemodes.
How does the behavior depend upon the values of o and 57

CM-2

Consider a straight cylindrical shaft of radins o = 1m that penetrates
through the center of the earth. It emerges at latitudes # and —@ rela-
tive to the equator. Assume that the earth is a perfectly homogenous sphere
of mass M and radius R that rotates with angular velocity w. A test point
mass of mass m is suspended at rest relative to the shaft directly above the
svmmetry axis of the shaft and then released to free-fall down the shaft. You
may neglect air-friction and relativistic effects for this problem. Answer the
following questions:

(a) Use a non-inertial Cartesian coordinate system where one axis points
down the center of the shaft and another along the east-west direction
to provide a gualitative description of the test mass’ motion.

(b) Find the equations of motion of the test mass in the reference frame
from part (a). Recall that the fictitious force experienced by a mass m
in a reference frame rotating at a constant angular velocity is given by:

F = Fcoriolis + Feentrifugal = —2m€2 x vp —mi) x (Q x 1‘)

(c) Discuss the motion in the specific cases where §# = 0° and # = 90°, If
the test mass experiences any oscillatory motion, find the period of the
oscillation(s).

(d) In the “shallow approximation”, e is small enough so that the test mass
only falls a short distance, d < R, before it hits the side of the shaft.
Find an algebraic equation for d in the shallow approximation. Do not
attempt to solve it.

(e) Assume that the test mass is dropped down the hole in the northern
hemisphere. If vou stand over the shaft so that north is at 0 radians,
at what angle will the test mass hit the side of the shaft in the shallow
approximation?



CM-3

A particle of mass m moves under the influence of gravity, with downward
acceleration g, on the inner surface of the paraboloid of revolution, 22 + 42 =
az. Here a = 0 is a length scale and the surface is assumed to be frictionless.
The coordinate z points upward in the vertical direction.

(a) Write down the Lagrangian and show that the equations of motion can
have the form

p— pd”® = 2)p,
d(p*¢)/dt =0,
F=—g—al,

and
2

az=p,
where we have converted to cylindrical coordinates (p, @, 2).

(b) Now let the particle be given an angular velocity of 1/2¢g/a, so that it
orbits in a horizontal circle. Prove the stability of the particle in this
circular path by showing that if the particle is displaced slightly from
this path, while holding the angular momentum fixed, it will undergo
oscillations about the path.

(c) Find the frequency of the radial oscillations.

CM-4
Consider the Lagrangian for a two-dimensional system
L =142 — equge.
where ¢ is a positive constant.

(a) Solve the equations of motion and describe the physical system that the
Lagrangian defines.

(b) The Lagrangian is invariant under the scale transformation
A —A
gl — e"q . Gz —r € {2,

for arbitrary A. Use Noether’s theorem to find the conserved quantity
associated with this invariance, and interpret its meaning.

(¢) Suppose the two coordinates g, and g, are the z and y coordinates of a
single object. What property of the object does the conserved quantity
describe?



CM-5

A ball is bouncing vertically and perfectly elastically in an elevator that aceel-
erates from rest with acceleration a(t). The rate of change of the acceleration
a(t) is very slow: a(t)T < g, where T is the period of the ball’s motion and
¢ is the usual acceleration of objects in the earth’s gravitational field.

(a) The equivalence principle says that this situation is equivalent to what
other situation?

(b) If the ball has maximum height hy above the floor of the elevator before
the acceleration begins, what is the maximum height h(t) at a later
time £, in the adiabatic limit?

SM-1

Consider an 1deal Bose gas (non-relativistic) contfined to a region of area 4 in two
dimensions. Express the number of particles in the excited states. N, . and the number of particles

in the ground state, N, in terms of z. T, and 4. and show that the system does not exhibit Bose-

Einstein condensation unless T — 0 K.

(g,(2)=

1 T " ldx .

T 7 -1 0<z<1 and g,(1)=<(n) and (1) == )

0

SM-2
Consider N identical, localized. noninteracting spins with spin quantum number j. The
magnetic moment of each spin 1s 1= g, j where g is the Bohr magneton. g is the Lande factor,
and the eigenvalues of j _. the magnetic quantum number m, are m=—j,—j+1L...j—1.j. In the

N

presence of an external magnetic field H the energy of the system is given by E = —Z ;- H.
=1

(1) Show that the magnetization is given by M_ = Ngu; jB(x)

where x = gupHj kT and B (x) 1s the Brillouin function grven by

B.(x)=(1 +L)coth (1 +i)x —icoth -
! 2j ) i 27

NE MU +D)

(2) Show that for x = gugHj / kT < 1. the magnetic susceptibility is given by ¥ = T
Kg

a1
(cothx =~ x 1+Ex for x=<1)



SM-3
Consider a classical gas of N identical particles. The energy of the system is given by
v =

H=Z?;+;EMa4w

- g
i=l =

br

In the dilute (atomic volume x N << ¥/ N ) and high temperature (|U| < kT ) approximation it can

be shown that the partition function can be written as

N
1[1 h
Z(T.ZV.N)=—| — | O0.(FV.T) where A=————
(T.V-N) N!{f] Os(-1) J2amk, T

where the configurational integral O, (V.T) is given by
'Q__\; (V. T:} - V:\" + ]}r.\'—lz j d}r;_j d}rk (e_U.); "k#.‘lr_ 1}
i<k f

Assume the potential is given by the hard sphere potential

o0

?;—?}C‘{FD

n-nl)=

U, o
al 0 ‘r;.—rk‘zrn
Show that the equation of state 1s given by

F}J
P[V—N'; 7 J — Nk,T

SM-4
Consider the closed (this means that the nearest neighbors of spin 1 are spin 2 and spin N) 1
D Ising model where the Hamiltonian 1s given by

¥
H, (Jl.....JN) = —IZ 0,0, — JHBZJ:. :  o,==1 and n.n.=nearest neighbors

o i=l

4 is the magnetic moment. B 1s the magnetic field. and 7 is the coupling strength. The mean-field
approximation predicts a spontaneous magnetization below a critical temperature T, =27 / kg . The

exact solution shows that the mean-field approximation made qualitatively wrong prediction. Such
phase transition does not exist in 1D. Show that the exact free energy is given by

F=—kTln(4" +4)

where

Ay =e"" cosh(uB kT )+ Je_y BT 4™ sinh® (uB / kgT)

From this you can derive the magnetization and see why there 1s no spontaneous magnetization at
T=0 K. However. you don’t have to show this here.

SM-5

A cylinder of radius R and length L contains N molecules of mass m of an ideal gas at
temperature T. The cylinder rotates about its axis with an angular velocity o.
Find a change in the free energy of the gas AF, as compared to that at rest.



EMI.1
(a) For an arbitrarily moving charge, the charge and current densities
are p(7,t) = ed(F— R(t)), j(7,t) = e(dR/dt)5(F— R(t)), where R(t) is the po-

sition of the charged particle. Verify the statement of conservation of charge.

(b) Find the total charge and the electric dipole moment of the charge
density p(7) = —d - V4(F).

() What electromagnetic fields do the following potentials describe?
¢ =0,A =a(a-r), where @ is a constant vector.

EMI.2
Start with the potential due to a given local charge distribution around

the origin of the coordinate system ¢(7) = [(dr’) lptﬁf’} If the total charge

F—r|
of the given charge distribution is zero, show that (a) the potential , in its
leading behavior for large distances, has the form

o(F) = ’i—f where the electric dipole moment is given by d = [(dr')r'p(r).

(b) Consider an additional point charge e; located at a point ¥ lying far
from the dipole; the interaction energy is given by E = d - %:3 Show that
we can interpret this energy as the interaction energy of the dipole moment
with the electric field E produced by e; at the origin, ie., E = —d-E.

(c) Use E = —d; - E as the interaction energy of an electric diple mo-
ment d; with the field E produced by a given charge distribution far from
d;. Calculate the interaction energy E for dipole-dople interaction, i.e., for
the interaction of d; at the origin with the field E produced by another
dipole moment dy located at .

EML3
(a) Show that a perfectly conducting sphere of radius a placed in a con-
stant magnetic field By acquires a magnetic moment i = —%{1350.

(b) Find the surface current density K.

(c) Show that the values for i and K are consistent with each other.

EMI-4

Consider two straight parallel wires, carrying static charge with linear charge density

of p and —p , respectively. The wires are along the z-direction, one is located at x = ¢/,
and the other atx = — 2/,

(a) Find the electric potential and the electric field everywhere in space.

(b) Simplify your expression for the region far away from the wire, and express the field
in terms of the linear dipole density p=pa.



EMI-5

Consider two parallel plane electrodes (regarded as infinite) separated by a distance d.
The cathode located at x = 0 with electric potential of @ (x = 0) = 0 is capable if
emitting unlimited electrons (charge e and mass m) when an electric field is applied to it.
The electrons leaving the cathode with zero initial velocity are accelerated toward the
anode located at x = d with electric potential of (x = d) =V}, . In the steady state there
will be a constant electric current flowing from the cathode to the anode.

(a) Find a relationship between the current density J, the space charge density p(x) and

the electric potential ¢(x) in the space between the two electrodes. Is J a constant or a
function of x, why?

(b) Derive a differential equation that determines the electric potential ¢ (x).

(c) Assuming a power law solution (¢ (x) is proportional to x¥), solve for the potential
density J in terms of e, m, d, and V.

OQM1-1 Two electrons interact via a spin-spin interaction that is given as
v 51 - Sg where a is a constant. One of the electrons is also trapped in
a region with a homogeneous external magnetic field of intensity Bj.
Please answer the following questions:

(a) What is the sign of a7 Explain your answer.

(b) Consider only spin degrees of freedom and find the allowed energies
of this system in terms of fundamental constants and o.

(c) Assume that we create an ensemble of these two electron systems.
For each member of this ensemble, we perform a measurement of
the spin of the electron that is trapped in the magnetic field region
along the direction of the magnetic field. What is the average
energy of the subset of the ensemble with measured spin in the
same direction as the magnetic field?

QM 1-2

(a) Consider a Hamiltonian H(A) that depends on a parameter A, one of the Hamiltonian’s

eigenstates |p(A)), and the corresponding energy E(A). Show that
dE()\) dH(A)
= (ip(A o(A))
I (p(A)| ) lp(A)

a result that is known as the Hellman-Feynman theorem.
(b) The states of the hydrogen atom with no radial nodes (n =1+ 1) have energies

4
.\ —E£m
(

El)= ———
bl 41)2

Letting H(A) be the Hamiltonian for the radial Schrodinger equation and the parameter
A be l, use the Hellman-Feynman theorem to derive an expression for the expectation
value of the operator r—2 in states with no radial nodes.



ONM1-2 Consider an electron that is free to jump between 3 fixed, identical

QMI-4

atoms in a molecule. Each atom is located at a corner of an equilat-
eral triangle. Ignore spin and any other nearby electrons and atoms.
We can define an orthornormal basis set of states of the electron to be
spherically symmetrical orbitals bound to each atom. In other words,
|S;) would correspond to an electron bound to the ith atom. In this ba-
sis the Hamiltonian for the system has all off-diagonal elements equal to

£ and the diagonal elements equal to zero. Please answer the following
questions:

(a) Given that one of the energy eigenvalues is 2¢, find the other energy
elgenvalues.

(b) The Hamiltonian is obviously invariant under rotations of 2w /3.
Find a matrix to represent such a rotation operator (R) and find

the simultaneous eigenstates of H and K. You may find the fact
that R* = 1 useful.

(d) Assume that at ¢ = 0 the electron is in the |S;) state. Find the

probability that the electron will stay bound to that electron as a
function of time.

A paradox:

(a) Show that for finite-dimensional matrices A and B,

(b) In the 1-d harmonic oscillator, the raising and lowering operators a’ and a obey the

Tr[A, B] =0.

commutation relation

The trace of I is obviously not zero. In the basis of oscillator eigenstates, write down
the matrix representations of a and a' (you can write down the upper left parts and
indicate the rest with dots). Multiply them together to get the matrix representations

[a,ait =1.

of aa’ and a'a and explain why the result from part a) doesn't apply.



QMI-5
(a) Write down or derive the equation of motion for the density operator p(t).
(b) Use the solution of (a) to show whether or not a mixed state can evolve into a pure state.

(¢) The reduced density operator for a two-particle system is defined as the trace of the two-
paticle density operator over the states of the second particle. For the simple two-particle
density operator p = |avjan) {5152/, the reduced density operator is given by

pr = |lag}(Bi] Trflag) (Bal] -

All two-particle density operators can be written as sums of simple ones like that above,
and pp 1s defined for these more complicated cases in the obvious way, by invoking
linearity.

The reduced density operator is an effective operator for a single particle that takes
into account our complete ignorance of the other particle. Consider a two-spin density
operator assoclated with the pure spin-singlet state, i.e.

p=15=0)(s=0)

where
w=m=§gu+—kﬂy

Find the reduced density operator. Does it correspond to a pure single-particle state
or a mixture of single-particle states? If the former, what state, if the latter, what
polarization?



EMII-1

A nonrelativistic particle of mass m and charge e, and initial kinetic energy
E., makes a head-on collision with a fixed central force region with poten-
tial energy V(r). The particle comes from an infinite distance away. The
potential energy steadily increases toward the center so that

Vir) < E, for > T,
Vir) = E, for < T
1. Find the instantaneous total radiated power as a funection of position.

2. Integrate the power over all time to find an expression for the total
radiated energy.

3. Assuming the potential energy and its derivative at the turning point
are finite, show that the integrated emission is finite.

EMII-2
A high energy photon of energy F encounters an electron of mass m and
charge e at rest. A scattering oceurs with a photon of energy E’ emerging
and moving at an angle # relative to the direction of motion of the original
photon. The electron recoils with some Lorentz factor 4 and angle ).

1. Find the expression for the scattered photon’s energy in terms of the
original photon’s energy F, the electron mass m, and the scattering

angle .

2. Derive an expression for the Lorentz factor v = E™°!/(mc?) of the
recoiling electron.

EMII-3

Two parallel dielectric media are backed by a perfect electric conductor
as shown in the accompanying figure. A source, to the left of the first inter-
face, initiates an incident plane wave described by e*20+%/2) with perpen-
dicular polarization (i.e., the electric field being perpendicular to the plane
of incidence.) The reflected wave is represented in terms of rpe—*F2(z+2/2),
Find the reflection coefficient r,. Next, find the absolute value of the coef-
ficient and then give a brief physical interpretation of the result.

€ €1 Perfect conductor

Z=-al2 Z=0




EMII-4

Start with the Maxwell’s equations in vacuum in terms of the electric
field E, the magnetic field B, the charge density p and the current density
;,f: Write E and B in terms of scalar potential ¢ and vector potential A.

{a) Show that, in the Lorenz gauge, the potentials obey the differential

equations: —DA = :171‘}'}’ c and a similar equation for ¢, where I stands for
the d’Alembertian.

(h) Show that the potentials can be solved in terms of the sources j and
£ by using the Green’s function technique with the Green’s function obeying
the equation —DG(F — ', t — t') = dwd(F — r")b(t — t').

(¢) Assume that the equation has been solved (you do NOT have to solve
the equation) to yield G(F — v, t — ') = F_‘;,lé{i;wf— | — (t—t)).
Which sign should we use and why? Finally wnite down the potentials as
integral equations of the sources.

EMII-5

Consider a coaxial waveguide. Let the inner radius be b, the outer radius
a. Assume a — b << a. Find the cutoff wavenumbers for the TM mode.
[Hint: You do not need Bessel functions and you may note that for ®(p)

. . 2 ‘ \ 2 N
satisfving (%%pf—b—%—l—w‘?]@{p} = (), one has {ﬁ;—%}—k%ﬁ;—kjﬂ@@(m ==
0.]
QMII-1

a) Assuming that the hamiltonian is invariant under time-reversal,
prove that the wavefunction for a spinless non-degenerate system at any given
instant of time can always be chosen to be real.

b) The wavefunction for a plane wave state at t=0 is given by a
complex function e tpx Why does this not violate time reversal invariance?



QMII-2

A p-orbital electron characterized by |n, I=1, m =+ 1, -1, 0> (ignore spin) is subjected to
a potential V = & (x* — y?) where A =constant.
a) Obtain the ‘correct’ zero-order energy eigenstates that diagonalize the

perturbation. You don’t need to evaluate the energy shifts in detail, but show that
the original 3-fold degeneracy is now completely removed.

b) Because V is invariant under time reversal and because there is no longer any
degeneracy, we expect each of the energy eigenstates obtained in (2) to go into
itself, (up to a phase factor) under time-reversal. Check this point explicitly.

MII-3
\(/?Vork out the quadratic Zeeman effect for the ground state of hydrogen atom,
[<x|0>= 1/ (na03)1/2 e 7r/ao ] due to the neglected term “ &2 A? / 2m¢c? « in the
hamiltonian taken to first order. Write the energy shiftas A = -y B?/2
and obtain an expression for “ ¥ .
This is a useful integral:  [%e 2 r"dr =n!/@").

QMII-4

Three spin -0 particles are situated at the corners of an equilateral triangle. Let us define
the z-axis to go through the center and in the direction normal to the plane of the triangle.
The whole system is free to rotate about the z-axis. Using statistics considerations, obtain

restrictions on the magnetic quantum numbers corresponding to J, .

QMII-5
Consider scattering from the delta-shell potential V(r) = gd(r - o).
a) First determine the boundary conditions at r =0 and r = ry , then make a suitable

ansatz, apply the boundary conditions, and compute the s-wave scattering
amplitude.

b) Determine the s-wave bound states of an infinite spherical well of radius ro.
Comment on the relation of the delta —barrier resonance and these bound states.
What happens to the s-wave scattering length when the incident k-value sweeps
across the “k” corresponding to one of these quasi bound state



Astrol-1  White Dwarfs

a)

b)

c)

1 o0}
The pressure integral: P= §_[ pVﬂ( p)dp
0

allows you to calculate pressure given a distribution in momentum n(p)dp.
Assuming that a completely degenerate electron gas has the electrons packed as
tightly as possible, so that their separation is of order ng™*, use the Heisenberg
uncertainty principle to estimate the momentum of an electron in terms of n. By
further assuming that p = mev (non-relativistivic) and that all the electrons have
the same momentum (to make the integral trivial), derive the exponent n in the
power law equation of state:

Poc p'T?

(For this problem, don’t worry about the constants of proportionality, they’ll be
wrong under the constant momentum assumption anyway.)

Now use your understanding of this equation of state and hydrostatic equilibrium
and mass conservation in scaling law form to plot white dwarf cooling curves on a
log Teff,- log L (H-R) diagram. Work in solar units and use the normalization
that an 0.6 solar mass white dwarf has a radius of 0.01 Rsun at solar Teff. Plot
curves for 0.2, 0.6, 0.8 1md 1.0 solar mass white dwarfs.

Now write the mass-luminosity relationship for non-relativistic white dwarfs in
power law form.

Astrol-2  Deuterium burning in stars

a)

b)

In the formation of a main sequence star from a protostar there is a phase in which
primordial Deuterium is fused. This happens at a temperature of 10° degrees
rather than the 15 x 10° required for P-P reactions. Use hydrostatic equilibrium
and mass conservation, along with the ideal gas law, to compare the radius of a 1
solar mass protostar in its D burning phase to its radius on the main sequence.
You need to assume the density profiles of the two stars are identical (one can be
scaled to the other).

Referring to the curve of binding energy below, estimate the total energy
available from D burning for a solar mass star if the primordial D abundance is
0.013% of P, and occurs in the inner 10% of the star. (Deuterium fuses via 1H +
2H —> 3He + )

Compare the D-burning timescale to the Kelvin Helmholtz (gravitational
contraction) timescale.



Average binding energy per nucleon (MeV)

| 1 1 | | 1 1 | | |

0 20 40 60 80 100 120 140 160 180 200 220 240
Number of nucleons in nucleus, A
Astrol-3 Lifetime, luminosity, mass scaling
a) Use the plot below to estimate the exponent for a power law relation for main
(94

sequence lifetime in terms of stellar mass: L oC M

b)  Assuming that all main sequence stars convert the same fraction of their total mass
to He, what is the expected Mass-Luminosity relation on the main sequence? How
closely do the luminosities expected from this relation match the luminosities seen
in the H-R diagram depicted? Comment.

c)

Assuming the gas in these stars is ideal (a fairly good assumption) and that the
central temperature is proportional to the effective temperature (not so good), use
the assumption of hydrostatic equilibrium and the Mass-Luminosity relation from
above to estimate the temperature dependence of the nuclear reactions (assume
negligible density dependence).
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Astro 1-4

a Centauri A is G2 like the Sun but older, having 1.14 Mg . 1.23 Rg, and 1.5 Lg. It is 1.34 parsecs
from us in an 80-year elliptical orbit with @ Centauri B. B is tvpe K1, has 0.92 Mg, 0.86 Bg, 0.5
L. and approaches A to 11.2 AU separation. Assume that both stars emit as blackbodies and

consider a planet in a circular orhit around B.

(a) Assume that the planet cools as a blackbody throngh a non-greenhouse gas atmosphere that
reaches 1 Earth surface pressure. Caleulate the inner (water steam Tormation) orbital radius
in AU of the “habitable” zone around B, ignoring Tor now star A, Take planet albedo as 50%
and assume rapid rotation.

(b) Show quantitatively that there is no significant change in the zone’s outer radius (water ice
formation) aronnd B even when star A is closest.

(¢} Like Earthlings, the o Centanrians are loading COs into their atmosphere as they rapidly
burn up fossil fuels. Assuming that their planet has average temperature 40 °C but that the
increasing COs will soon push it to 50 °C, caleulate

i. what fraction of the sunlight should be blocked by a perfectly opaque sunscreen to reduce
insolation on the planet to restore its pre-COq equilibrinm temperature, or alternatively,

ii. by how much they must increase planetary albedo at visible wavelengths through chemical
modification.

Astrol-5

The diagram helow plots colors of many stars with Sloan ¢ 17 through the 4 5DSS filters
indicated, over a lield in onr Galaxy, Assume that the colors have been corrected for reddening.

[a) Where [easible, identily the spectral classes, evolutionary stages, and approximate masses of
stars near each of the numbered regions.

(b} Assuming that most of these stars Tormed in a burst, estimate the mean age today of this
population if they show similar chemical composition to that of the Sun.

(e} What is the phyvsical explanation for the strongly curved “tail™ ar 27
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Astroll-1

It is possible to caleulate the nuclear statistical equilibrinm at high densities
between neutrons, protons, and electrons in a neutron star by treating each
as an ideal Fermi-Dirac gas component. For equilibrium to oceur there has
to be a balance between

mn—p+e 4+,

and
pHe —n+ v,

and in a neutron star we assume the neutrinos escape.

At high enough densities the muon (another fermion) can appear, changing
an ideal n — p — e gas into an ideal n — p — e — p gas. If it is energetically
feasible, the two reactions,

HT e+, + e,

and
e _3"“__'_17;.[_'_1/'::

may OCCur.

(a) Write down the set of thermodynamic equilibrium equations between
dimensionless Fermi momenta z,., x,. x,, and z,. and the expression
for the total energy density.

b) In terms of the masses of the particles, m,., m,. m,,, and m,, determine
P i

z., T, and x, at threshold for the appearance of mmons in the gas.

{You do not need to obtain numerical values.)



Astroll-2

The Universe contains cosmic ray particles, including a very high energy
power-law distribution. The very highest energy cosmic ray protons are
measured to have energies up to around 102° eV. At that energy the spectrum
cuts off, though there is controversy over the statistics of the very highest
energy events.

The GZK mechanism is thought to limit the highest energy that a proton can
have because scattering of the relativistic proton off of a cosmic microwave
background photon can, at a certain threshold, produce a pion. Once thresh-
old for pion production is reached. the proton loses approximately 20% of its
energy per pion scattering. The reaction is

P+ Yemb — P+ 7

where the most favorable case is for the CMB photon to be traveling in the
opposite direction of the initial proton.

(a) Let the proton mass be m,, the pion mass be m., and the CMB photon
energy be E. The Lorentz factor of the proton before scattering is
and after scattering is +. Assume the reaction is just at threshold to
make a pion. Find the expression for the required initial proton Lorentz
factor 7y in terms of the other masses and energies.

(b) Take the proton mass to be m, = 938 MeV, the pion mass to be m, =
135 MeV, and the CMB photon energy to be E = 2.5 x 10~* eV (note:
eV). Find the approximate GZK cutoff energy for the protons.



ASTR II Problem 3

A thin accretion disk surrounds a Schwarzschild black hole. The gas can
be treated as if approximately in isolated circular orbits. Recall that (more
general) radial orbital motion satisfies

(fj—) — B V()

where the effective potential V(r) is

Vir) = (1—21—:{) (1+§).

Here F is the relativistic specific energy (E — 1 for particles just unbound
at infinity) and L is the specific angular momentum (units with G = ¢ = 1).

(a) Go throngh the caleulation and show that the innermost stable eircular

orbit (ISCO) is at » = 6M.
(b) Find the values of E and L at the ISCO.

Assume that £ = 1 — E is the radiative efficiency of the disk. Assume further
that at any given time the disk is being fed with mass at just the right rate
M to maintain Eddington luminosity, dE/dt = Laga.

(c) Material at the ISCO plunges into the black hole via a short spiral. As-
sume the [SCO orbital constants are preserved during this brief plunge.
Derive an equation for the growth of the black hole mass (in terms of
the various physical constants including G and ¢). Solve for M(t)
assuming that M = M, at ¢ = 0.

(d) Estimate how long it takes for the black hole to spin up to a/M =
J/M? ~0.09.

In parts (¢) and (d) continue to treat the black hole as if it remains a

Schwarzschild black hole.



ASTROII-4. Binary Survival in Supernova Explosion and Kick

Velocity

a. A progenitor of a supernova of mass M, and a companion star of mass M, are in a
circular orbit about each other of semi-major axis a = a, + a,., where a, and a, are with

respect to the system’s center of mass. Determine expressions for a,/a and a./a.

b. Determine an expression for the angular speed w, = w, = w of the stars an a function of

M= M,+ M, and a.

¢. Determine expressions for the velocities v, v,, and v = v, + v, of the stars as functions

of M, M., M, and a.

d. The progenitor supernovas leaving behind a nentron star of mass Mys. Determine an
expression for the mininmim mass that the companion star must have for the binary to

survive (as a function of M, and Myg).
e. Determine an expression for the momentum of the supernova shell.

f. Determine an expression for the kick velocity of the binary system.



ASTROII-5. Colonization of the Galaxy

Assuming that humanity has mastered efficient, controlled fusion as an energy source,
estimate how long it will take for us to colonize the Galaxy. (The text is long, but the

caleulations are short.)

a. Assume that the mass of our unfueled ships is similar to the mass of our fuel supply (*He,
collected from gas giants at each stop). Also assume that we are generating energy via *He
+ 3He — *He + 2p and converting it to kinetic energy near 100% efficiency (difficult to
do, but theoretically possible). Very roughly, estimate how fast our ships would go. (The
simplest back-of-the-envelope estimate matches the exact caleulation within a factor of ~2,

so do not waste time on the exact calculation.)

m, = 1.007276 u
Mg, = 3.016020 u
g, = 4.002602 u

b. How long would it take our ships to travel from our location to the far side of the Galaxy

if not interrupted by stopping to colonize worlds?

c¢. Roughly, how many star systems are in the Galaxy? Roughly, what is the volume of
the Galaxy in cubic light years? Consequently, what is the typical distance between star

systems? How long would it take our ships to travel this distance?

d. Assume that all stars have at least one planet in the traditional habitable zone. But also
assume that humanity is not interested in tidally-locked planets. If the atmosphere is thin,
only the ring around the planet in constant twilight would be habitable (a far way to travel
for not much surface area). If the atmosphere is thick, it will redistribute the heat from the
star-facing side to the dark side and the entire surface would be habitable, but the winds

could be violent.



The distance at which planets tidally lock to their stars scales with M2, where M is the
mass of the star. In our solar system. Mercury is tidally locked but Venus is not. The
distance at which planets are in the traditional habitable zone scales with L'/2, where L is
the lnminosity of the star. In our solar system, Earth is in the middle of the traditional
habitable zone. Assuming a reasonable stellar mass-luminosity relation, estimate below
what stellar mass M roughly Earth-mass/size planets near the middle of the traditional

habitable zone are tidally locked.

e. Very roughly, what fraction of stars have masses above M? Also very roughly. of
these what fraction of stars are not in binary (or multiple) systems? (In binary systems,
planets can only be in stable orbits if close enough to one of the stars to be tidally locked,
or if far enough from both stars to be outside of the traditional habitable zone.) Given
these factors, and any others that you wish to include, estimate what fraction of stars
have planets acceptable for colonization (assuming that the remaining stars have at least
one planet, or moon around a hot Jupiter, in the traditional habitable zone that can be
sufficiently terraformed; we will not consider worlds in non-traditional habitable zones, such

as tidally-heated moons of regular, cold Jupiters).

f. Given your estimate, what is the typical distance between habitable planets? How long

would it take our ships to travel this distance?

g. Generational ships must be large enough to support a population with sufficient genetic
diversity, but not so large of a population as to make the ship too expensive/time-consuming
to build and fuel. Assume 100 - 1000 people per ship. Given humanity’s current level
of technological and medical advancement. our population is doubling every 40 vears.
Arguments can be made for both faster and slower growth rates, with future levels of
technological and medical advancement, but slowed by the challenges of terraforming

and/or (presumably controlled) genetic adaptation to the new environment. Simply using



humanity’s current rate, roughly estimate how long it would take a generational crew to

fully populate an Earth-like planet?

h. Assume that we fullv populate each world before we send out new generational ships,

presumably in all (unsettled) directions. The time that it would take to colonize the entire
Galaxy is then no different than the time that it would take to colonize an approximately
direct path from our location to the far side of the Galaxy (of course avoiding the Galactic

center). Given your estimates, how long is this time?

Is this timescale short or long? Specifically, if this timescale is much shorter than the typical
timescale for a habitable planet to develop life and civilization to the point of mastering
fusion, the first civilization to master fusion will likely get the whole Galaxy. Given that we
are probably only hundreds of years away from mastering fusion (at most), in this case the
Galaxy is either 100% ours, or it has already been fully colonized by an earlier civilization
which for whatever reason decided to leave us alone (but in which case the Galaxy is 0%
ours). If this timescale is much longer than the typical timescale for a habitable planet
to develop life and civilization to the point of mastering fusion, the Galaxy will likely he
colonized by many civilizations, in which case we are likely to get at least a part of it, but
only a part. Assuming that hmmanity survives the next few hundred years, what does our

long-term future look like?



Useful facts:

F= Gm1m2/d2

G=4.3 x 10° kpc (km/s)*/Msun
1kpc = 1Gyr x 1km/s

Virial Theorem 2KE+PE=0

Poisson Equation V@ =-41Gp
Wien’s Law T = 3 mm-K / Apeak
centripetal force F=mV?/r (uniform circular motion)

Faber-Jackson Relation L « ¢*

Dynamical time tay,="2t;

Crossing time teoss = R/V = 1 Gyr (R in kpc/V in km/s)

Relaxation time tyea = 0.1N / IN(N) teoss = 10° yr x 0.1N/IN(N) x (R in pc/V in km/s)

Numerical Constants:

Solar Mass (Msun): 1.989 x 10 g

Solar Radius (Rsun): 6.96 x 10*° cm

Solar Luminosity: 3.847 x 10 erg/s

Gravitational Constant (G)  6.6726 x 10® cm®/g/s?

Proton mass 1.6726 x 10 g = 938.27 MeV/c?
Yield of p-p reactions (Q)  26.7 MeV = 4.28 x 10™ ergs
Boltzmann constant 1.38 x 10 erg/K

Planck’s Constant 6.626 x 107 erg-s

Electron mass 9.109x 10% g

m, = 1.6726 x 10 g
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CM-1

A point particle of mass m and charge q is attached to the end of a massless pendulum of
length I. The motion of the pendulum is confined to a plane. Let the pivot of the
pendulum be fixed at a height h above an infinite horizontal conducting surface, with h >
I. Ignore gravity in considering the motion of the pendulum.

1. Use an angular coordinate and obtain the Lagrangian.

2. Find the frequency of small amplitude motion.

CM-2

A particle of unit mass moves under the influence of gravity on the inner surface of the
paraboloid of revolution x* + y? = z, which is assumed to be frictionless. (z is the vertical
direction.)

1. Obtain the equations of motion in cylindrical coordinates. (You do not have to solve
them.)

2. What angular momentum must be given to the particle so that it describes a horizontal
circle at the height z = 1?

CM-3

Consider a satellite in circular Earth orbit and the stability of its orientation relative to the
Earth. Let the mass of the Earth be M and the radius of the orbit be ro. By Kepler’s third
law the angular frequency of the orbit satisfies

Qz = GI\/I/r03.

The satellite is an extended rigid body that can be idealized as two masses, m, separated
by a massless rigid rod of length 2a. The rod lies initially in the orbital plane and you
should consider only motion in that plane. The satellite may rotate in the plane and
therefore could corotate with its orbit, maintaining a fixed orientation with respect to the
Earth.

1. Let the angle between the rigid rod and the direction to the Earth be given by ¥. Write
down the kinetic energy of motion relative to the circular orbit of the center of mass (i.e.,
you are to take the center of mass motion as known).

2. Write down the potential energy of the rigid body and expand it in powers of a/r to
find the leading non-vanishing ¥ dependent terms.

3. Write down the Lagrangian and obtain the equation of motion for satellite orientation
(relative to the Earth; i.e., for motion in ).

4. Via an effective potential or other means find the equilibrium orientation angles.
Which of these equilibria are stable and which are unstable?



CM-4
Consider a particle under the influence of a force that is constant in space
but grows linearly with time. The corresponding Hamiltonian is

2
p
H=——Azrt,
2m s
where A is a constant. Use the Hamilton-Jacobi method to find g(t) for initial
conditions g(0) = g and p(0) = py.

Hint: You can separate variables if you add a term to the generating function
to cancel the term containing zt. Try S = S,(z) + S,(t) + $Axt* (where any
dependence on the integration constant a is not shown). And you should be
able to tell whether vour answer makes sense.

CM-5
Determining motion by Taylor expansion and Poisson brackets:

1. Show for any function A(g,p) and a time-independent Hamiltonian H

that A
[["'[‘4-H]-H].‘"'=H]=F-

ntimes

2. Show that
a(t) = q(0)+[g. H]| _ t+5(la. H]. H| _ ++[[[g. H], H] H]| _ £+,
as long as the series converges.

3. Without solving any differential equations, use the results from part

(2) to obtain the solution g(f) for a simple harmonic oscillator with
spring constant k, mass m, and initial conditions g(0) = gg, p(0) = po.

SM-1

The phonon modes of a crystal are treated as 3N independent harmonic oscillators. The
3N

associated energy is given by E{n}=>(n+1/2) @ and n,=012.., and the
i=1

distribution ~ function of modes in  angular  frequency is  given

by g (@) where .[ g(w)dw=3N. Show that the entropy associated with the phonons is
0

. 17 o I o
given by S :?jeTT_lg(a))da)—kz[ln(l—e ”‘T)g(a))da)

0



SM-2

Compare two situations: (1) a charge q interacts with an electric dipole p that has a fixed
orientation and is at a distance r, and (2) a charge q interacts with a dipole p that orients
freely over all possible angles at a distance r. For case (1) the potential energy is given by

u(r)= qacos@r_lz where & is the permittivity and @is shown below. Show that the
7,

interaction in case (2) is shorter-ranged than case (1) by showing that in case (2)

2
u(r)= L ( aP j 14 Here, assume that |u(r)|<<kT, so that e ~1—-u /KT .

T Are, ) 1
@
e
/
SM-3
The partition functions of N particle (of mass m) classical ideal gas contained in a volume
N
V and at temperature T is given by Q (V,T) :%(%) where A =h//2zmkT . Show

that the partition function of an ideal Fermi gas of two particles is

2 3 ®
Qu (VT)=%(%j [1—271,26—j Useful integral: sze‘“xzdx:gls/z%\/;.
. 0

SM-4
A particle of mass m with momentum (px, Py pz) and coordinates (x, Y, z) moves freely

in a volume V. (a) Find the normalized distribution function f (px) of the x-component

of the momentum according to the classical micro-canonical ensemble with energy E.

(b) The corresponding canonical distribution (with temperature chosen to give averaged
energy =E) is quite different from the micro-canonical distribution (you do NOT have to
show this). Why do you think the two distributions are so different?

SM-5

A long vertical tube with a cross-section area A contains a mixture of n different ideal
gases, each with the same number of particles N, but of different masses my, k=1,...n.
Find a vertical position of the center of mass of this system in the presence of the Earth’s
gravity, assuming a constant altitude-independent free fall acceleration g.



EMI-1

Consider a very long solenoid with radius R, N turns per unit length, and current I.
Coaxial with the solenoid are two long cylindrical shells of length | - one, inside the
solenoid at radius a, carries a charge +Q uniformly distributed over its surface; the other,
outside the solenoid at radius b, carries charge —Q; | is supposed to be much greater
than b > R > a. (Assume there is an electric field only in the region between the
cylinders.) When the current in the solenoid is gradually reduced, the cylinders begin to
rotate.

a) What are the torques on the outer cylinder and on the inner cylinder?

b) After the current is switched off, how much angular momentum have the two
cylinders picked up?

c) Before the current is reduced, what is the total angular momentum in the fields?

EMI-2
A constant charge per unit length 2 = dQ/dz is distributed along
an infinite-length insulator of negligible cross section. A charge q is
present in the vicinity of the line charge.

1. Find the electric field and electric potential due to the line charge.

2. Determine how much work W is done on the point charge q if its
distance from the line charge increases from cylindrical distance R = a to
distance R = b.

3. As b—oo, what happens to the work on the particle?

4. If the line charge were truncated to a finite total length of L
(with ends at z= * L/2), give an approximate expression for the total
work W done if the charge is taken radially away from z=0 and R=a to
R=0.

EMI-3

Calculate the interacting force between a dipole moment p = p Z and a conducting sphere
of radius a. The dipole moment is at a distance R (>a) away from the center of the
sphere.

EMI-4

A charged sphere with radius a is placed in a media with dielectric constant . The charge
252 _x2_y2

distribution inside the sphere is given by p(x, y,z) = pg (%)

a) Show that the electric scalar potential along the z-axis outside the sphere is given

by V(x =0,y =0,2) = Po_ 2

35e, 23’




b) Using the result in a) to find the general expression of the scalar potential
V(x, y, z) everywhere outside the sphere.

EMI-5

A spherical shell of permeability u is placed in a uniform field B,. If the internal and
external radius of the shell are a and b, respectively.

a) Find the magnetic field in the hollow interior. Be sure your solution reduces to the
obvious result when a =b (the shell is gone).

b) Show that in the limit of large permeability the field is of order B/ u, thus this
shell can act as a magnetic shield.

QM1-1

A spin-1/2 particle with magnetic moment pt is in an eigenstate of Sy with eigenvalue h/2
at time t = 0. At that time it is placed in a magnetic field of magnitude B pointing in the
z-direction and allowed to precess for time T. At that time the magnetic field is rotated
very, very rapidly, so that it now points in the y-direction. After another time interval T,
Sx is measured. What is the probability that it is found to be h/2?

QMI-2

Four electrons are each localized to separate atoms in a crystal.

The atoms are located at the corners of a regular tetrahedron, which

is a triangular pyramid where each face is an equilateral triangle. The
length of each edge is a. Find the correction to the energy levels of

the four electron system due to the spin-spin interaction between the
electrons. You may assume that the spin-spin interaction term between
any two electrons i and j is of the form:

Si - S;

3
r i

Hj;=A

ij

where A is a constant and rj; is the distance between the two electrons. You may also
assume that a is much larger than the spatial extents of the electrons’ wave functions, in
other words the electrons are distinguishable by their atom's locations on the crystal
lattice.

QMI-3

Consider a particle of mass m trapped in a one-dimensional simple

harmonic oscillator well with a resonance angular frequency ®

Let |z> be a normalized eigenstate with eigenvalue z of the raising operator a:



1 _
a=——(p+ itnwz)
vV2m
Note that a is not a hermitian operator, hence z can be a complex number.
(a)Show that |z> satisfies the following relationship:
T = MW,

(b) Show that |z> satisfies the minimum uncertainty relationship between x and p. You
may find the result from part (a) useful for this part.
Comment: |z> is known as a coherent state and has many interesting properties.

QMI-4
Consider three distinguishable particles with spin 1/2 (and no spatial degrees of freedom).
(a) What are the possible values for the total angular momentum of all three particles?
Avre there any values that have more than one multiplet associated with them?

(b) Write explicit expressions for all the states in the basis that has definite values of the
total angular momentum and z-projection.

QMI-5
Consider the one-dimensional Schroedinger equation with
B m2x? for x>0,
Viz)= -~
+oo for = < 0.

Find the energv eigenvalues.



EMII-1

Consider a pulse of electromagnetic radiation in vacuum. In a region within
the midst of the pulse, the integrated momentum is

1
e

P

ffﬂEXEL
and the integrated energy is

£ —

1 3 2 2
8ﬁfdxﬁ?+8)

Assume that the following relationship holds between the integrated momen-
tum and energy of the pulse:

|P|c=E,

just like that of a single photon. From this relation (for the volume integrals)
alone, show that £ - B = 0 and E? = B2

Omne of the crucial steps involves proving the inequality

(E x B)? < - (E*+ BY)~

|

EMII-2

Find the total cross section o for the scattering of an electromagnetic wave of
long reduced wavelength A /27 by a dielectric sphere of radius a (with A > a)
and permittivity e.

You may recall that a dielectric sphere acquires a dipole moment d in a static
electric field E given by
e—1

3 A
E.
€+ 2

d=

i



EMII-3

Two relativistic electrons with the same Lorentz factor v approach each other
obliquely. The particles have equal but opposite angles, +6, relative to the =
axis. The electrons have just sufficient energy to create a m*-7~ pair. After
the collision the original two electrons emerge along with the newly created
pair:
e +e e te L7 47
1. Determine how the Lorentz factor 4 depends upon angle # and the
particle masses, m. and m,, if the reaction is just at threshold.

2. Determine the Lorentz factor 4" of the particles exiting the event.

3. Calculate « for the two special cases: # = 0 and # = m/2.

EMII-4

The spectral-angular distribution of radiation from a relativistic electron is
given by

dW et 2
dwdQ  4n2c

f dt'ii % (it x A(t")) expliw(t' — i - (') /c)]

A perfect conductor fills the region > 0. Empty space exists in the region
r < 0. An observer is situated in empty space and confined to the z-y plane.
The associated outward-directed unit vector is @ = (cos#d,sinf, 0). For such
an observer, m/2 < # < .

A relativistic electron (—e), with velocity 8= (5,0,0) in the vacuum region,
approaches the conducting surface. The electron strikes the surface at the

origin of coordinates at ¢’ = 0 and abruptly disappears. This event causes
transition radiation.

1. Since the electron was moving relativistically toward the conductor,
and radiation will not propagate inside the conductor, explain why
transition radiation can even exist in this problem.

2. Derive the spectral and angular distribution of the radiation that can
be seen by the observer.



EMII-5
A circularly polarized light wave emerges from a laser and is propagating
in vacuum. The light is nearly a plane wave directed along the z axis with
wave number k. However, because the beam has finite transverse extent, the
amplitude of the electric field drops off (gradually) in the x and y directions.
The electric field can be approximately represented by

E~

(€y +16y) Eo(z,y) e e ™! + a(z,y) & e™ e,

% -

where )

— ;vE{](I._,yJ| < k.

Ey
The latter implies that the length scale for changes in the field in the z and
y directions is many wavelengths A = 27 /k long.

1. Explain why the electric field must have a non-vanishing z component.
2. Show how the amplitude a(x,y) depends upon Ey(z,y).

3. Why is this only an approximate expression for the electric field?

QMII-1

A particle of mass m is trapped in a 2-dimensional infinite potential
well with sides of length a. The well is centered on the origin and the
edges are parallel to the coordinate axes. The particle also experiences
a “Gaussian wall" potential perturbation given as:

1__,"!(1‘. y] — ‘49_2:'_3;.-5'2

where b << a and A is a constant with appropriate units. Use first order perturbation
theory to find the ground and first excited state

energy levels and their degeneracies. Approximate any integrals that

you fannot evaluate easily. You may find the following integral useful:

f e~ T /P dp = b/m

QMII-2

In the interaction picture, the state |¥'(t)> , satisfies the equation i d|¥'(t)>/dt=H, (t)|¥(t)>
a) Derive an equation for the interaction picture evolution operator U(t; tp) where

[¥(t)> = U(t; to)|¥(to)> with U(t; t) = 1.

b) Solve the equation you have derived in (a) for U(t; to) when the Hamiltonian H; (t)



satisfies [H; (t1), H; (t2)] # O for t; # t,. Define all symbols you use, and show why your
solution is true.

QMII-3
Consider a charge particle with mass m and charge g in a one dimensional simple

harmonic oscillator potential V (x) = S x2. Initial the particle is in the ground state.

Between 0 < t << 1 /w the particle is subject to a constant electric field E perturbation.
Using the first order time dependent perturbation theory, calculate the probability of the
particle in the eigenstate |n> at the end of a perturbation period T = 11/ w.

QMII-4

(a) Under the parity operation ¢ how the coordinate x, momentum p, and angular
momentum L transform?

(b)The ground state of a SHO |0 = is known to be parity even. Show that, in general, the
excited state |n = is parity even/odd, depending on whether n is an even or odd integer.

(c) Under time reversal operation @, how the coordinate x, momentum p, and angular
momentum L transform?

(d) A spin half particle is in a state |« == a|+=> +b|—=>. What condition does one need
to impose on the complex numbers a, b if the state is invariant under time reversal
symmetry?

MII-5
gn isolated hydrogen atom has a hyperfine interaction between the proton and electron
spins (S; and Sy, respectively) of the form JS;.S,. The two spins have magnetic moments
a S; and B Sy, and the system is in a uniform magnetic field B. Consider only the orbital
ground state.

(a) Find the exact energy eigenvalues of this system and sketch the hyperfine splitting
spectrum as a function of magnetic field.

(b) Calculate the eigenstates associated with each level.



Astrol-1

Basic Astronomy

1. A new planet is discovered! Planet X is observed to orbit the sun every 300 years.
What is the semi-major axis of Planet X's orbit in AU?

2. Planet X is in a circular orbit. Given that 1 AU = 1.5 x 1011 m, what is the
distance to Planet X in meters when at closest approach to Earth?

3. When at closest approach to Earth, Planet X is observed to be 3.8 arcseconds in
diameter. What is Planet X's diameter in meters?

4, What is the diameter of Planet X in Earth diameters and in AU? (The diameter of
Earth is 1.3 x 107 m.)

5. Planet X is observed to have a small moon. This moon is observed to orbit the
planet once per month at a distance of 15 Planet X diameters. What is the mass of Planet
X in solar masses? (Assume that the mass of the moon is negligible in comparison.)

6. What is the mass of Planet X in kilograms and in Earth masses? (The mass of the
sun is 2.0 x 1030 kg. The mass of Earth is 6.0 x 1024 kg.)

7. What is the average density of Planet X in kg/m3?

Based only on your calculated values for the diameter, mass, and density of Planet
, itis probably a:

8.
X
A Large comet

B. Large asteroid

C. Kuiper belt object similar to Pluto

D Terrestrial planet similar to Earth

E Jovian planet similar to Saturn

F Jovian planet similar to Jupiter

G Jovian planet similar to a giant Jupiter
H Small star

Astrol-2
Consider a model star in which the density is a linear function of radius:

,O(I’) = P [1— r/ R], where p. is the central density and R is the total stellar radius at
which P(R) = T(R) = 0.

a. Find an expression for the central density in terms of total radius R and total
mass M



b. Use the equation of hydrostatic equilibrium and zero boundary conditions to
find pressure as a function of radius. Write an expression for the central
pressure in terms of R and M

c. What is the central temperature (assume ideal monoatomic gas equation of
state).

d. Verify that this linear density model obeys the corollary to the virial theorem:
U =-Q/2 where U is the total internal energy and Q is the gravitational
potential energy.

Astrol-3
Equilibrium of White Dwarfs

a. Derive the equation of hydrostatic equilibrium

b. Use dimensional arguments and the result of part a to derive the mass-radius
relationship for a fully (non-relativistic) degenerate white dwarf

c. What is the slope of a white dwarf cooling track in the Log L, Teff plane (H-R
diagram)? Make a plot of a white dwarf cooling track in this diagram. For
this exercise you may assume a 0.6 solar mass white dwarf passes through
solar temperature with a radius of 0.01 Rsun.

d. Now plot cooling tracks for white dwarfs of 1.1, 0.8 and 0.4 solar masses.
Write the expression for the dependence of Log L on M for constant T.

Astrol-4

Virial Theorem

There is a commonly-cited corollary to the virial theorem as applied to spherical stars in
hydrostatic equilibrium with ideal mono-atomic gas equations-of-state.

a. Re-derive this theorem under the following assumptions:

Ideal diatomic gas
Completely relativistic gas

b. The corollary to the Virial Theorem is often used to claim that a star powered
by gravitational contraction will use %2 of the gravitational energy released to heat
up, and the other half is radiated away. Explain why this is true for the ideal
mono-atomi gas, and modify the statement for the two cases you have derived.

c. Physically speaking, why can there be no simple expression or statement like
this for non-relativistic electron degenerate stars (i.e. white dwarfs).



Astrol-5
Lifetimes of Stars

a. Assuming the mass-luminosity relationship on the main sequence is L oc M3,
derive a relationship for lifetime on the main sequence in terms of total M under the
assumption that all stars have the same fraction of their H mass available for nuclear
burning

b. Derive a similar relationship for stars powered by gravitational contraction alone
(your expression will contain total mass and total radius).

c. Draw an H-R diagram that shows rough isochrones for co-eval populations 1, 5 and
10 Gyr after birth.

d. Now suppose there exist clusters made of pure iron stars with masses like those of
normal stars. Describe the evolution of these stars as they follow Kelvin-Helmholtz
contraction, and draw some isochrones for different age populations (please give the
age in years for the isochrones you show, which obviously requires that you calculate
the Kelvin-Helmholtz timescale with real numbers)

Astroll-1
Relaxation in a Galaxy Cluster

Consider an idealized galaxy cluster in which all galaxies have the same mass (10*
Masun). The cluster contains 2000 galaxies within a radius of 2Mpc and has line-of-sight
velocity dispersion 1000 km/s (somewhat like the Virgo Cluster).

(a) Draw a diagram of a two-galaxy encounter in the weak encounter limit (impulse
approximation), in the rest frame of one of the galaxies. Call their relative velocity v.
Show the impact parameter b, and use a long arrow to indicate the trajectory of the non-
rest-frame galaxy.

(b) What is the change in velocity for each galaxy (make sure to answer for both)?
Distinguish the parallel and perpendicular components. Note that Jdx/(c,+c,x?)*?
=2/(c1c2) for integration limits of x=—o0 t0 +oo.

(c) The weak encounter approximation breaks down if Av ~ v, the typical 3D velocity of
a galaxy in the cluster. What impact parameter does this breakdown occur at? Compare
this “strong encounter” impact parameter to the typical distance between galaxies.

(d) Approximately calculate the two-body relaxation time for this cluster. Comparing this
number to the age of the Universe, comment on how the cluster has achieved a relaxed,
roughly spherical configuration.



Astroll-2
Closed Box Star Formation

(a) Demonstrate that an exponential star formation history results from the assumption
that the star formation rate is proportional to the gas mass in a “closed box” system, i.e.
that d(';’t's () =kM, (1).
(b) Assume the metallicity Z increases as the gas is consumed with yield p, such that

M, (t
Z(t)=—p InML((O)) . Derive the time dependence of Z in terms of p and k. Compute the

g

yield p for which the enrichment timescale for the metallicity to reach the solar value
Z=0.02 is the same as the gas depletion timescale over which the gas drops by 1/e.
(c) If we allow for external gas infall (open box model), in which direction will the yield
change from the value you computed in part b?

Astroll-3

A Young Massive Star Cluster

A massive (7x10"Mgn) star cluster with a light-weighted simple stellar population age of

~500 Myr is 6 kpc away on-sky from an elliptical galaxy with multiple tidal streams and

shells, at the same redshift. The galaxy has dispersion ~135 km/s, equivalent to rotation

velocity ~200 km/s.

(a) In the Chandrasekhar approximation, the drag force on this star cluster from
o o _ 42G°M

dynamical friction with particles in a dark matter halo is Fy; = ———"—pIn A,

sat

where p is the mass density of dark matter particles and In A ~ 3. Prove that if the cluster

starts on a nearly stable circular orbit, the time for the cluster to sink to the center of the
2

18GM

sat
assumed constant at all radii).
(b) If the cluster stellar population is indeed “simple,” is the light-weighted age surprising
compared to the value of the sinking time, evaluated from the equation in part a? What if
the stellar population turns out to be composite? Comment on how your answers are
affected by the fact that the 6kpc distance is actually a lower limit due to projection on
the sky.
(c) The cluster is virialized and its light profile resembles a cE like M32. Will it follow
the Faber-Jackson relation of elliptical galaxies, or if not, how will it deviate? In your
answer, explicitly discuss each assumption required to derived the Faber-Jackson
relation.

galaxy is tg,, = , Where V is the galaxy rotation velocity (which may be

Astroll-4
Spherical Gas Clouds
(a) A pressureless, uniform-density spherical gas cloud collapses under gravity in the

free-fall timescale t. Show that t =./37/(32Gp) using Kepler’s 3" Law P? oc@®,



where pis the density of the cloud, P is the period of an orbit around a point mass, and a
is the semi-major axis of an orbit around a point mass.

(b) Now suppose the cloud is not pressureless, but is supported by internal random
motions with typical dispersion equal to the sound speed v. Write down an order-of-
magnitude inequality describing the range of cloud sizes that remain unstable to collapse.
(c) A borderline stable molecular cloud has density pa, Size Ia=2ra, and internal sound
speed va. If cloud B is 6x smaller and 16x denser, prove that its sound speed vg must be
0.67va to achieve the same borderline stability.

(d) If the speed of sound vs is related to temperature T in a molecular gas cloud by

v=,/1.4k;T /mwhere m is the mass of a typical molecule and kg is Boltzmann’s

constant, how do the wavelengths of peak blackbody emission for the two clouds in part ¢
compare? What properties of the clouds suggest assuming blackbody emission is
reasonable?

Astroll-5
Vertical Motion in a Spiral Galaxy Disk
A gas cloud plunges through a spiral disk that has scale height h, = 350pc. The
interaction creates young star clusters in the spiral disk, extending above it by ~100pc.
The cloud emerges at z=500 pc.
Assume that at small heights z above the disk, the spiral disk potential takes the

Iz

approximate form ¢ = 42Gp,h’e [ 47Gp,h, | z|. For a realistic mass density pg ~
0.1Mg/pc® this means \/g(z =0) = /472G p,h? ~ 25km/s.

(a) Expand the potential in a Taylor series around z=0 to show that the force equation
. z
isF=-42Gp,z| 1-— |.

pO ( ZhZ j

(b) Will the newly formed star clusters experience simple harmonic motion? What is the
third integral that is conserved for their orbits? What about the gas cloud?

(c) Use the Poisson equation appropriate for a thin-disk system to determine p.

(d) Show that the surface mass density is 2h,py.

Useful facts:

F = Gmym./d?

G=4.3 x 10 kpc (km/s)*/Msun
1kpc = 1Gyr x 1km/s

Virial Theorem 2KE+PE=0

Poisson Equation VZp=-47Gp

Wien’s Law T = 3 mm-K/ Apeak

centripetal force F=mV?/r (uniform circular motion)

Faber-Jackson Relation L o« ¢*

Dynamical time tgy,=V2ts

Crossing time teoss = R/V = 1 Gyr (R in kpc/V in km/s)

Relaxation time treax = 0.1N / IN(N) teoss = 10° yr x 0.1N/IN(N) x (R in pc/V in km/s)
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Choose 3 out of 5 problems
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QMI-1 Three Hermitian operators satisfy the following commutations rela-
tions: [A,C] = |B,C]=0and [A, B} #0.
Show that the spectrum of the operator C' contains degenerate eigen-
values.

QMI-2 Here is a guided proof that there are wave functions that oscil-
late back and forth in a one-dimensional harmonic oscillator without
spreading:

(a) Consider a state of the form

[y = e PR g},

where § is the usual momentum operator, at time %y == 0. How is this
state related to |¢)?

(b) Show that in the Schrodinger picture, the state vector |i(¢)) for ¢ > 0

is given by
[$(t)) = e (1))

where {¢({t)) is the Schridinger-picture state that evolves from |¢}, and
H(t) is the Heisenberg-picture operator that evolves from the usual mo-
mentum operator p.

(c) Now let the system be a harmonic oscillator with oscillator frequency w.
Find p(~t) in terms of the § and the usual position operator £. (Hint:
For linear systems like the oscillator, the solutions to the Heisenberg
equation of motion are the same as the classical solutions.}

(d) Now suppose |¢) is the oscillator ground state. Use the fact that

A4+-B A LB —1/2[A B} (1)

e = erere

(if |A, B] commutes with both A and B) and the form of the ground
state wave function )
(z|¢) x e™ (2)

to show that while the wave function {z]i(¢)} moves, it doesn’t spread.

1



QMI-3 A particle of mass m is subject to the one-dimensional potential
U{z) = —ad(z ~ a) for z > 0, and U(z) = oo for z < 0.

(a) Find the number of bound states as a function of the parameter ama/h*.

(b) Is the effective force acting between the particle and the wall repulsive
or attractive?

QMI-4 Arbitrary spin operator. A non-interacting, spin-1/2 particle has
an angular momentum component that is determined to be pointing
in the 43 direction. The spin is then measured along an arbitrary
direction, 7.

(a) What is the total intrinsic angular momentum of this particle?

(b) Find the expectation value for the angular momentum measure-
ment in the fi-direction.

(c¢) Assume for this and the subsequent question that the angle be-
tween the +# vector and A is 7/4 radians. Find the probability
that the angular momentum component measured in #-direction
is positive.

(d) A measurement of the angular momentum component pointing in
the # direction is performed, and it is found to be greater than
zero. What are the possible outcomes for another subsequent
measurement of the angular momentum component along the z-
axis and what are their probabilities?

Reminder:

QMI-5 Non-rigid rotator. Consider a diatomic molecule consisting of
identical atoms, each of mass m, and with a separation between nuclei
of ry when the molecule is in the zero angular momentum state (L = 0).
Asgsume that the binding force between the atoms can be modeled as a
spring with spring constant k. Answer the following questions:

(a) The rotational excitation levels in most diatomic molecules have
much lower energies than that of the vibrational excitation levels.
Find a relationship between m, 7o, and k that has to be satisfied
for this to be true.



(b) Assume that the molecule satisfies the condition that you found in
part (a). It is placed in a gas with enough thermal energy to excite
the rotational but not vibrational levels. By correcting for the
fact that this molecule is not a rigid rotator, find the approximate
frequency of a photon emitted during a transition from the first
excited to ground rotational states.
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SM-1 Consider the ideal Fermi gas where the single-particle eigenstates and
eigenvalues of the Hamiltonian are s and £, respectively.

(a) Based on the quantum properties of fermions, derive the grand
partition function of such system with given fugacity z volume ¥ and
temperature 7'is given by

I(z, V,T) . I—I(l T ze"ﬁ‘,l'k"?‘)

(b)Write down the relationship between I and the grand canonical
potential ®=U~-T§ - uN =PV .

SM-2 Consider the internal rotational degree of freedom of a diatomic molecule

with a moment of inertia Z Its Hamiltonian is given by H,, = I* /(2]) and

r

Lmy=1(1+ 1) B |Lm) with 1 =0,1,2,.., m=—L—~[+1,..,0.

(a) Write down the expression of its partition function associated with rotation
(ignore the nuclear spin effect).

(b) Based on the result of (a), calculate U, =U

rot

(T} at the low temperature
limit.

(c) Now consider molecular H, where the effect of nuclear spins has to be
taken into account. Protons are spin-1/2 fermions and the two spins can

form singlet and triplet states. Write down the partition function of rotation
with the effect of the nuclear spin states included.

SM-3 Calculate the Joule-Thomson coefficient (8U / 6V),,, where U/ is the

internal energy for a non-ideal gas described by the van der Waals’ equation of
state P=RT/(V -B)-alV?.



SM-4 The average energy of a system in thermodynamic equilibrium is (E ) .
(a) Show that the mean square of the energy deviation from its average value

equals <(E —{E))2> =k,7°C, .
(b) Estimate, for a system of N>>1 particles, the relative deviation
<(E - (E>)2> /<E2> in the high-temperature limit,

SM-5 There have been recent attempts to interpret gravity as an entropic force
(and possibly there are gaps in physical reasoning. But let us play along).

(a) Consider the entropic force FSx=T78S , where &x denotes an
infinitesimal spatial separation, and fix &x by the Compton wavelength

Ox=h/ (mc) for the particle of given mass m, for the infinitesimal
increase of entropy 85 = 2xk, . Let us postulate the entropic change to be
linear with the change in distance &S =27k, (mc/h)éx . Now, let us

further adopt the famous formula k,T =ha/(2zc) for the (Unruh)

temperature associated with a uniformly accelerated (Rindler) observer
with acceleration a. Derive the second law of Newton F=ma.

(b) Consider a point particle of mass M at the origin. One can associate an

energy E = Mc® with this mass. But, let us assume that this energy is
equal to the energy of N degrees of freedom at temperature T on the

surface of the sphere of radius r, where N = Ac’ /(G k) (with 4 =4zr*).

Use the equipartition theorem, the Unruh temperature expression, and the
result in (a) to derive Newton’s law for the gravitational force:

F=GuMmir,
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EMI-1 What is the potential in a rectangular region bounded by 0 < z < q,
and 0 < y < b, given that the boundary conditions on the potential
are that it vanishes on the two edges that have y = constant, that
it is constant ¢q (not zero) on the edge that has © = a, and that its
derivative vanishes on the edge z == 0. Give a physical explanation for
the mathematical content of your answer.

EMI-2 A thin spherical shell of radius R carries a uniform surface charge
density o. The shell is rotating along z axis with angular frequency w.
{a) Write down the surface current density associated with the rotating
charge, and the boundary condition for the magnetic fleld cross the
shell.

{b) Show that the magnetic scalar potential is given by
., (r,8,0) = %oercosH for r < R, and
P (r, 8, ¢) = %dwf—:cosﬁ for r > R.

{c) Caleulate the magnetic field both inside and outside R.

EMI-3 (a) Calculate the electric potential around a symmetric quadrupole
comprising charge —2q at the origin and charges g at distance a above
and below on the z axis. Obtain the usual far field approximation for
large r at the end.

(b) Now for same quadrupole inside a grounded conducting sphere of
radius b > a, calculate the potential for all points r > a. Again obtain
the far field approximation for all r >> a. (Hint: consider image
charges.)

EMI-4 (a) Write the differential form of Maxwell’s equations in vacuum

with sources.

(b) When B; = e AF and E; = —8;¢ + GoA;, show which two of
Maxwell’s equations are automatically satisfied.

(¢) Show that V x (V x 4) = V(V - A) — V2A.

Hint: Use (@ x sz)z = eijkﬁj.ﬁi‘“ and €iikCimk = 5@'3(5“1'7” - 5,;m6jg.



(d) Give the gauge transformation on the vector potential A* that
leaves invariant the magnetic field B;. Show that the gauge transfor-
mation ¢ — ¢— %% combined with a gauge transformation on A* leaves
invariant the electric field E;.

e) Write the remaining two Maxwell’s equations, that are not auto-
matically satisfied, in terms of the potentials A; and ¢ in the gauge
V - A =0, when A;,(T) and ¢(Z) are independent of time.

EMI-5 A thin uniform metal disk with mass density p is balanced on top of
a much larger diameter conducting sphere of in a uniform gravitational
field. The radius of the sphere is R and it never moves. Charge is slowly
added to the sphere. At what total charge ¢ on the sphere would the
disc starts to lift off from the sphere?
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CM-1 Consider a mechanical system for which the potential energy V' (1, 73...)
is a homogeneous function of the coordinates 7; of degree n. Let us scale
all the coordinates by a factor of & and the time by a factor of 3.

(a) Show that for 8 = o'~ %, the equation of motion is NOT changed
under these scaling operations.

(b) Show that for 3 = a!~%, the same set of equations of motion
permits a series of geometrically similar paths with the times of
motion between corresponding points being given by the ratio % =

() "% where L is the ratio of linear dimensions of the two paths.
What else is required besides scaling of the potential and time in
order to permit self-similiar motion?

(c) Show that for harmonic oscillators, the period of oscillations is
independent of their amplitudes (by using part b).

(d) Show that in free fall under gravity, the time of fall goes as the
square root of the initial altitude (by using part b).

CM-2 If the mass and spring constant in a harmonic oscillator have a par-
ticular time dependence, one can arrive at the time-dependent Hamil-
tonian

2
P 1 59
H = f(t) |+ + -t ,
Ft) [2 — + omw'g }

where w is a constant and f(¢) is the derivative of some other well
behaved function g{t).

(a) Write the Hamilton Jacobi equation for Hamilton’s principal func-
tion S{g, &, t), where « is the “new” momentum.

(b) Solve the equation to find g¢(f) in terms of the usual constants
« and 3. How would you describe the physical meaning of the
constant «?



CM-3 A particle of mass m moves in one dimension (along z) under a
potential
V = d?zt — 20742,

where o and b are constant parameters.

(a) Determine the locations of the equilibria.

(b) Find the frequency of small amplitude motion about stable equi-
libria.

(c) Find the exponential growth rate for small amplitude motion away
from the unstable equilibrium.

(d) Derive the Hamiltonian and sketch the surfaces of constant energy
in phase space.

CM-4 The Liouville theorem states that areas in phase space are conserved.
Consider an ensemble of free particles and the initial £ = 0 phase space
distribution drawn below:

(a) Without using the Liouville theorem itself (unless you want to
derive it), show that at time ¢ the region has evolved into another
region with the same area.

(b) Liouville’s theorem can be proven by showing that the transfor-
mation from ¢g,pe to ¢(t}, p{t) is canonical for any time ¢. Show
explicitly that the transformation is canonical in this simple ex-
ample.



CM-5 Consider a particle of mass m that is confined to the surface of a
torus and is acted upon by a uniform gravitational acceleration g. Let
the torus have minor radius b and major radius a. Positions on the
torus are described by two angle coordinates, § and ¢. The angle ¢
is an azimuthal coordinate that circles the symmetry axis z (i.e., goes
around the torus the long way) and 6 goes through 27 as it circles the
circular cross section of radius b. The transformation between cartesian
coordinates and toroidal coordinates is

= {a-+ bsinf)cos¢
(¢ + bsin ) sin ¢
z = bcosh,

and the line element (or metric) for the surface geometry of the torus

18
ds® = *d6* + (a + bsin )2 d¢?,

which can be used to find the velocity {tangent vector) of any trajectory
on the toroidal surface.

(a) Obtain the Lagrangian for motion on the toroidal surface.

(b) Determine the symmetries of the Lagrangian and the conserved
guantities.

(c) Assuming there is some motion in the ¢ direction, obtain the ef-
fective potential for motion in 8.

(d) Assuming you are told that, under steady motion in ¢ at a cer-
tain rate £, the particle maintains a constant equilibrium angle
6,. Given some #,, use the equations for equilibium to determine
expressions for the values of the conserved quantities.
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QMII-1 Atomic Resonance. Consider a single electron that experiences
a static central potential V{r). We add a weak, external, time-varying
magnetic field with a corresponding vector potential A(r,t). Use a
specific case of the Lorentz gauge for this problem:

104

VA= =0

(a) Write down the Hamiltonian for this system.

(b) Assume that the perturbation due to A is much smaller than the
energy scale imposed by V. Use this property and the Lorentz
Gauge condition to write the Hamiltonian as a sum of a static,
unperturbed part and a smaller, time-dependent part. You may
find the following vector identity useful:

VA(Af)=(V - A)f+A- (V)
(c) Assume that the weak, time-varying potential is of the form:
A(l) = Agcoswt

where A may be assumed constant on the scale of the electron’s
wavefunction. Let a solution to the unperturbed potential from
part (b) be written as:

v(t) = > cu(t)en(t)
f

where 1), are the eigenfunction of the unperturbed Hamiltonian.
Assume that the system is in eigenstate m of the unperturbed
Hamiltonian at £ == 0. Find the probability that the system will
be in eigenstate n at a later time, given that m # n. You may
collect all the time-independent coefficients (constants, expecta-
tion values, etc.) into one constant, N, that you are not required
to evaluate.



(d) Assume that the value of the driving frequency, w, is very close to
the value of

W = (Em - n)/ﬁ,
and simplify the expression you found in part (c) further.

(e) Under the assumption from part (d}, sketch the transition proba-
bility for the transition from state m to state n as a function of
Wmn. Comment on and discuss your result.

QMII-2 Morse Potential. A phenomenological formula that describes the
interaction potential between two atoms in a diatomic molecule is the
so-called Morse Potential:

V(r) = D(1 — g7or—mo)2
where r is the separation between the atomic nuclei.

(a) Sketch this potential and provide a physical interpretation of the
parameters D and rg.
(b) Provide a qualitative sketch of the energy-levels of this potential.

(¢) Find a potential to approximate the given Morse potential and find
the first non-zero perturbation theory correction to the ground
state for that potential.

You may find the following information useful:

oo — 1
/ 2P g = M, nl=nx(n-—-2)x{n-4)x..
0

2(2p)”
oo !
o+l —pz? - 3
/0 T g Pe dm—————anH
_ M1 g e, e [T
e (z) (ﬂh) \/W n{V)e 2V 3 T

QMII-3 A particle of mass m is temporarily captured in a state with angular
momentum ! > 0 and energy £ > 0 inside a sphericallly-symmetrical
well of depth V and radius R. Neglecting the centrifugal barrier within
the well, evaluate the half-life time r of such a metastable state.



QMII-4 Particles in a well. Three identical, spin—% particles, each with
mass m, are trapped in an isotropic three dimensional harmonic oscil-
lator well with a classical angular oscillation frequency w. The only
interaction that the particles experience amongst themselves is the
coupling between their intrinsic magnetic dipole moments (). The
potential energy of this coupling is equal to the dot product of the two
dipole moments, multiplied by a constant, 8. It does not depend on
the distance between the particles.

(a) Write down the hamiltonian for this system.

(b) Assume that the spatial component of the system’s wavefunction
corresponds to its lowest energy state allowed by symmetry prin-
ciples. Find the energies and degeneracies of all the allowed states
in this case.

QMII-5 Consider scattering of a plane wave |k > off a potential with a char-
acteristic length a. It is know that the phase shifts §) for all spherical
partial waves are given by the expression

) (ka)t

0 = 4| o

SROEA R D

(a) Considering the p partial wave only, what is the ratio of differential
scattering cross section in the forward direction to that of the
backward direction?

(b) If the first resonance scattering is observed for the p-wave at cer-
tain energy, what would be the s-wave scatiering cross section at
this particular energy?

(c) What would be the total differential cross section if all partial
waves are included? Calculate the total scattering cross section
for ka = 1.
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Choose 3 out of 5 problems
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EMII-1. A particle of mass m and Lorentz factor -y scatters off a particle of
equal mass that was initially stationary. The collision is elastic and the first
particle scatters off at an angle # relative to its initial direction of motion.
Determine the Lorentz factor v/ of this particle as a function of cosé and ~.

EMII-2. Axn undulator is a device for producing coherent electromagnetic
radiation from a beam of relativistic electrons (i.e., free electron laser). In
an undulator, a relativistic electron passes through a region with alternating
magnetic field direction. The alternating magnetic fleld causes the electron
to wiggle in the transverse direction, and thereby radiate.

Assume the magnetic field in the device varies sinusoidally in the y-
direction,

B = (0, Bycos(kz),0),

with the magnet spacing related to k. Let the electron’s velocity be primarily
along the z-direction but perturbed by the magnetic field,

7 = (u(t),0,v).

Here the (longitudinal) z-component is v = ¢ and is unaffected by the mag-
netic field at first order.

(a) In whatever frame you choose, use the equations of motion to express
the time dependence of the z and ¢ components of the four velocity.

(b) What is the solution for the time dependence of the Lorentz factor?

(c) In whatever frame you choose for the calculation, compute the total av-
erage radiated power from a single relativistic electron as seen in the
lab frame of the undulator.



EMII-3. A general expression for the spectral and angular distribution of
energy radiated from a relativistic electron is

2
dwdg 47r2c f di'fi x (7 x ) expliw(t’ - 7 - (') /<))

which 15 derived using the Lienard-Wiechart expression for the radiative part
of the electric field.

A neutral particle ke the Z° can decay into an electron-positron pair. If
the Z° is at rest when it decays, the pair of particles fly in opposite directions
but with equal speeds /3. :

Let the electron have velocity

Eem = (0,0, 4) for t'>0,
and thus have position vector
o (') = (0,0,¢0t)  for ¢ >0.

The positron’s velocity and position vector are similar but with the sign of
3 reversed. Let the observation direction be taken to be # = (sin#, 0, cos §).

(a) Calculate the appearance radiation for pair production.

(b) Consider the nonrelativistic limit of this result. What does the angular
dependence and (lowest) power of velocity in this limiting expression
suggest?

EMII-4. Recalling Faraday’s and Ampere’s laws for a medium with non-
trivial permittivity,

o 188
VxE = —‘EE}E‘, (1)
VxB = Z’*"'at . (2)

assume the presence of a transverse plane electromagnetic wave E = ﬁo exp(ég .
T — iwt). Let the permittivity be scalar and given by
w2

Eﬁl—m- (3)

(a) Derive the dispersion relation.

(b) Using the dispersion relation and assuming a real driving frequency w
with w > w, and w > v, calculate the damping distance (or e-folding
distance) for a plane wave propagating in this medium.



EMII-5. An electron of charge e and mass m moves in a circular orbit under
the Coulomb force produced by a proton. The average potential enenergy
< V(r) > is related to the total energy by £ =< V > /2. Suppose, as it
radiates, the electron continues to move on a circle.

2
‘ . . 2 2
(a) Show that the power radiated is given by —% = & ( £ ) :

3¢ | mr?

2

(b) Show that it takes the electron ¢ = ™t o hit the proton if it starts

4¢4
from an initial radius of 7;,. Assume you have never heard of quantum

mechanics.
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1. Determine the fraction of hydrogen atoms that are ionized at the center of the sun, assuming
ionization equilibrium, 7" = 15.8 million K, and n, = 6.4 x 10°! m™%. Does your result agree
with the fact that practically all of the sun’s hydrogen is ionized at the sun’s center? What
are reasons for any discrepancy? Suppose the star has twice the metal content of the sun.

Would the level of ionization in its center be higher or lower than in the center of the sun?
Why?



2. Approximate a white dwarf of mass M and radius R as a degenerate core surrounded by an
ideal gas atmosphere.

(a) Show that the atmospheric pressure as function of temperature is in general

B4macRG 12
P(T) = T 1/2!1?14/4
@) = (SEERE)

for mass/luminosity ratio T,

(b) From this expression, show that the temperature profile throughout this atmosphere
r< Ris



3. The figure below show a schematic of a (theorist’s) H-R diagram left blank except for the
Sull.

H-B Diagram
ME

Y o
w
5
B
% :
G W
N -
5
i ;s o

G 4 ’ --
YOOy TOGUE R
Surlmee Tomporsture

Figure 1: H-R diagram

(a) Sketch the main sequence in the diagram.

(b} Explain the procedure for comparing calculated luminosities and temperatures of stellar
models to the observable quantities (color-magnitude).

(¢} Assuming the mass-luminosity relationship on the main sequence is L oc M*9, derive
a relationship for lifetime on the main sequence under the assumption that all stars
have the same fraction of their H available for nuclear burning. Then draw a 4+ at the
location of a star with ~1/700 the lifetime of the sun.

(d) Draw a * at the location of a star that has 100 times smaller luminosity than the sun
and 10 times smaller radius.

(e) Draw an arrow showing the approximate direction the sun would move in the diagram
if it cooled without changing its radius.



4. Consider a planetary transit across the disk of another star,

(a) Using geometry and a relationship for limb darkening, plot the shape of the light curve.

(b) What is the transit duration of a Jupiter analog orbiting at 0.3 AU across the center of
the disk of a G2 main-sequence star? (Jupiter is 10x the diameter of the Earth.)

(c) What is the maximum eclipse depth in % visible wavelength light attenuation for b)?

(d) Assuming that the planet has temperature 900 K, what is the ratio of IR flux at 3
micron wavelength of the planet to star in b)?



5. BEstimate the duration of the helium burning phase of the sun (i.e. when it is on the horizontal
branch). Assume:

(a) Its luminosity on this branch will be 100 times higher than it is now.

(b) Each reaction fusing 3 helium nuclei into 1 carbon produces 1.8 x 107 J, which is 40%
the energy produced in the fusion of 4 hydrogenr to 1 helium.

(c) The sun will start helium burning with 10 % of a solar mass of helium, and will fuse
essentially all of it. Remember that each helium nucleus is about four times as massive
as a hydrogen nucleus (helium mass = 6.7 x 107 kg).

(d) Using these assumptions, how long will the Sun burn helium? You may give your answer
in years or in relation to the main sequence lifetime of the sun, but please indicate which
you mean.
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ASTROII-1. Equation of State of a Degenerate, Ideal Fermi Gas
Consider a completely degenerate, ideal electron gas.

a. Write down an expression for the electron number density n, in terms of the distribution

function in phase space. Solve it, yielding n. as a function of x = pg/me.c.

b. Assume that the mass density p is dominated by non-degenerate ions. Write down an

expression for p as a function of .

c. Write down an expression for the electron pressure F, in terms of the distribution
function. Solve it, yielding F, as a function of z.

d. Series expand P, in the relativistic limit. Keep only the leading term.

e. What then is the equation of state in the relativistic limit?

Iy (—% w2 g{w(l + 22)12(222/3 ~ 1) + Infz + (1 + 2*)¥?]}

JE1 + 2 Pa?de = H{z(1 + 22)Y2(1 4 227 ~ In[z + (1 + 22)Y/%)}



ASTROII-2. Chandrasekhar Limit

Consider a white dwarf of radius R consisting of N fermions.

a. Write down an approximate expression for the typical distance ¢ between fermions as a

function of N and R. Ignore factors of order unity.

b. Using this and the uncertainty principle, write down an approximate expression for the

typical momentum p of a fermion as a function of N and R. Ignore factors of order unity.

c. Using this, write down an approximate expression for the typical kinetic energy Exg of

a fermion in the relativistic limit as a function of V and R.

d. Write down an approximate expression for the typical gravitational potential energy
Epy of a fermion as a function of N and R. Keep in mind that although the pressure is

dominated by electrons, the mass is dominated by baryons. Ignore factors of order unity.

e. Write down an approximate expression for the typical total energy E of a fermion as a

function of N and R.

f. If NV is small, £ > 0 and can be minimized by increasing X until the fermions become
non-relativistic. If N is large, £ < 0 and can be minimized by decreasing R (i.e., the white
dwarf collapses). Consequently, determine an approximate expression for the largest value

of N that a white dwarf can have without collapsing. Evaluate it.

E=11x10"% ergs
¢=3.0x 10" cm s7*
G=67x10"%cm®gts?
mp = 1.7 x 102 g



ASTROII-3. White Dwarf Cooling

Congsider a carbon white dwarf of mass M and of interior temperature T' that is in excess

of the crystallization temperature.
a. Write down an expression for the thermal energy per ion as a function of 7'

b. Write down an expression for the total thermal energy of the white dwarf as a function

of T"and M.

¢. Using this, write down an expression for the luminosity L of the white dwarf as a function

of T and M.

d. Photon diffusion from the interior to the surface implies that:

L= (2 x 10%erg/s) (%) T2, (1
®

Using this, write down a differential equation for T as a function of time.

e. Solve it assuming that the initial temperature is much greater than 7. Write down an

expression for the age 7 of the white dwarf as a function of T

f. What is the interior temperature of a 0.65-My white dwarf of luminosity 10*! erg? What

is its age in years?

k=14 x 10716 erg K1
My = 1.Tx 107 g
Mg = 2.0 x 10% g



ASTROII-4. Photodissociation

Consider the photodissociation of *Fe before a Type II supernova:

a. Each %°Fe nucleus dissociates into 13 alpha particles and 4 neutrons. Write down an

expression relating their chemical potentials.

b. For a Maxwell-Boltzmann gas:

3/2 2

mskd i — T
= g LRSSy B 2
=g ( orh? ) P ( kT ) 2)

where gp. &~ 1.4, g, = 1, and g, = 2. Write down the Saha equation, where:

Q = (13my + 4m, — mp,)c? = 124.4MeV. (3)

c. Assuming that ®9Fe is the most abundant heavy nucleus, write down an expression

relating n, and n,.

d. Using this, write down an expression relating the mass density p and the temperature T°

when half of the mass has been dissociated.
e. What is the mass density at which this occurs if kT = 1 MeV (= 1.6 x 107 erg)?

me=17x10"# g
Fo=1.1x 107" erg s



ASTROII-5. Relativistic Beaming

Consider the jet of a very low-redshift (» < 1} gamma-ray burst. Assume that its bulk

Lorentz factor as a function of observer-frame time is given by:

r- 100( d )mm )

1 min

a. Assume that the jet is 0.2 radians across, that it is not expanding laterally with time,
and that its center is pointed directly at us. At what observer-frame time, in hours, will the

jet begin to fade in brightness more quickly?

b. At what observer-frame time would this occur if the same gamma-ray burst were at

redshift 6.37

c. Again assume that z < 1, but that the jet is not pointed directly at us. Assume that its
center is pointed 0.2 radians away from us. At what observer-frame time, in hours, will the

jet begin to brighten?

d. Since this is much longer than the jet’s gamma-ray emitting phase, such events are likely
missed by gamma-ray spacecraft, but might be picked up as “orphan” afterglows in optical

surveys.

Suppose that in a 1-minute exposure you could detect regular afterglows typically for 1 hour,
but orphan afterglows typically only for 15 minutes, since they take a while to brighten.
Also assume that to this detection limit, one orphan afterglow appears (somewhere) in
the sky every day. If your field of view is a large 1 square degree and you take l-minute
exposures for 10 hours each night, how many nights will it take you to detect an orphan

afterglow?
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CM-1 Namby mechanic
a triplet of dynamj
like functions g

S, & generalized Hamiy
cal variables 7 —
and G of 7 The eq

onian mechanjcg

» introdyces
(ry 1 T2, T3 )
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uations of motjop are given hy
dry
"&f = (0 H) (0,3, (1)
where we haye ]

wmnmation convention, €k 18 the three.
vi-Clvits, symbol, and O =

= 37 Orin vector notation
i
: S e da
(Wlth G = ‘(E),

Fm(VHjx(VG)

(2)
(a) Show that, for any function F = R,
F:wﬁm@mﬁm. (3)
(b) Show that 7 i divergenceless, ie.,
V.F=( (4)
(Side remark This pProperty is necessary to lead to Liouville’s
theorem, )

hamical variableg to be I, S of angular momentum
of a rigid body in the body-fixed frame

L= (LI:LZ’:LS):

(5)
and taking the functions g and G to be
1,
= 5 LT+ 124 12), (6)
_l/r? L2 L2
G“é‘"(?:*?;*?; ’ g

1



where D23 are the

Principal moments of inertis Show that the
equations of motioy

L=(va) x (va),

(8)
are Euler’s equations for g free rigid top,
CM-2 Let the following equations represent Possible canonicg] transfor-
mation
@ = a(p® + ¢°)cos B ~ tan-1 (g) sin 3, (1)
P = afp® 4 ¢2) sin @ + tan~? (?—)) cos 4, (2)
q

where o and B are constants.

Determine whether there exist values of o and & that make this trans.
formation canonical,

ential and kinetje ene
them the Lagrangian, Using N = 2;—~4b as coordinates to describe

small oscillations, derive the equation of motion of each mass.
(b) Assuming harmonic ¢;

time dependence M = G where a; is the
amplitude of the Jth mass, re

duce the equations of motiey to a
recursion refation,

'8y expressions, and from

(c) Assuming the amplitudes also have
discrete space coordinate z;, solve
travelling waves and find the disper
quency w and Wwavenumber .

harmonic dependence in the
the system of equations for
sion relation connecting fre-

CM-4 A hemispherica] bowl with radius R hag 5 BAITow groove cut ip it
from the rim down through the bottom of the bowl and back up to
the rim on the Obposite side. A smaj) Plece of ice with mass m slideg

without friction

n the grogve, The bow] is placed at the center of g
turntable, which rotates with angular velocity (.



(d) Forw > We, tWo other points in the 8roove become centers of stable
oscillationg. What are these two pointg,

(b) It is observed in the lab frame that scatfering never OCCurs at an
angle beyond O Find a rela,tionship between Oinez and the mass
ratio my/m,. What is cog g/ when @ = A

(c) Assume that the differential crosg section in the center of momen-
tum frame, do/dSY, is known, Relate this to the differentia] Cross
section measured ip the lab frame, do/dQ). How does the latter
behave near O ?
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EMI-1 Ap infinite siab of thickness ¢ ig made of metal with conductivity o
and f = ¢ = 1 Everywhere outside of it ig g time-dependent magnetic
flux density that is uniform in space, pointing paralle] to the slab: B =

By cos (w ). Assuming that the fields are quasi-static, find the Imagnetic
flux density everywhere inside of the slab,

EMI-3 A Plane is held at & potential ¢ = Vv while another plane, inclined
at an angle 4 is held at ¢ =0 (as shown below). What is the potential
between the planes, but neay where they join? Ignore the edges.

EMI-4 A semispherical metallic bulge of radius o is placed on a infinite
conducting plan held at the ground potential, A point charge g is
placed on the Position (r = 24, ¢ - 7/4,¢ = 0) relative to the center of
the sphere. Calculate the electrostatic interaction energy between the
charge and the conductor,
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SM-1 The goal of this probiem 18 to compare the low-temperature behavior
either gag ag non-relativistie,
(a) Under what condition in termg of the particle mags m, the number
of particles N ang the volume V cgp & gas be considered 5 classical

ideal gag? Explaint
(b) Explain the meaning of the Fermj energy EF and temperature TF,

whereas above MT) it isin a liquid phasge. Calculate the density differ-
ence Ap = p, . A1 between the solid and Iiquid ( |Ap| < Ps), in terms
of L (the latent heat of fusjon ber unit mass), Po dh/dT, T and g,
the acceleration due to the gravity. (Hint: yge the Olausius—Clapeyron
relation for phase separation line.)

N massless and spinless relativigtic particles with the dispersion & = op
confined to a three-dimensiona] volume I/,

SM-4 Find 5 Specific heat of the System of non-interacting magnetic jong
of spin § = 1 which, due to an interaction wigh the surrounding non-
magnetic jons, have their m = +3 states degenerate with the energy
E = ¢, while the state m = 0 hag energy E = (),

SM-5 (For this broblem, you can Set c= 1 7 = Lkg =1, and ignore myl-
tiplicative factorg of order L.} Consider a perfect gas of N massless



Particies obeying Boltzmann Statistics in volume Vo~ R% at tempera-
ture 7"~ Ry,
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Quantum Mechanics I: May 8, 9:00am—12:00pm

Choose 3 out of 5 problems

Department

With i =m = 1 tq make things easier):

] 2
H o= % (1"92 +P§) + "L"d‘z“ (x2+y2) = (aiam +a;ay + 51)

with
Gy = w\/ﬁﬁ(\/(;x-;“ zmﬁ): w E(\/{:w zﬁ) o ete,

(2) What are the energies of the eigenstates? What is the degeneracy

of the ground state, the firgt excited state, the nth excited state?
(b) Define

1 , 1 .
aimy_i(am¥my), aLz—ﬁ(axﬁ:my).
Show that

QM1-2 (a) Show that if H is the Hamiltonjan ofas

ystem, A is any operator,
and |¥) is a state of definite energy, the

i1}
(TI{H, Ajjw) = o,

1



(c) Show that for |V = 1/2muwe?

QM1-3 Consider 5 barticle that has three energy eigenstates [01), [}, Ji03).
Consider also 3 state permutation operator K that ig defined by the
following three operations:

(@, jm| Fylar, ) = ¢ (7) (@, jml J)e, jmy
where ¢ is ap arbitrary component and f(5) depends on J {and
other quantum numbers ), but not op m or m'.
(b) Show that

(0 Jml & Tla jm) = 1) 05 + 152,
where f(5) is the same function as above, Use this result to prove

& special case of the “Landg projection theorem”

(o, jm| Fylo, jmfy = 9 ImIE - Jlay jm)

ml| e, dm/y
G5 {cv, ym| gl jm/)

QMI-5 Consider 4 “periodic” one-dimensional potential, satisfying (z|V/ 2’y =
(@ +al Ve +a) for some period a. Let T{q) = e™PUR with b the
momentum operator. 7{a) is a “displacement” operator,

(a) Show that
T(@)VT ) =V,

and that, as a consequence, one can find g complete set of eigen-
States of H that are also eigenstates of 7 (a).

2



H
A must be given by ) = e’ for some real K Congratuiations,
You've just proved Bloch’s the

Yo~ a) = oy,
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EM2.2 (For this problem, yoy may set speed of light ¢ = 1 and ignore multi-
plicative tonstants of ordey 1)

(a) Any accelerating charged particle radiates. The total radiated
bower 2 is given by the Larmor formula, Write down the Larmor
formuly for 5 hon-relativistie particle of charge e,

(b) Apply (a) toa particle of charge e ang Nass m moving ip 5 Hooke’s
law Potential (g linear oscillator) wigh natura} frequency Wo. Find

{¢) Recall that for such 5 motion,hthe t{me—a\}eraged kinetic (T) and
potentia) energy (1) satisfy, T = |7 - E/2, with g being the
total energy.



are related by d¢ ~, (1= 3%)qy.

(d) Using (b) and (c), show that the detection frequency g given by
Wd ~ gt which is much larger thap Wo.

EM2-4 Consider an isolated polarizable “molecule” located at j
that an electrop (charge —€} can be displaced from the molecylar center
by an electric field. Let the mass of the charge be m ang assume the

equation of motjon is

dgf 2 de? € -
hafliad f= 22 € )
3 + wWiE Ta,’t3 mE( ),

Let, the eleciric field be that of 3 plane wave of frequency bropagating
in the z direction with field Oriented in the direction with amplitude

The classica] electron radiyg i defined as r, = €2/(me?) and the Thom.-
SOn Cross section is g, = (87/3)rg2. The radiative damping time iq

(a) Ignore homogeneoys solutions to the equation of moetion and cal-
culate the driven Iesponse,

(b) Use Larmor’s formula to compute the total power scattered from
the molecule and derive from this the totaj Cross section ag g
function of frequency .,

(¢} The damping ig important near resonance, Give expressions for
the crogs section at resonance and the width Aw of the resonance,



EM2-5 Consider 4 simple classical, one-oscillator mode] for the interaction be.
tween an electromagnetic Wave and an atomic ga5. In this mode the
Permittivity ig

k2c? w?
CE e =atag o - (1)
w? w3+ww~—w

where wy is the natura] frequency of the atom (ie., the frequency of the
atom’s spectra] lines), v ig 4 damping rate associated with Spontaneoug
emission, f ig the wave number, 7, ig the index of refraction, and w, is
the plasma frequency (proportiona] to the square oot of the numbey
density of atoms),

{a) Obtain EXpressions for the real and imaginary Parts of the per.
mittivity,

(b) Resonance occurs at g frequency negy W >wy. Obtain an estimate
of the size of the im&gmary Part of ¢ at resonance (which ig related
to the absorption of the wave).

(¢) Show that the resonance Jieg between 2 WE ~ wor and 5
wé? + g,
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Choose 3 oyt of 5 problems

QM2-3 At = Da one-dimensiona) oscillator described by a lime~dependent
Potential V(z, 1) = MR (2 g oos (t)%/2 (here g « A/ (muw)2) s in its
ground state, Identify the perturbation Hamiltonian and, using the
first order tjme«dependent perturbation theory,

(a) Ffind the Probability p, (t)ofa transition from the ground (N =
0) to an arbitrary excited (V = 1,2,...) state near the resonarnce
(2~ w);

(b) Find the brobability of the inverse transition Pr_o(t) if the system
starts out in the Ah excited state;

(¢} Find the brobability Foon(t) if, instead of the oscillatory moe-
tion (as in a) and b) ), the minimum of the potential Viz,t) =

1



mwiz? /2 underg

ces a sudden shift
Jumps back (a

(0 — a) at ¢ =
— 0} at time ¢.

0 and then

QM2-5 Consider as

oft spherical scatt
R, and Vir)

ering potentia] V(r) =
=0, forr> R

Vo, forr <=
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AS1-1 This question relates to continuum opacitieg iy stars.

AS1-2 Consider dimensiong] analysis of fully convective low-mags stars whose strye.
tural equationg include
P = K, 053
T = RK,ps
with K dimensionless constants for thege stars.

(a} Use the stellar structure differentia] equations in Lagrangian form t0 show
that the relatiop between radius and mass is R, o M~1/3

ASI1-3 A star of mass M has mass density profile that decreases from center to surface
85 p(r) = p [1 ~ ()]

(a) Show that Pe = 15M/87R® and P, - pPM/2R

(b) Derive an eXpression to estimate the minimum stellar magsg required for
the central ignition of the various fuels with fusion threshold temperatyre
1o, Your final answer will be ap inequality written using the degenerate
electron degeneracy bressure F, = K (p, [te)®® with K constant and 4,
the electron mean molecular weight. Assume the density profile given ipn
part (a), solar chemical tomposition 4, and non-degenerate electrons,



(a) the angle averaged intensity of the radiation field at shallow optical depth
T 18
J(1) x Tfff(v' o+ %)
(b} Hence that
TQ(T) ] %Tfff('r + %’)
ie. the “surface” of an unresolved star of T.s; is at optical depth 7 = 2.

AS1-5 Approximate a white dwarf of mass M and radius R as a degenerate core
surrounded by an ideal gas atmosphere.

(a) Show that WD atmospheric pressure as function of temperature is in
general

1/2
P(T) = (64mc7w) (T)MRTH/

Slkom
for mass/luminosity ratio Y.

(b) From this expression, show that the temperature profile throughout this
atmosphere is
T(r) = 75 xOM( -~ &

P
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Choose 3 out of 5 problems

Start a new page for each problem. Label each page with the subject-problem number and
your PID, but not your name. Note useful information on last page.

AS2-1. Suppose an extremely thin disk is embedded in a spherical dark-matter halo with
constant density py. A spherical cloud of globular clusters orbits in the halo. Assume the halo
strongly dominates the mass (i.¢., the stellar mass is negligible).

a) Derive an expression for V(R) from force balance for stars on circular orbits, and use it to
prove that the disk has the same angular speed at all radii. How does such a rotation curve
compare to that of the Milky Way?

b) Prove that a globular cluster on a radial orbit (different force equation!) will execute simple
harmonic motion, and derive the harmonic frequency.

¢) Show that the self-potential energy of this system is @ (R) = }1%%26 pAR®.

d) If py is unknown, how can @ be combined with the globular cluster velocity dispersion to
estimate the mass of the system from the Virial Theorem? You may assume that we are only
interested in the mass within the radius of the clusters, Explain what, if any, additional
assumptions would be needed, and set up the calculation so that only algebra is left.



AS2-2. A dwarf galaxy is merging into a much larger primary galaxy, with current separation 50
kpc. The dwarf has total mass 5%x10% My, and the primary has stellar mass 3%x10" Mgun. The
primary contains 5x10° Mg in gas as well, of which half is currently in molecular form with
nu~10%10° cm™ and Jocated at central radii <5 kpe. The atomic gas extends to about 20 kpe and
its rotation curve implies a total mass of 10" My, for the primary, The dwarf has a few loosely
bound globular clusters of its own. Assume that the system evolves as a closed box, and the
current star formation rate is 10 Mgy/y1.

a) What will be the order within each pair of events listed below? Justify your answers both in
words and based on one or more equations from the last page, without actually doing any algebra
or calculations.

i) explosion of stars that increase [o/Fe] vs. emergence of line blanketing shortward of 4000
Angstroms in the integrated galaxy spectrum

ii) collapse of the molecular gas vs. infall of the atomic gas from 20 kpc to replenish the
molecular gas

iii) merging of the dwarf galaxy into the primary vs. merging of the globular clusters into the
primary (assume that due to tidal truncation and disk shocking, the globular clusters take a
separate inspiral trajectory from their former host galaxy)

b) Assuming all of the gas falls in, gets converted into molecular gas, and collapses quickly
enough to feed star formation continuously with SFR &« Mg, prove that the gas mass drops off
exponentially and find the value of the 1/e timescale. (Note that even if made of pure gas, the
dwarf would have 0.1x the gas mass of the primary, so we may ignore its contribution for this
calculation.)



’ Z
AS2-3. Consider a “singular isothermal sphere” (SIS), with density profile pgs = Z}%%

Ignore the singularity at the origin when answering the questions below. (People often study
“lowered isothermal profiles” in which this singularity is replaced with something finite.)

a) Integrate the Poisson equation to show that the potential could be ¢ = Vg In(R). Why is the
potential not unique?

b) Consider an ultra-thin disk embedded in a dark-matter halo with SIS density profile. Assume
you can neglect z motion and just examine orbits in cylindrical R,8 coordinates, expressing

circular velocity as Vo. Write down the force equation for R, and find an expression for

Bpery

@err(R, Lz) that allows you to rewrite the force equation as R=— TG

¢) Find an expression for the rotation curve V(R) of the disk, equivalent to the guiding center
orbit velocities as a function of radius. What would you expect for the approximate radius of a
bar with pattern speed Q, in this disk? ’

d) If a star gains a small radial velocity, it oscillates in epicycles around its guiding center orbit.
What about the effective potential causes this behavior?



AS2-4. We have seen that the Faber-Jackson relation can be derived by assuming constant M/L
and constant surface brightness along with the Virial Theorem. Taking a more general approach,

we can derive the Fundamental Plane simply from the definition [, = %ﬁ;g and the assumption
e

ME O,
— 2% with the same

that E galaxies are “homologous,” meanin 'K =2 c,Mo? and PE =
g > e ]

constants ¢; and ¢, for all galaxies. These constants contain the details of specific density
profiles.

a) Show that these equations imply that Jog R, = 2 log o, — log% —logl, + ¢ (whichis very

similar to the observed Fundamental Plane, when corrected for M/L. variations).

b) The galaxies described below do not fall on the z=0 Fundamental Plane, even after correcting
for stellar population variations. Does this mean that they are not in virial equilibrium? Why
might the authors think that dry merging can help move these galaxies to the z=0 FP? Why

wouldn’t wet merging work?

CONFIRMATION OF THE REMARKABLE COMPACTNESS OF MASSIVE QUIESCENT GALAXIES AT 2~ 2.3:
EARLY-TYPE GALAXIES DID NOT FORM IN A $IMPLE MONCLITHIC COLLAPSE 1.2

PIETER G, VAN DOKKUA®, MARIIN FRANS', MARISKA KRIEKS, BRADFORD HOLDEN', GARTE D, ILLINGWORTH?, DANIEL MAGEE®,
RYCHEARD BOUWENSS. DANILG MARCEESING , RYAN QUADRI, GREG RUDNICK', EDWARD N. TAYLOR®, AND SUNE TOFT’
Accepted for publication in ApF Letters
ABSTRACT

Using deep near-infrared spectroscopy Kriek et al. (2006) found that ~ 45% of massive galagzes atz ~ 2.3
have evolved stellar populations and little or no ongoing star formateon. Here we determine the sizes of these
quiescent galaxies using deep, high-resolution images obtained with HSTNICZ and laser guide star-assisted
Keck/AQ, Considering that their median stellar mass 13 1.7 x 10 My, the galaxies are remarkably smalt, with
a tnedian effective radius rp = 0.9 kpe. Galaxies of similar mass in the nearby Universe have stzes of =2 Skpe
and average stellar densities which are two orders of magnitude lower than the z ~ 2.3 galaxies. These resnits
extend earkier work at z ~ 1.5 and confinm previous studies at z > 2 which lacked spectroscopic redsifts and
imaging of sufficient resolution 1o resolve the galaxies. Our findings demonsteate that fully assembled early-
type galaxies make up at most ~ 10 % of the population of K-selected quiescent galaxies atz ~ 2.3, effectively
suling out simple monolithic models for their formation. The galnties must evolve sigutficantly after = ~ 2.3,
fhrough dry mergers or other processes, consistent with predictions from hierarchical modeds.
Stebject headings: cosmology: cbservations —— galaxies: evolution — galaxies: formation

¢) One projection of the FP is ——*wfw% = 2 log (ﬁ-“’i-) + const , which is a version of the
mag arcsec kpc
Kormendy Relation. Here SB, = —2.5log I, + const. This relation is sometimes used as a crude

distance indicator. Explain mathematically/geometrically why one of these variables is
independent of distance in the local universe. Given this argument, how can you use the relation
as a distance indicator? Describe the optimat method of fitting the calibrating data that defines
the relation (for which distances are known from another source) — which variable should you
minimize scatter in? Give at least two reasons why this distance indicator will not work well at
high redshift,



AS2-5. The table below summarizes much of what we know about different components of the
Milky Way disk, and the spectrum below the table shows the Lyman alpha forest spectrum for a
distant quasar (both figures taken from Sparke & Gallagher).

Table 2.1 Seale heighis and velocities of gas and stars in the disk and halo

I ar oy =OR Oy =0y oy {oyy  Fracien of
Galactic component shape tems=h  (kms™h (kmseh (kmosT')y  local stars
Hi gas negr the Sun 130pe e g Tiny
Local CO, Hp pos 63 pe 4 Tiny
Thin disk: Z = Zg/4  (Fipue 2.9 Q0
7 « 3Cyr w280 27 7 13 —10
3w« 60y #2300 3z 23 19 -12
6«7 - 10Gyr 22350 42 24 2 -19
T = Gy 45 28 2 30
Thick disk 0751 kpe 54-15%
1 7 Gy & o Bgid  (Flgwe 29 G8 40 32 32
0.2 5 272 506 63 30 39 51
Halo stars nea Sun Bia = 0.5-0.8 . e [
LA L 30 140 105 95 —1%0
Halo at & ~ 28kpe Rimnd Hi6 10 100 —~215

Noter gas velocities are measured looking up out of the disk {&, of HI), orat the tangent point o, for
Hiand COb velookies for thin-disk stars refer wo Figure 2.9, For thick disk and hale, abundance Z.
shape, wid velosilies refer o gartioular sanuiples of stars, Velocity {wyd is ln the direczien of Gatictic
rotation, relaive to the local sumdard of rest. w circular orblt at the Son’s mdiny Ry, assuming

Vo == 3 2kmsTh

g I Ly . O z=2 827
. ermission ™ W ( ;
o 6 r=2827 A il \ﬂf
"{% dnped ’ f ij
i} by Lye i i L z kil N )
% 4 ' B0 B30 BhAG
et
2 il |7 P, : O GrTigSion
o CULJUIRIL BT 2 il X N -
) ¥ ¥ H
450 5000 BEO0 GO0 B500

wavelength (&)

Fig. 9.12. The spectrum of quasar 1425 + 6039 with Zem = 3.173: broad Ly emission
1716 A is redshifted t the visihle region. At shorter wavelengths, narrow absorption lines
of the Lye forest are dense. The squarish profile at 4650 A is a damped line of Ly, at
Tans == 2.827. The arrow shows absorplion at the same redshift in the Crv doublet with rest
wavelength near 1530 A: the inset reveals distinel absorption components from mudliple
gas clouds ~ L. La and M. Rauch.



a) HI outer disks of galaxies typically have Nyr=afew x 10%° cm™, equivalent to a few Msun/pcz,
and are believed to be responsible for “damped Lyman o absorption such as that shown in the
QAL spectrum, UV radiation only partially ionizes the HI in a skin, analogous to the boundary
between HII regions and HI/H, gas clouds. Assume that DLAs are similar to the Milky Way, and
that atoms recombine as fast as UV photons can ionize them, Roughly how thick is the partially
jonized skin compared to the thickness of the HI disk? Does the quasar-ionized layer reach the
molecular gas? You may approximate the gas distribution as having constant column density in
each dz-height interval within a range £h, {rom the center of the disk plane, and zero beyond
+h, (top-hat rather than exponential). Hint: see useful info on last page.

b) Compare the vertical scale height of the molecular gas with the Jeans length for this gas
component. Explain the (order-of-magnitude) physical reasoning for the form of the equation for
the Jeans length. You may assume a molecular gas density of 10* cm™, Discuss the results based
on your expectations for a gas layer in equilibrium.

¢) The table indicates increasing scale heights and velocity dispersions for stars of different ages
7 compared to the gas layer. Describe the physical process that causes this effect. What does the
tensor virial theorem have to do with the change in scale height? Why is <vy> becoming more
negative as velocity dispersion increases? (See definition of <v,> in caption.)

d) According to the table caption, the Sun bas positive <vy>. Is the guiding center of its orbit at
larger or smaller galactocentric radius than our current position? Explain based on angular
momentum conservation,



Possibly Usefui Facts & Equations

Hy = 70 km s™* Mpc™ Hubble constant

G = 4.28x107%kpc - km? - sec™? - Mg,

¢ = 3x10° km/sec

Oy = 10~17 ¢m? ionization cross section of neutral Hydrogen to ionizing photons
A= 2.9 mm - K/T Wien's displacement law

2KE 4 PE = 0 Virial Theorem
R2 PPy (Rz ) = 4nGp Poisson Equation for a spherically symmetric mass distribution

Z(ty =—pln (Mgg ;) equation for metallicity evolution with time

Tys = 1019

—2.5
p” ) yr main sequence lifetime of a star of mass M
sun

trree—fall = % = 5%107yr (ny in cm™3)~%5 free-fall time for pressureless gas cloud of initial

density p

Layn = V2 trree—fau dynamical time for a test particle to fali to the middle of a constant-density
potential

04N Rinpe
= 108yr o EC ralaxation time due to weak star-star interactio
tretox = T3 7 0®yr T — relaxation time due to weak star-star i ctions

26410 7 1y )2 v (wwsun) . o
tric = o p (2 o T ” yr dynamical friction timescale
8

‘;’; o —Mp/VZ Chandrasekhar formula for dynamical friction on a satellite of mass M

log (108:;” ) 4log ( O‘:)os ) + 0.2 approximate black-hole mass vs. bulge o relatio
5

z
k2= (R %% + 460} epicyclic frequency in relation to angular rotation speed in 2 thin disk

And recall that within astronomical accuracy, 100km/s X 1Gyr = 100kpc
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- Problem 1 Mechanics

‘1. Consider a ball of mags m dropped and energy b'ouncing elastically up and down (so

that energy is conserved).

() Sketch the trajectories in phase space
ion variable J and calculate the fre-

" (b) Express__thé Hamiltonian in terms of the acti
quency of oscillation in terms of E.



| Problem 3 Mechanics

3. Consider the “point” transformation from the coordinates gy ...gy to another set
T1...Tn. Show that if Lagrange’s equations hold for the ¢’s they also hold for the
z's provided the functions zi{gi, -, GN> 1)y T = 1, N satisfy a certain mathematical
condition. What is the condition and what does it mean physically?



Problem 4 Mechanies

A particle of mass m is subject to a central force F(r) = =V’(r}. Assume
the particle moves on a circular orbit of radius 7 = R, and that in that orbit
its angular momentum is L.

Assume very little specific information about the potential away from r = R
except that it has a Taylor series expansion

1
V({r)=V(R)+ V(R) (r— R} + —2~V”(R)(r — R4,
(a) Determine the angular momentum L, energy E, and angular velocity
2y of the circular orbit. '

(b) Consider a nearly circular orbit with the same angular momentum.
Work out the linear perturbation equation for radial motion.

(¢) What condition on the derivative V'(R) and second derivative V'(R)
must hold for the perturbed orbit to be stable? ‘

(d) After finding the frequency ). of radial motion, give a;n expression
‘for the change in apsidal angle A¢ that occurs per radial oscillation.



. Problem 5 Mechanics

The motion of a relativistic particle of mass m in a static potential V(&)
can be obtained from the Lagrangian -

L = —mc{1 —v?/A)¥? ~ V(D).

(a) Write out Lagrange’s equations.

(b) Find the canonical momentum 7 and write out the Hamiltonian
H(z!, p;) (in terms of position and momentum).

()5 H a constant of the motion?



Stafistical Mechanics

2008

Problem 1 SM

Consider a 3 dimensional guantum solid of N weakly-interacting, distinguishable particles. Each
particle experiences a harmonic oscillator potential given by V(r) = $kr?, where r is the distance
of the particle from its location in the solid. Find expressions for the entropy, the total internal
energy, and the heat capacity as functions of temperature.

Problem 2 SM

Consider a system of identical, distinguishable particles where the energy-levels of each particle
are quantized as follows: '

E, = Ey In(n); n=1,2,3,4,...

1. Derive an expression for the probability of finding a particle in the n = 2 state relative to the
probability of finding the particle in the n = 1 state as a function of temperature.

2. Find the numeric value for this relative probability for the Speciél case when kT = Ey.

3. Find the entropy of the system as a function of temperature. Assurpe that the maximum
energy of each particle is limited to n = 3.



Statistical Mechanics

2008

Problern3 SM

Consider a system of N indistinguishable classical ultrarelativistic particles confined in volume
¥. The temperature of this system is given, 7. The Hamiltonian of such ultrarelativistic particles

is given by ,
N N i
H(g,,p;)= ZIEJC = Zc\jp; + P; +P,§
F=1 =1

(1) Show that the free energy is given by

ool

(2) Show that ' pV = NET is valid for this system.
(3) For given chemical potential 4, show that the grand potential, ¢ (7,V,p)=U-IS— u(N), of

. 3
this system is given by ¢ = —kTe*"" 8aV [%rw) i
: ¢

Problem4 SM

A surface with N, adsorption centers has N (<N, ) gas molecules adsorbed on it. Show that the
chemical potential of the adsorbed molecules is given by '

gt = kT I
. (N N ) a (T )
where a(T') is the partition function of a single adsorbed molecule. Neglect the intermolecular

interaction among the adsorbed molecules (thus, it works okay for Ar adsorption but not for H;O
on surfaces). Assume N, Np, and No-N are all very large numbers. -




Problem 3 SM

Consider the Ising model of N magnenc spms The Hamiltonian is given by
=~ZB;10‘ - Z.Igdpj, o;,0; =11

Jy=J, iandj nearest neighbors

=0, otherwise
where B is the external magnetic field, z is the magnetic moment, and J is the interaction
strength between two nearest-neighbor spins. Use the mean-field approximation to calculate the
partition function. _
(1) Show that the magnetlzatlon M =Nu{o) is given by

M =Nutanh{%f}'—(%{~(a')+3)]

where g is the number of the nearest neighbors.

(2) Consider B=0. Show that the crifical temperature 7, = —?—CJ— .
. ' B

, £
(3) Show that near the critical temperature and T' < T, (cr) e [1 - —;—] , and the critical exponent

£

B=1/2.

Remember that tanhx = x—%f 4o



Quantum Mechanics - II

2008

Problem 1 QM-2

A particle of mass m is confined by the two-dimensional oscillator potential
V(z,y) = mw?(z? + y*)/2 and subject to a time-independent perturbation §V{z,y) = azy
_ where o < mw?.
a) Find the ground state energy Fop = 5,3} + E}%) + Eé? + ... to second order in « and the
' ground state wavefunction ¥go(Z,y) = Wz, y) + V¥ (z,y) + ... to first order.
b) Find the energy splitting E&) and the corresponding “good” lincar combinations P& (z,y) of
the lowest excited states o1 {z, y) and ¥so(z, y) which would be degenerate in the absence of the

perturbation (E§g) == Eé?)).
Problem 2 QM-2

" A particle of mass m is confined in a one-dimensional infinite square well of width a and subject
to a weak time-dependent perturbation V (z, ) = a cos(nz/a) coswt. Att = 0 the system is in
_ : the ground state. ‘
a) Find (in the second order in c) the probability Py_.,(t) of a transition from the ground (n = 1)
to an arbitrary (n = 2,3, .. .) excited state provided that fuw = 3n*h? [2ma®. _
b) What is the probability of the inverse transition P (£) if the system starts out in the nth
excited state?
¢) What is the probability Pi_,(T’) in the case of the perturbation
V(z,t) = acos(rz/a)dt)(T — t)?
here 6(£) = 1 is the step-function: f() = 1 for ¢t > 0 and 8(t) = 0 fort < 0.

Problem 3 QM-2

Consider two spin-1/2 fermjons of mass m in a 1-d box of length L.

1. Start off by letting only one particle be in the box. Using periodic boundary conditions,
write down the spatial part of the lowest-energy wave function and the corresponding energy
(which does not depend on the spin). Also write down the spatial parts of the next two lowest
wave functions (they are degenerate) and the corresponding energy.

2. Now both particles are in the box. Caluclate the first-order energy shift of the lowest spin-
triplet state when the two particles interact through a two-body potential V = Ké(z; — T3),
where K is a constant. What physical phenomenon is reflected in your result?

3. Calculate the first-order shift for the lowest spin-singlet state.



FElectromagnetism ~I1

2008

Problem 1 — EM 11
A single harmonically oscillating dipole, with dipole moment cf'(t) = dye~ i,
that is centered on the origin gives rise to a complex electric fleld amplitude
ikr

B(#)aipote = _kzer 7 x (7 % dy)

in the radiation zone kr > 1.

Assume the existence of two such dipoles, which are both oscillating at the
same frequency. Assume that one dipole is displaced from the origin to a
position ¥ = T and the other is displaced to ¥ = —Zo. Assume the
displacements are along the z axis and that klZg| < 1. Let the dipole
moments be related by c;’,; = J‘Z = dm& (i.e., they are in phase with each
other) and take the dipole vector to He along the z axis also.

1. Tn phase displaced dipoles give rise t0 a dipole field plus corrections.
Obtain an expression for the electric feld in the radiation zone of the
combined source that is accurate through the first two nonvanishing

orders in k.

2. Let 6 be the polar angle relative to the 2z axis. Compute the angular
distribution of radiated power, dP/d(, through the first two nonvan-
ishing orders in k. Sketch the angular distribution of radiated power
of the correction term, describe the multipole, and why it arises.



Problem 4 — EM II

For a relativistic electron the time-dependent angular distribution of
' radiated power is

& Jii x (i~ B) x Ay’
drc (L—7-B)°

dP .
a—ﬁ(t)m

EH

as a function of the charge’s. time parameter ¢’ (i.e., 5 = E (t'} and

3= B

Consider an electron that is only moving and accelerating along the z-axis,
Let 8 be the polar angle of the observer relative to the z axis. Assume that
the electron is executing simple harmonic motion, z(¢' ) = acoswpt’, with a

fixed frequency wp and amplitude a. Define a parameter By = awp /c; then
B{t') = —fosinwpt’. Assume that B < 1.

1. Find the first three or more ferms in an expansion in powers of fy of

the time-dependent radiated power.

9. Time average the terms in the power series. Give the angular distri-
. bution of power radiated in the first two multipoles (i.e., dipole and

guadrupole).
3. Integrate for the total power radiated in the first two multipoles.
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A4

?vo\a(ﬁm 1.

e Write down the 4 equations of stellar structure in both Eulerian and
Lagrangian differential forms. What constitutive physics (e.g. equa-
tion of state) couples the 4 equations together, requiring simultaneous
solittion? Which equations decouple for equations of state depending
only upon density? Use this fact to write down a general mass-radius
relationship for bodies where P o< p”.



Al

Prollem 3

s Sketch a typical curve of growth for a spectral line and explain why
it has three differently sloped regions. What mechanism dominates
line growth in each region, and how does this mechanism depend on
atmospheric properties such as temperature and chemical abundance?



Ad

‘e Fstimate the hydrogen burning lifetimes of stars on the lower and upper
ends of the main sequence. The lower end occurs near 0.085 Mg with
logio(L/Le) = —3.297 & logy, Teps = 3.438, and the upper end near
90 Mg with logyo(L/Le) = 6.045 & logig Teps = 4.722 . If you think
that either of these stars will be completely convective on the main
sequence, be sure to use the entire mass of hydrogen for fuel not just
the inner 10% in the fusing core. :



1. Black Holes and Ga!aﬁty Dynamics

{a) Assuming a dominant dark matter halo (hence roughly spherical mass distribution),
combine expressions for the centripetal and gravitational forces on a star to derive a
general formula for a galaxy's enclosed dynamical mass as a function of radius r and
rotation velocity V. ‘ :

(b) The large-scale rotation curve of a galaxy obeys V{r) = 200 km/s (?’Ep_é) up fo i
kpc and stays flat at 200 /s from 1-10 kpc. However, on nuclear scales a pair of
black holes with total mass 107 Msun Orbit each other and influence the galaxy's
dynamics. At small radii where the influence of the black hole pair dominates and the
large-scale rotation is negligible, what is the expected shape of the rotation curve as a
function of r?

(c) Find the radius bounding the black hole pair's “sphére of influence,” defined as the
radius where the gravitational force from the black hole pair and the galaxy are equal.
You may use G=4.28 x 10°° kpc*km?*sec My - ~

(d) Describe the effect of close interactions between individual stars and the black hole
pair on the orbits of each. How will many such interactions affect the galaxy light profile? .



‘3. The Tilt of the Faber-Jackson Relation

We have seen that the Faber-Jackson relation for spheroids may be approximately
derived from the Virial Theorem by assuming that all spheroids share the same mass-
to-light ratio yand mean surface brightness X. Suppose we relax these assumptions
and assume only that M/L increases as a power lawin L, i.e., y « L%

(a) Starting from the Virial Theorem, show that L o« o#/0+29,

(b) Assuming that massive elliptical galaxies are dominated by baryonic matier within
their visible extent, and considering what you know about the stellar populations of
massive elliptical galaxies, explain which way the relation should tilt, or equivalently,
what should be the sign of a.if L is measured in the B band. How will the tilt change in
redder passbands? . .

(c) Suppose instead that dark matter fraction increases as @ function bf stellar mass for

elliptical galaxies, and stellar population differences are negligible. How does y depend
on L now? How could you observationally distinguish this scenario from the changing
stellar populations scenario? -

(d) Which variable is measured and which inferred when the Faber-Jackson relation is
used as a distance indicator? How do the tilts discussed above affect the predictive
power of the relation as a distance indicator, assuming that a significant fraction of the

scatter is in o?



5. Mass Determination via the Virial Theorem

A cluster of galaxies follows a Plummer sphere potential with b = 2 Mpc and mean fine-
of-sight velocity dispersion o=1000 km/sec.

®p = —GM/r? + b?

() Without using math, explain how you know that the total mass of this cluster is M.

(b)‘Use the Poisson Equatioh to show that the cluster mass density p = i: 2 =
: 2 +p2)2

2 = L2 (20 ).

Recall that V*® = 5 -~ (r* 5 ®).

(c) The total potential energy of the clusteris PE =1/2 [ p®dV = —-%EGMZ /b . From
the Virial Theorem, estimate the mass M of the cluster. You may use G=4.28 X 10°®
kpcrkm?*sec ?*Meun ™.

(d) What characteristic of this cluster seems to justify the use of the Virial Theorem?



Numerical Constants: '

Solar Mass (Msun):

Solar Radius (Rsun):
Solar Luminosity:
Gravitational Constant (G)
Proton mass

Yield of p-p reactions (Q)
Numerical Constants:

Solar Mass (Msun):

Solar Radius (Rsun):

Solar Luminosity:
Gravitational Constant (G)°
Proton mass ,
Yield of p-p reactions (Q)
Boltzmann constant '
Planck’s Constant
Electron mass
my=1.6726x 107 g

1.989x 107 g

6.96%x 10" cm

3.847 x 10™ erg/s

6.6726 x 10 cm?/g/s>

1.6726 x 107 g = 938.27 MeV/c®
26.7 MeV = 4.28 x 107 ergs

1.989x 10" ¢

6.96 x 101% em

3.847 x 10> erg/s.

6.6726 x 10” cm®/g/s*

1.6726 x 107 g =938.27 MeV/c?
26.7 MeV =4.28 x 107 ergs
1.38x 10" erg/K.

6.626 x 107 erg-s

9.109x 10% ¢



Appendix A (The 2007 Qualifier)

NOTE: The 2007 Qualifier questions have been copied word-for-word as they appeared on the qualifier, including grammatical errors and misspellings.

CM-1
Consider a ball of mass m dropped and energy E bouncing elastically up and down (so that energy is conserved).
(a) Sketch the trajectories in phase space

(b) Express the Hamiltonian in terms of the action variable J and calculate the frequency of oscillation in
terms of E.

CM-2

Consider a massless rigid rod of length / with a ball of mass m at each end, rotating around an axis that runs through the

center of mass as shown (8 <90°). The radius of each ball is negligibly small.

(a) What are the principal moments of inertia /; in the body-fixed frame?

(b) The components of w are constant in the body-fixed frame. Find the components of L in that frame, and
draw the direction of L.

(c) Use Euler’s equations to find the direction of the torque N (in the body-fixed frame) required to keep the
object rotating as in the figure. Draw the direction of N.

CM-3

Consider the “point” transformation from the coordinates ¢,...qy to another set x;...x,. Show that if Langrage’s
equations hold for the ¢’s they also hold for the x’s provided the functions x;(q;...q; t), i=1, N satisfy a certain
mathematical condition. What is the condition and what does it mean physically?

CM-4

A particle of mass m is subject to a central force F(r) = -V’(r). Assume the particle moves on a circular orbit of radius
r=R, and that in that orbit its angular momentum is L.

Assume very little specific information about the potential away from r=R except that is has a Taylor series expansion

V)=V OV 0N = R4 SV (R = R ..

(a) Determine the angular momentum L, energy E, and angular velocity ~ ¢ of the circular orbit.
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(b) Consider a nearly circular orbit with the same angular momentum. Work out the linear perturbation
equation for radial motion.

(c) What condition on the derivative V’(R) and second derivative V’’(R) must hold for the perturbed orbit to be
stable?

(d) After finding the frequency Q, of radial motion, give an expression for the change in apsidal angle A¢
that occurs per radial oscillation.

CM-5

The motion of a relativistic particle of mass m in a static potential V(x) can be obtained from the Lagrangian

21

L=-me*(1-25)% —V(x).
C

(a) Write out Lagrange’s Equations.

(b) Find the canonical momentum p and write out the Hamiltonian H(x',p;)(in terms of position and
momentum).

(c) Is H a constant of the motion?

EMI-1

The figure below shows an infinite checkerboard in the x-y plane in which the grey boxes are held at a potential +7,
and the white boxes are at -V, The boxes have dimensions a x b as shown. Find the potential at all points z > 0,
assuming the z=c plane is held at zero potential.

EMI-2

A straight, cylindrical conductor carries a constant current density/. A cylindrical cavity of radius a is cut into the
conductor, along an axis parallel to that of the conductor and offset by a distance c. A cross-sectional view is shown
below. Assuming J is directed into the page, what is the magnitude and direction of the magnetic field at a point P
within the cavity?
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EMI-3

Consider a uniformly charged sphere of radius 2a and charge density P . Assume the sphere contains a spherical cavity
or radius a/2 that is centered at (0, 0, 3a/2), while the larger sphere is centered at the origin. Find the force on a point
charge of charge ¢ located at (0, 0, @).

EMI-4

Consider a point charge of charge ¢ that is located at a height 4 above a large pool filled with a perfectly conducting

fluid that has a mass density P The pool is located at the surface of the earth. Assume that the deviation of the
surface caused by the electrostatic force from the charge is much smaller than 4.

1. Find the electric field at the surface of the fluid.
2. The electrostatic force per unit area experienced by a surface charge density at a surface where the electric
field is discontinuous is given by:

f=0(E +E,)/2

where E, and E, are the electric fields at the two sides of the surface. Given this, find the equation of the surface the
fluid assumes under the electrostatic force of the charge.

EMI-S

A conductor at potential /=0 has the shape of an infinite plane except for a hemispherical bulge of radius a. A charge ¢
is placed above the center of the bulge, a distance p from the plane (or p — a from the top of the bulge). What is the
force on the charge?

QMI-1

_ M2 hat
Consider the coherent state of a one-dimensional simple harmonic oscillator M) =e € 0) , where M is a number
and a" is the creation operator. (a) Show that the coherent state satisfy the minimum uncertainty product for x and p.

(b) Do an order-or-magnitude estimate for the value of A for a macroscopic pendulum oscillator with string length of
Im, ball mass of 1kg, and oscillation amplitude of 10 degrees.

QMI-2
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Answer these questions briefly:

(a) Write down the relationship between the wave function in the coordinate space and that in the momentum
space.

(b) Describe briefly what is the Aharnorov-Bohm effect.

(c) Write down the Wigner-Eckart theorem.

(d) Describe briefly the experiment that demonstrates the gravity-induced quantum interference effect.

(e) Derive the equation of motion for the time evolution of the density operator.

QMI-3

Consider a beam of spin % particles in the pure state | n.+) where n is a unit vector with polar angle 0 and azimuthal

angle ¢ Use the eigenvector of S,, |+, =) as the basis.

|n,+) =cos(@ /2)| +) + e sin(@ /2) | =)

(a) Show explicitly that is the eigenstate of S,=Sen with the eigenvalue

h/29
(b) A S, Stern-Gerlach-type measurement is performed on the beam. What is the probability of finding the
value ~h/29

(c) If the measurement of Sx was done first, independent of its outcome the measurement of S, is done next.
What is the probability of finding the value — h/29

QMI-4
Consider a particle of charge e and mass m in constant crossed E and B fields:
E=(0,0, E), B=(0,B,0), r=(x,y,z)
(a) Write the Schrodinger equation, in a convenient gauge.
(b) Separate variables and reduce it to a one-dimensional problem.

(c) Calculate the expectation value of the velocity in the x-direction in any energy eigenstate sometimes called
the drift velocity.

QMI-5

2 2 2
A particle of mass m and charge ¢ sits in a harmonic oscillator potential Vi=k(x"+y"+27)/2 At time t=-o the
oscillator is in its ground state. It is then perturbed by a spatially uniform time-dependent field

E(t) = A=}

Where 4 and U are constant. Calculate in lowest-order perturbation theory the probability that the oscillator is in an
excited state at t=+oo.

SM-1

Consider a molecule as a rigid motor with moment of inertia /. Its energy levels associated with rotation are given by
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2

h
g, =—j(j+D =27
o with generacy &/ 2j+1 and j=0,1,2,...

Show that the heat capacity per molecule associated with rotation is given by

2

2
Coak ) exp( - ko =
T T 20k
when T<<6r. Reminder; U =-91nQ/0p
SM -2
2
E=2 _¢ R
Consider an ideal gas in a one-dimensional channel of length L. The energy of the particle is given by 2m .
(a) Show, using the classical approach, that the partition function of one particle is given by
QI(T,L)=£3%/” fe"'zdx=\/;/2.
A . Reminder: ©
(b) What is the partition function of N indistinguishable particles (just write down the answer)?
(c) Calculate the chemical potential of this system of N particles at temperature 7.
SM -3

Consider a system of NV non-interacting particles that have two possible energy states, E=0 o E=%¢  Find the
temperature of the system as a function of the total energy. What happens to the temperature of the system when the

total energy is greater than Ne /29 Assume Ntobea large number.

SM -4
A gas obeys the following equation of state (the Dieterici equation):
a_)
Pv=>b)=k,Texp(| - T
(v=b) = kyT exp( 6T T

where v=F/N and a and b are constants. Find the critical point (P,, T,, v.) for this gas, if it exists.

SM -5

A wire of length / and mass per unit length % is fixed at both ends and tightened to a tension T . What is the rms
fluctuation, in classical statistical mechanics, of the midpoint of the wire when it is in equilibrium with a heat bath at
temperature 7?7 A useful series is

2

® 2 T
N @men = <
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QMII-1
1
V(x)=—Mwr’
Consider a charged particle with charge ¢ in a 2-D isotropic harmonic potential 2 . A weak electric field

E is applied along the diagonal direction (making 45 degree with x axis). (a) Using perturbation theory to calculate the
ground state energy to the second order in E. (b) Solve the problem exactly and compare the result with part (a).

QM II-2

Using the variation principle to estimate the ground state energy of the 1-D simple harmonic oscillator. Explain your
choice of the trial wave function.

QMII-3

Consider the scattering of a plan wave (with momentum k) by a 3-dimensional spherical potential.

() If the potential is a hard sphere with a radius R what is the phase shift and the total scattering cross
section for the s-wave scattering.

(b) If the potential is such that the phase shift of s, p, d, wave scattering are [1/2, [/4, [1/6, what is the total
scattering cross section.

QM II - 4

An isolated hydrogen atom has a hyperfine interaction between the proton and the electron spins (S; and S,,
respectively) of the form J S;. S;. The two spins have magnetic moments aS; and S,, and the system is in a uniform
magnetic field B. Consider only the orbital ground state.

(a)  Find the exact energy eigenvalues of this system and sketch the hyperfine splitting spectrum as a
function of magnetic field.

(b)  Calculate the eigenstates associated with each level.

QMII-5

12,2
A particle of total energy E=h'a / (2m) moves in a series of N contiguous one-dimensional regions. The potential

V,=-(n"-1)E n=12,...N

. h . .
in the n™ region is , Wwhere

All regions are equal width [1/{ except for the first and the last, which are of effectively infinite extent. Calculate the
transmission coefficients for a particle incident from either end.
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EMII-1

A thin, straight, conducting wire is centered on the origin, oriented along the z-axis and carries a current I:I()coscoot2

hy =2mc/w,

everywhere along its length /. Define
a) What is the electric dipole moment of the wire?

b) What are the scalar and vector potentials everywhere outside the source region (r » /). State your gauge and
make no assumptions about the size of A.

c) Consider the potentials in the regime r » [ » Xy. Describe (qualitatively) the radiation pattern and compare it to
the standard dipole case, where 7 » Ay » /.

EMII-2

A ®" hadron decays at rest into a proton and a pion,

A® p*+n’
The rest mass of the ® resonance is assumed to be mg = 1620 MeV/c?, while the rest mass of the proton is m, = 938
MeV/c* and the pion has m |, = 135 MeV/c’.

(a) Using energy-momentum four-vectors, obtain the final state energy E,, Lorentz factor ©,, and the speed
v,/c for the proton.

(b) Obtain the comparable quantities for the pion, £, ©, and v /c.

EMII-3

Consider a circular current loop of radius @ and of infinitesimal cross section that is confined to the z = 0 plane. Let
there be a sinusoidally varying current /exp(-iwz) in the wire, giving rise to a complex amplitude for the current density

JC5 = 7sin(0 90 (cos@ ) X =9 e,
a .

a) Show that the complex amplitude of the magnetic moment is
r 1 T Tr. omatr
m=—fd3xx><J(x )=Llez

2¢ c

In the multipole expansion, a time-varying magnetic dipole gives rise to a vector potential field in the radiation zone of,

iki
;[=iki(;1;xnr¢)
r .

b) Use this to compute the distant (k» » 1) magnetic field and electric field.

c¢) Compute the angular distribution of the radiated power dP/dQ and sketch the antenna pattern.
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EMII-4

The general expression for the radiated energy spectral-angular distribution of a relativistic electron is
aw e'n’
dwdQ  4n’c

[fertinx B )explioo (r—n (¢ /)]

b

which is derived using the Lienard-Wiechart expression for the radiative part of the electric field.

Consider a nucleus that suddenly emits a beta particle. The sudden appearance of the beta decay electron is associated
with a burst of electromagnetic radiation also, called appearance radiation. It arises because the electron’s velocity and
position are defined only for ¢ > 0:

[‘J) = (07096) for [’> O,
and
X =(0.0,cBr') gor 47> .

1

With the observation direction taken to be = (8110.0.¢088) 'show that the appearance radiation for beta decay is given
by
aw ¢ PB’sin’0
dodQ  4n’c (1-f cos®)’

EMII-S

A tenuous plasma consists of free electric charges of mass m and charge e. There are n charges per unit volume.
Assume that the density is uniform and that the interactions between the charges may be neglected. Electromagnetic
plane waves (frequency |, wave number k) are incident on the plasma.

(a) Find the conductivity [ as a function of |.
(b) Find the dispersion relation, i.e., the relation between k and 1.

2 _
(¢) Find the index of refraction as a function of 1. The plasma frequency is defined by Wp =

What happens if 1< ~|p ?

dgtne’ / m

Astro I — 1. Energy transport
The equation of radiative transfer in a plane parallel, gray atmosphere can be written as:

c0s9£=1—S
dt

v

where [ is intensity,ﬂlj v is the optical depth measured vertically from the surface, and S is the source function.

a) The source function S describes how propagating photons are removed and replaced by photons from the
gas. Mathematically it is the ratio of the emission coefficient to the absorption coefficient. In local
thermodynamic equilibrium it is equal to the Planck function B. Under what conditions (i.e. at what place in a
star) is the intensity I also equal to B? Explain your answer.
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b) Starting with the equation above, derive the equation of transport used in stellar interiors:

dar 3 xp L,

5 4ac T? 4ur’

¢) Use the condition for convection to show the limiting case for radiative transport is:

1\ wn, GM,

ar _
dr Yj ko7

A
(Hint: You will need the adiabatic relation Pyt =C , and the equation of hydrostatic equilibrium to get the
result in this form)

Astro I — 2. Stellar dimensional analysis
a) Use the equation of hydrostatic equilibrium in difference form to derive the dependence of stellar central pressure on
total stellar mass and radius. Assuming an ideal gas equation of state, what is the mass and radius dependence of central

temperature? (assume constant composition, homologous density profiles)

b) Now assume that nuclear fusion is a "perfect thermostat" that keeps the core temperature identical for all hydrogen
burning stars. What is the predicted mass-radius relationship for the main sequence?

c¢) Use the equation of radiative transport in difference form to derive the mass-luminosity relationship under these
assumptions. (You may use the approximation that Teengal — Tsurface = T central)

d) Use the relations from b and c to predict the slope of the main sequence for "constant central temperature" stars (the

observed value for real stars is between 7 and 8). Comment on this result and upon the importance of understanding
nuclear burning to predict the slope of the main sequence.

Astro I — 3. Virial theorem

The virial theorem can be written as:

3deV+Q=0

where P is the pressure and Q is the gravitational potential energy. For an ideal, nonrelativistic gas this becomes 2K + Q
=0.

a) Use the virial theorem to explain why adding significant energy to a star will cause it to cool.

b) We know a white dwarf will heat up if energy is added. How can this be consistent with the virial theorem?
(Hint: the first term now has two components, one for the electrons and one for the ions)

Astro I — 4. Observational astronomy
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M, [mag]

L
-0.5 0.0 0.5 1.0 1.5 2.0
B -V [meg}

a) The absolute v magnitude of the sun is about 4.8. Based on the Hipparcos H-R diagram (above), what is the B-V
color of the sun?

b) Explain how to convert this B-V color into a temperature under the assumption that the sun is a blackbody.
¢) What is the magnitude of a star with a B-V of 0.0? How many times more luminous than the sun is such a star?

d) If the sun is 6000K and has its spectral peak at 5500 angstroms, what is the temperature of a star with B-V of 0.0?

Astro I — 5. Nuclear Reactions

Nuclear reaction rates are proportional to

E b

fS(E)e”TEdE
0

=

8y 1
w ] Ty

r

where the b parameter is proportional to the product of the nuclear charges of the reactants and the square root of the
reduced atomic mass A=A;A,/(A;+TA,)

a) For non-resonant reaction rates, the S(E) can be treated as a constant, Sy, and the exponential approximated
as a Gaussian. Explain where the two terms e™*" and e™*® come from. Sketch them separately and then
sketch their product.

b) Show that the integrand has a maximum at E, = (bkT/2)*?

¢) Helium burning is a two stage reaction, he first step of which is He*+He*=Be®. It occurs at core temperatures
about 10 times higher than for hydrogen fusion. How much higher in energy is the reaction peak? How is the

peak otherwise changed?

d) The temperature dependence of the triple alpha reaction under discussion is T*', much higher than the
hydrogen burning sensitivity to T. Given your answer to ¢, how could this be true?
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Numerical Constants:

Solar Mass (Msun):

Solar Radius (Rsun):

Solar Luminosity:
Gravitational Constant (G)
Proton mass

Yield of p-p reactions (Q)
Boltzmann constant
Planck's Constant
Electron mass

Proton mass

1.989x 10" g
6.96 x 10" cm
3.847 x 10> erg/s
6.6726 x 10° cm’/g/s*
1.6726 x 10%* g =938.27 MeV/c?
26.7 MeV =4.28 x 10” ergs
1.38 x 10" erg/K
6.626 x 10%" erg-s
9.109x 10% g
1.6726 x 10 g

NOTE: Due to the recent change of the graduate-level astronomy curriculum, the Astro II section of the 2007
Qualifier, which corresponded to the High-Energy Astrophysics class, will be replaced by a Galactic Dynamics section

starting in 2008.

Astro II — 1. Wigner-Seitz Approximation

Consider a degenerate electron gas about an ion lattice.

(a) Consider a neutral, spherical cell of radius 7, about an ion of charge Z,. Assume that the electrons are
distributed uniformly and write down an expression for the charge ¢ of the electrons within radius 7.

(b) Calculate the potential energy E,.. of the electron-electron interactions (i.e., the energy it takes to assemble
a uniform sphere of Z electrons).

(c) Calculate the potential energy E,.; of the electron-ion interactions.

(d) The total Coulumb energy of the cell is then E. = E, . + E,;. Write down an expression for £, as a function

of Z and the electron density "

(e) The Coulomb correction to the ideal, degenerate electron gas pressure P, is then = ¢

 =3Z/4nr,
P =nd(E, /Z)/dn,

. As electron density increases does P/P, = (P, + P_.)/P, increase, decrease, or stay the same (a) in the non-
relativistic limit and (b) in the extreme relativistic limit?

Astro II — 2. White Dwarf Equilibrium and Stability
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Consider a white dwarf of total energy E=E;,+Eg. 4+t Ei+Egr, where E;,, = AM p, I3 is the internal energy of an n=3
polytrope, Egqy = - MPp. 17 is the Newtonial gravitational potential energy of an n=3 polytrope, AE;,,=CM p."” is the
correction to the internal energy due to the electrons not being completely relativistic, 4Eqz=-DM*p,*” is the
correction to the gravitational potential energy due to general relativity, and M and p.. are the mass and central density,
respectively. In cgs units, 4 = 8.566%10" (u/2)™3, B = 4.264*10°, C = 4.950%10"(u/2)", and D = 4.549%107°.

(a) Assume equilibrium and write down another relationship between 4, B, C, D, M, and p..
(b) Ignore the correction terms in (a) and solve for M in solar masses. What is this mass?

(c) Do not ignore the correction terms and assume borderline instability to write down another relationship
between 4, B, C, D, M, and p..

(d) Substitute (a) into (c) and eliminate AM-BM"”. Substitute (b) and eliminate M. Solve for p, in g/cn’.

(e) Inverse B-decay occurs if p, >1.14 * 10° g/cm’ for iron white dwarfs, 3.90 * 10'* g/cm’ for carbon white
dwarfs, and 1.37 * 10" g/cm’ for helium white dwarfs. Does inverse B-decay or GR-induced instability
terminate the sequence of (a) iron, (b) carbon, and (c) helium white dwarfs?

M, =1.99 * 10%

Astro II — 3. Pulsar Magnetic Dipole Model

Consider a neutron star that rotates at a frequency 2 with a magnetic dipole moment m that is oriented at an angle ¢
to the rotation axis.

(a) The magnitude of m is BpR3/2, where B, is the magnetic field strength at the magnetic pole and R is the
radius of the neutron star. Write m as the sum of three orthogonal vectors, one along the rotation axis that

depends on |m| and & | and two that also depend on €2 and time 7.

. C
(b) Calculate the rate at which the neutron star loses rotational energy: E=-2im[|" /3¢

(c) The neutron star’s rotational energy is E=/<2?/2, where [ is the moment of inertia. Take a derivative

and substitute into (b) to eliminate £ .

T'=-Q,/% Q

(d) Write an expression for the characteristic age of the pulsar: , where *“0and €20 are

current values.

(e) Integrate (c) from 2, at t=0to 2 at t=t,. Solve for ¢, as a function of 7, Q", and 2.

(f) For the Crab pulsar, T is measured to be 2556 years. Assume that Q;>>Q

age. How accurate is your answer?

o and calculate the pulsar’s

Astro II — 4. Neutron Star Accretion

Consider accretion onto a neutron star with a dipole magnetic field.
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(a) The magnetic field will begin to dominate the flow of the in-falling gas at the Alfvén radius, where the
energy density of the magnetic field becomes comparable to the kinetic energy density of the gas. Write
down a simple expression for the energy density of the magnetic field in terms of field strength B and a

simple expression for the kinetic energy density of the gas in terms of gas density P and speed v.

3
(b) For a dipole magnetic field, B=ulr

¥ 2
p=M/ 47cvﬂ.r

. . Vv
, where " is the magnetic moment. Assume that 7, the

free-fall speed, and that , where M is the accretion rate. Write down a simple expression
for vjyin terms of the mass M of the neutron star and . Substitute these expressions into (a) and solve for
the Alfvén radius r=r,.

(c) As the in-falling gas flows to the surface, gravitational potential energy is converted to kinetic energy
and when it strikes the surface the kinetic energy is converted to luminosity. Write down a s1mple

expression for L in terms of M | M , and R. Substitute this expression into (b) and eliminate M

(d) Take M ~10" cgs and L to be on the order of the Eddington luminosity. Ballpark r,.

(e) For a dipole magnetic field, field lines are given by sin*8 /2 = constant. The in-falling gas is funneled
what fraction of the neutron star’s surface?

G =6.67259*10" cm’ g' 5~
M, = 1.99 * 10

Astro II — 5. Aberration of Light

Consider the Lorentz transformation:

x| =y (x, —vt)
x'i =X,
t =y(t—va/cz)

(a) Write down the velocity transformation.

(b) Let tan® =u. /1) Write down an expression for N0 as a function of u, ©, and v (the aberration
formula). Let u=c and write down the aberration of light formula.

(c) HST images a star as it orbits at a speed of v=7.56 km/s, completing an orbit every 97 minutes. By
how many arcseconds does the position of the star appear to change as the angle between the telescope’s
pointing and motion changes from -90° to +90°? Ground-based telescope have to track at a rate of 900
arcsec/min to compensate for the earth’s rotation. At what average rate does HST have to “track” to
compensate for aberration of light?

(d) Suppose that you are traveling through space at 1% of the speed of light. All objects with 90° of your
direction of motion (half of the sky) will appear to be concentrated within how many degrees of your
= 100 2

direction of motion? What if you are traveling at ¥

34



Spring 2006 Qualifying Exam

(CM-1)
(a) What transformation is generated by type-two generating function =
qP?
{b) Show that the function

Fy = F{ + H(q, plg, P])At

generates the motion in time for small intervals Af. In other words, show
that

QL) = qlt + &t),  Plt) = p(t + At)
to first order in AL
(¢} What “small” transformation on the six space and momentum compo-
nents of a single particle is generated by the function

B=7rPt+a-LAd

where [ = 7 x § is the angular momentum? Show how you reach your
conclusions.

(CM-2)

Show that if both the Hamiltonian H and a time-dependent quantity G(g,p, t)

. _ " ac
are constants of the motion (e.g. G = g — pt/m for a free particle) then 57

is also a constant of the motion.

(CM-3}
Consider motion of a rod with its center-of-mass coordinates z and y and
making and angle f with the y axis. The Lagrangian is

L = 1/2mi® + 1/2mgf + 1/210"

and the rod is constrained to translate in the direction it is pointing by the
nonholonomic condition

zcos(f) — ysin(f) =0

1



The initial conditions are z(0) = y(0) = 6(0)
vg, 8(0) = wyp.

(a) Use a Lagrange multiplier to write down the equations of motion
(b) Find «, y, and 4 as functions of time.

il

0, £(0) = 0, g(0) =

(CM-4)
A charged particle of mass m and charge e moves in the presence of an
electromagnetic field with scalar potential ® and vector potential A. The
Lagrangian is given by

Recall that the physical fields are given by

B=%xAd F=-vo- 02
c Ot

(a) Obtain the Hamiltonian H and derive Hamilton’s equations of motion
for this system.

(b) Assume there is a uniform electric field E and & uniform magnetic field 5,
which are mutually perpendicular. To be specific, let the electric field point
in the y direction and the magnetic field point in the z direction. Assume the
charged particle is initially at rest. Derive and solve the equations of motion.

(CM-5)

A mass m is constrained to a horizontal surface and connected to a wall
by two identical springs with spring constant k. In equilibrium the mass,
springs, and wall form an equilateral triangle, with the equilibrium spring
length being [ and the distance between attachment points on the wall also
I. Let distance along the wall be given by z and distance perpendicular to
the wall be given by y.

(a) Consider small amplitude motion away from equilibrium but confined
to the plane. Derive and solve the equations for small amplitude motion.
Obtain the two eigenfrequencies, wy and wy, and find the eigenvectors.



Spring 2006 Qualifying Exam

(QM-1)
Demonstrate explicitly that the uncertainly relationship holds true for a 1D
Simple Harmonic Oscillator in the state {n > .

(QM-2)

Given the normalized wave function for & one-dimensional system:
W(x) = (2med) expl-(z — 87/ (40%) + i(yz ~ 6t)]

(a) Obtain the average values of the following quantities:

energy < E >, squared coordinate < z? > and momentum < p >, force
< F, >e=d < py > /dt, and probability current J(x) in terms of the real
constants ¢, B, v, 6, and quote the expression used to obtain the answers.
(b) Show that there exist non-trivial conditions so that this system conserves
probability.

{Useful information: a Gaussian function, with unit variance and whose in-
tegral is unity, is (27) Y% exp[~2?/2]. )

(QM-3)

Prove the Thomas-Reiche-Kuhn sum rule
2m[:cng|2
RZ
where the sum is taken over the complete set of eigenstates ¥, of energy E,

of a particle of mass m, which moves in a potential; Wy, represents a bound
state.

z:“n (En - Eo) = 1

(QM-4)
Consider an ensemble of Hydrogen atoms in different states |n,[,m,m; >.
Restrict the ket space to n = 1,2 only.
(a) The first measurement shows that 256% of atoms are in the state with



n = 1, while 25% each are in the states with [ = 1 and m = 1,0,-1,
respectively. Assuming that the spin part is random, write down the density
operator in the basis |n,l,m,m; >.

(b) The atoms pass through a region with a weak magnetic field which only
affects the spin, and after that the z-component of the spin is measured. 1t is
found that 75% of the time the measurement yields a value of +A/2. Write
down the density operator after the second measurement. Explain the logic
behind your answer.

{c) A third measurement is done to find out the z component of the total
angular momentum of the atoms. What are the possible values and the
associated probabilities?

(QM-5) Consider an ensemble of spin § = 0 composite particles, each
of which is composed of two spin § = 1/2 particles. Let P(a+;b--} be the
probability that in a random selection an observer A measures the spin of a
particle 1 along the direction a and finds it to be +#,/2, while an observer
B measures the s[in of a particle 2 along the direction b and finds it to be
+h/2, ete.

(a) State the Bell's inequality (as described in the Sakurai's book) and its
implications.

(b) Calculate explicitly the probabilities and show that the Bell’s inequality
is violated.



Spring 2006 Qualifying exam

(EM-1)
Show that the trajectory of a charged particle in a magnetic fleld can be
duplicated by that of a current-carrying wire held at rest under constant
tension (provided by some fixtures outside of the field region). Deduce the
current [ required in & wire of tension 7" to match the trajectory of a proton
of momentum P.

(EM-2)
A spherical insulator {of radius a and dielectric constant ¢) has its top hemi-
sphere coated with a surface charge of constant density. Find the electrostatic
potential everywhere inside and outside the sphere.

(EM-3)
Three point charges (g, —2q, g) are located on the z-axis and surrounded by
a grounded, conducting spherical shell, as shown below.
(a) Write down the potential for the 3 charges in the absence of the grounded

sphere. Find the limiting form as a — 0, but the product ga® = () remains
finite.

(b) Now add the grounded sphere and find the potential everywhere inside
the sphere. Again, find the limit as ¢ — 0.



(EM-4}
A variable capacitor is connected to a battery of EMF £. The capacitor
initially has a capacitance Cp and charge go. The capacitance is caused to
change with time so that the current I is constant. Calculate the power
supplied by the battery, and compare it with the time rate-of change of the
energy stored in the capacitor. Account for any difference.

(EM-5}
It is well known that a static, uniform, magnetic field can do no work on
either stationary or moving charges.
{a) Prove from definition.
Tt is also well known that a current carrying wire segment {current I, straight
length vector L) will, in general, feel a force due to a static, uniform, magnetic
field {which can do work).
(b) What s the magnitude and direction of that force? Provide annotated
sketch.
(¢) Finally, resolve the conflict between a) and b), since a current carrying
wire segment, to all intents and purposes, is only an overall neutral collection
of charges, some stationary and some moving.



Spring 2006 Qualifying Exam

(SM-1}
Consider an adsorption site for Mo molecules. The adsorption site can accom-
modate up to two Ny molecules with adsorption energy ¢4 = —0.05 eV for
one molecule and e4 = —0.02 eV for two molecules {e4 = 0 for no molecule).
Place this adsorption site in diffusive and thermal contact with an N; gas at
300 K with fugacity z = exp(u/ksT) = 0.1. Calculate the average number
of adsorbed Ny molecules on this site.

{SM-2)
Consider a two-dimensional classical ideal gas on a surface of L x L size. The
energy of the particle is given by

o

H = e —

(@p) =5~ ~¢

where ¢g > 0 is the adsorption energy.
(1) Find the grand partition function of this system Q(z,L,T) given the
fugacity z = e*/*87 L, and T.
(2) Determine the average number of adsorbed particles < N > given the
chemical potential g, L, and T'.
Useful information:

0 g

a e zmﬁu—“ldm e %F(E%-i); r('n‘ -+ 1) = n%

(SM-3)
A surface has a temperature of 800°C. Atoms of sodium which strike the sur-
face are found to be 90% ionized when they evaporate. Atoms of chlorine are
found to be ionized negatively by one part in 10 when they evaporate from
the same surface. What is the electron affinity of chlorine? The ionization
potential of Na is ¢ = 5.1V.

(SM-4)



Consider a system of three-dimensional rotators (with two degrees of freedom
and ro translational motion) in thermal equilibrium according to Boltzmann
statistics; take account of the quantization of energy. Calculate the free
energy, entropy, energy and heat capacity (per rotator) in the case of high
temperature, making use of Euler’s approximation formula:

o .
Srcof(+ 5 = [ H@de+ 217 (©) = £ ()} + .
0 24
{SM-5}

A very simplified model for a metal is “jellium” in which a collection o e
lectrons of number density n is neutralized by a uniformly distributed positive
background of the same density. In Hartree-Fock theory the one-electron
states are plane waves and the electron energy is the kinetic contribution
and an exchange interaction with electrons of the same spin only. In the
ground state, the electrons occupy all wave vector states up to the Fermi-
wave vector kg, For the paramagnetic material, as the temperature vanishes,
n = k&/(37%) and the Helmholtz free energy per unit volume is F/{l =
k3./(51%) — k%/(27%) [in units of length = ap and energy = e’/(2ap) where
ap is the Bohr radius).

Calculate the liquid density n, at coexistence with its vapor (vacuum), and
the corresponding chemical potential for zero temperature. Note that the
vapor, as T approaches zero, is not a degenerate electron gas {appropriately
neutralized) but rather a, similarly neutralized, classical ideal gas - where
does this enter your previous result?



Spring 2006 Qualifying Exam, QM II

(QM-1)
Consider the one-dimensional Schroedinger equation with V (z) = Zw?z? for
x> 0and V(z) = +oc for z < 0.
Find the energy eigenvalues.

(QM-2)
A one-dimensional harmonic oscillator of mass m and frequency w, which
resides in its ground state for ¢ = —o0, is acted upon by a time-dependent

force: F(t) = Fyexp(—t2/7?) {parallel to the spring).

Derive the probability of finding the system in its first excited state at ¢ =
+00.

Useful information: < nlzjn + 1 >= [A{n + 1)/(mw)}/? and [% e dy =
w12,

(QM-3)
Consider an infinite potential well (V{(z) = 0 for |z| < a and V() = +o0
elsewhere).
(2) Imagine that the potential on the left half of the well is raised to Vg > 0.
Use perturbation theory to calculate the ground state energy to first non-zero
order in Vo.
(b) Imagine that the left part of the potential is raised to Vg for only a finite
time 0 < ¢ < T. Calculate the probability that the particle will be in the
first excited state at ¢ = T".

(QM-4)
A particle of mass m in the plane wave state [k > gets scattered off of & finite
range spherical potential V(r) =e*/r, 0 <r < Rand V(r) =0,r > A,
(a) Use the first order Born approximation to calculate the differential cross
section as a function of the scattering angle.
(b) In the low energy limit, what is the total scattering cross section?



(QM-5)
Consider a neutral Helium atom.
(a) Write down the Hamiltonian for this two-electron system.
(b) Neglecting any interactions between the two electrons, spin-orbit coupling
and relativistic effects, what are the values (in eV) of the three lowest energy
levels? List all the degenerate states for these three levels,
(c) If the interactions are considered, draw schematically the energy levels’
diagram of the lowest energy levels. Write down explicitly the associated
total wave functions (including both spatial and spin parts).

10



Spring 2006 Qualifying Exam, EM 11

(EM-1)
An electron (initially at rest) is released from infinity and "falls” toward a
nucleus with charge Ze. Assume that the electron is nonrelativistic and that
the radiative reaction force on the electron is negligible.
a) What is the angular distribution of the emitted radiation?
b) How is the emitted radiation polarized?
¢) What is the radiated power as a function of the distance between the
electron and nucleus?
d) What is the total energy radiated when the electron reaches a distance r
from the nucleus?

(EM-2)
The ordinary expression for Ohm’s law is

T A
J=ok,

where the current J' and electric field E' are denoted with a prime to mean
the values observed in the rest frame of the medium. In relativistic terms,
this is the frame in which the material’s four-velocity appears to be

U = (c,0,0,0).

(a) Derive the relativistic generalization of Ohm’s law that is valid in all
frames. Note that the three-current J is part of the covariant four-current
J# so the generalization will be a four-vector expression. Note also that if
the charge density p' in the rest frame of the material is non-zero, then in a
boosted frame it will appear to contribute a convective current ferm.

(EM-3)
The general expression for the energy spectral-angular distribution of radia-
tion from a relativistic charged particle is

dW ¢’
dwd$t  4nle

/dt'ﬁ x (7 x §) expliw(t’ ~ @ - (t) /] ’ ,
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which was derived using the Lienard-Wiechart expression for the radiative
part of the electric field.

For an observation direction 7, let there be two real orthonormal vectors gt
and &8 lying in the plane to which 7 is orthogonal. These three vectors make
up an orthonormal triad. Hence the identity can be decomposed as

o 4 oAA L BB
0y = mang - ejef +eg ey,

and one finds the projection operator orthogonal to 7 to be

855 — iy = efe? -+ efef.
Assume that a relativistic electron undergoes a collision and makes an abrupt
change in its velocity from 5 to 8. For frequencies that are low compared
to 7, where 7 is the duration of the acceleration in the collision, show that
the spectrum of Bremsstralung radiation is

aw & o (B B
1—A-f 1-7-f

dwdQ  4mic m:.-ZA,B

(EM-4)
Consider a cold plasma (thus ignoring spatial dispersion effects) but include
the effects of collisions between the electrons and the background jons. Let
the ion-electron collision rate be vi,. We can model the effect of collisions as
a drag term in the equation of motion of the electrons:
d'f—f = —

meaz = el — Viemet.
(Here we ignore the response of the ions to the applied field.)
(a) Use this equation of motion to work out the dielectric response of trans-
verse electromagnetic waves in & cold, collisional plasma.

An electromagnetic plane wave of frequency w is traveling in a region of
vacuum (2 < 0) and is incident normally upon a piane interface of a half-
infinite region of cold, collisional plasma (z > 0). Assume that the collision

rate is small compared to the plasma frequency so that 1 = |/t J(2wy,) < 1.

12



(b) Work out the value of the reflectivity coefficient R of the plasma to first
order in n when the frequency of the incident wave w equals the plasma
_frequency Wh.

(EM-5)
Two photons of the same energy E approach each other at an angle 8 (6 =
corresponds to a head-on collision). Assume that the energy is just sufficient
for the photons to create an electron-positron pair:

vy —e et

{a) Set up the various energy-momentum four-vectors and derive the condi-
tion on the energy E as a function of @ for this reaction to be at threshold.

(b) Derive the speed 3 of the electron and positron.
Spring 2006 Qualifying Exam, AS 11
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(Astroll-1)
Consider an ideal, cold n — p — e gas in equilibrium.
(a) Write down the inverse [-decay reaction and the relation between the
chemical potentials. Set u, = 0 since the neutrinos escape.
(b) Using the fact that y; = Fp;, write down a relation between m,, my, M,
TeXp, and Tn.

14



Fall 2005 Qualifying Exam

(EM-1)
Assume the presence of a cold plasma with electron number density n. that is
threaded by a uniform magnetic field (directed along the z-axis) of strength
B,. Circularly polarized plane waves with wave vectors k directed along the
z-axis are incident on the plasma. Ignore particle collisions and ignore the
effects of ions (i.e., consider only the motion of the electrons).
(a) Work out she dielectric response of the plasma to the plane waves and
show that both circularly polarized modes are, in fact, eigensolutions in the
magnetized piasma.
(b) Compute the phase velocities of the two modes.

(EM-2)
One means of creating pions is by colliding a gamma ray and a proton

y4p—ntrh

Assume that the gamma ray is directed along the z-axis and that the proton
moves along the y-axis. In the lab frame, let the energy of the gamma ray
be £, and assume that the proton has Lorentz factor .

In terms of the rest masses, My, My, and my, and Lorentz factor of the
proton, v, determine the condition on the gamma-ray energy [, such that
the reaction is just at threshold for creating a pion and a neutron.

(EM-3)
A single harmonically oscillating dipole, with dipole moment d(t) = doe™™*,
is centered on the origin. This oscillating moment gives rise to a complex
vector potential amplitude ff(ﬁ) = —ikr~1e® dy and a complex electric field
amplitude

ikr o
E(@)aipole = —k*—11 x (il X do)

in the radiation zone.
Assume the existence of two such dipoles, both oscillating at the same fre-
quency. Assume that one dipole is displaced from the origin to & = Zo and

16



the other is centered at & = —&). Let the first dipole have dipole moment
dy and the second have dipole moment —dp (i.e., 180 degrees out of phase).
Assume that k|Zp| < 1.

(a) Obtain an expression for the electric field in the radiation zone of the
combined source accurate to lowest order in k. .
(b) Assuming that all of the components of dp are in phase and that both dy
and #, point in the z-direction, compute the angular distribution of radiated
power, dF/df.

(¢) What radiation multipole is this?

(EM-4)
A fast, charged particle with constant speed v = c traverses a transparent,
lossless glass sphere (index of refraction n) in vacuum. The particie moves
along a diameter of the sphere, emitting Cerenkov radiation as it goes. What
fraction of the total Cerenkov light is trapped by total internal reflection?

(EM-5)
A plane, lineraly polarized, electromagnetic wave propagates in the +2 di-
rection. A particle of charge ¢, mass m, and velocity 4 is acted upon by the
Wave. -
(a) In terms of ¢, @, ¢, and the electric field amplitude vector Ey, what is the
force F on the charge (at all z and ¢)?
(b} Discuss if it is possible that F = 0 non-trivially (i.e., when g or Ey #0)
in terms of the vector .

Fall 2005 Qualifying Exam
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(QM-1)
The Fermi-contact interaction, for hydrogenic atoms, is responsible for the
ground state splitting of the singlet to triplet states. The perturbation Hamil-
tonian is

AH = §9+9w3«1—:3— (§+§”)5(m=

where g, and g_ are the spin g-factors, the s are the magnitudes of the
. magnetons, §+ and §_ are the spin vector operators, and # is the relative
coordinate. For positronium (both g4 = 2), calculate the ground state singlet
and triplet energy shifts, due to such a contact perturbation; you should write
down the ground state wavefunctions from your knowledge of hydrogenic
atoms (do not derive). Give the results in terms of e?/aq = 27.2eV and
e*/(he) = 1/137. (Use [5° 2™ %dx = nl). '

(QM-2)

Consider two identical particles with mass m and spin 1/2 in a two-dimensional
isotropic potential well: V{(z,y) = 0 for |z, ly} < L and V(z) = oo elsewhere.
() If there is only one particle, what is the energy, degeneracy {consider
both, spatial and spin), and parity symmetry of the ground and first excited
states?

(b) If there are two particles, what is the energy, degeneracy (consider both,
spatial and spin), and parity symmetry of the ground and first excited states?

(QM-3):
Consider scattering of a plane wave with momentum k off of & three-dimensional
spherical d-function potential V(r} = (yh?/2m)6(r — R).
(a) By solving the Schroedinger equation explicitly, show that the s-wave
scattering phase shift is determined by the equation
tan(kR + 6) = E‘mskﬁ%{%ﬁ‘
(b) Show that in the limit of low energies and at small phase sifts the s-wave

scattering cross section is 4my*R%.

(QM-4)

Consider a three-level system described by the Hamiltonian

H = Ey(|1 >< 1]+12 >< 2|)+Esl3 >< 3]+a(|l >< 2142 >< 1)+6(]2 >< 3]+]3 >< 2))

17



where FE; < Fs. Theat the off-diagonal terms as perturbation and, using
perturbation theory, obtain the ground state energy to second order in o
and £.

(QM-5)
Calculate (semiclassically) the density of states ¥(E) = dN(E)/dE, where
N(E) is the number of energy levels with energies below I, for a one-
dimensional potential V{z) = Volz/al" (Vo and 7 are positive) in the limit of
large E.
Compare your approximate result with the exact ones available for n = 2
amd 1 = 00.

18



Spring 2005 Qualifying Exam

(CM-1):
Consider a point particle orbiting a non-rotating biack hole. This is a central
force problem. The constants of motion number the same as the Newtonian
Kepler problem. Using the first integrals for energy and angular momentum,
& relativist gives you the following equation for radial motion

ar\* ., /. 2M L?
(a:) = _(1"7)(”?’5‘)’

involving the "effective potential”

= (-2 (1)

Here E and L are constants of the motion (specific energy and specific angular
momentum respectively), M is the mass of the black hole (constant), and 7
and 7 mare radial and time coordinates.

(a) From this somewhat odd effective potential problem, give the conditions
for the particle to be in circular orbit about the black hole.

(b) Solve these conditions for circular orbits. Do so by expressing the values
that E and I must have in order that the orbit be circular at radius r (i.e.,
give B = E(r) and L = L{r)).

(c) Sketch the effective potential. Are the circular orbits guaranteed to be
stable or not?

(CM-2):

A particle of mass m is constrained to move on the surface of a sphere of

radius R(¢). The radius of the sphere is in general a function of time (ie.,

dR/dt = R # 0) and is to be assumed as given and not a dynamical degree

of freedom. The motion on the constraint surface can be described using the

polar coordinates § and ¢. Assume that the potential energy V' (6, ¢) vanishes.

(a) Write down the energy and construct the Lagrangian L for two-dimensional
motion on the constraint surface. Find the Euler-Lagrange equations of mo-

tion.

19



(b) Given the functional dependence of L, what constants of the motion will
exist? '

{¢) Construct the Hamiltonian H. Is H equal to the energy E7 Is H con-
served? '

(d) For motion initially confined to the equator (8 = m/2, § = 0), calculate
how the velocity R¢ behaves in the presence of expansion.

(CM-3):
Spheres of radius r are projected at another (infnitely heavy) sphere of radius
R > r and scatter elastically.
(a) Find the dependence of the scattering angle # on the impact parameter
b.
(b) Calculate the differential cross section o(8).
(c) What is the total cross section?

(CM-4):
A particle moves in the plane according to the Lagrangian

L = m#y - a’zy ,

where a is & constant.

(a) Write down the equations of motion. What physical system do they
represent?

(b) Show that L is invariant under the transformations

¥ =cz, y=e.

(¢) Use Noether’s theorem to find the corresponding conserved quantity €.
(Recall that Noether’s theorem deals with small ) What is the physical
meaning of ()7

(CM-5):
Consider a transformation of coordinates in phase space:

. p—a
- P e
Q= sing, COS ¢

20



where a is a constant.

(a) Use Poisson brackets to show that the transformation is canonical.

(b) Find a generating function F(g, P) for the transformation.

(¢} Suppose the Hamiltonian is H = 1/2(¢* +p?) (an oscillator) and take the
constant @ above to be zero. Find the new Hamiltonian K(Q, P) and write
down Hamilton’s equations in the new variables.

21



Spring 20056 Qualifying Exam

{SM-1):

Derive the following Maxwell equations:
(g = (%), (85)s = (Z5)p (Fo)v = (58)r
and
(%)p = W(%)T; TdS = CydT +T(g—;)vdv
and

(SM-2):
Congider a gas contained in volume V, at temperature 7. The gas is com-
posed of N distinguishable particles of zero rest mass, so that energy E and
momentum p of the particle are related by F = pe. The number of single-
particle energy states in the range p to (p+dp) is 9"“—‘;&?352. Find the equation
of state and the internal energy of the gas and compare with an ordinary gas.

(SM-3):

100 weakly interacting spinless particles, each with the mass of electron, are
identical in appearance but obey classical statistics. They are confined in a
cubical box which is 107® cm on the edge. Each particle undergoes a potential
interaction with the box which is of two different sorts. One is attractive and
leads to a bound state with the energy —~1eV which is well localized near
the center of the box. The other interaction is a strong repulsion which
prevents the particle from escaping through the walls of the box. Find at
what temperature the pressure in the box is latm.

(SM-4}:

22



A solid contains N mutually noninteracting nuclei of spin 1. Each nucleus
can therefore be in any of three quantum states labeled by the quantum
number m, where m = 0, £1. Because of electric interactions with internal
fields in the solid, & nucleus in the state m = =1 has the same energy ¢ > 0,
while its energy in the state m = ( is zero.

Derive an expression for the entropy of the N nuclei as a function of the
temperature T, and an expression for the heat capacity in the limit % < 1.

{SM-5}:
If a magnetic field H is applied to & gas of uncharged particles having spin %
and magnetic moment y, and obeying Fermi-Dirac statistics, the lining up of
the spins produces a magnetic moment/volume. Set up general expressions
for the magnetic moment/volume at arbitrary T and H. Then for low enough
temperatures, determine the magnetic susceptibility of the gas in the limit
of zero magnetic field, correct to terms of order T?. Note the integral:

e ()
sle)

(BE~& kT +1

[00 VEdE 2 £/
o expl 3
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Spring 2005 Qualifying Exam

(QM-1):
The dispersion of an observable A in a quantum state |o > is defined as
< (AA) >=< {A— < A >)* >, where < A >=< a|A|a > is the expectation
value.
(a) Prove the Schwarz inequality < oo >< 8|8 > > |<ald > %
(b) Show that the expectation value of a Hermitian operator is real and that
of an anti-Hermitian operator is purely imaginary;
(c) Prove the uncertainty relationship < (AA)® >< (AB)? > > | <
[A, B] > |?/4 for any pair of observables A and B.

(QM-2):
An electron moves in the presence of a uniform magnetic field in the z-
direction (B = BZ).
(a) Evaluate the commutator [IL;, IT,], where II; = p; — eA;/c and A is the
vector potential associated with the magnetic field.
(b) By comparing the Hamiltonian with that of a harmonic oscillator obtain
the exact energy eigenvalues.

(QM-3):
Consider an ensemble of non-interacting particles in a two-dimensional isotropic
harmonic oscillator potential. The particles are known to be in the states
associated with the lowest three energy levels with equal probabilities.
(a) How many distinct states are there?
(b) Write down the density operator in terms of Hamiltonian eigenkets.
(¢} Calculate the ensemble average of 7% = 2% + ¢,

(QM-4):
Derive the dipole-dipole magnetic interaction energy of a proton and an an-
tiproton at a fixed distance a, in eigenstates of total spin, in terms of the
proton magnetic moment uy. Two magnetic dipoles have the interaction

24



energy

(QM-5):
Use the variational principle to estimate the ground-state energy of a particle
in the potential

V=ccforz<0

Ve=cxforz>0

Take xe™% as the trial function.

25



Spring 2005 Qualifying Exam

(EM-1):
1. a) Suppose that you found a magnetic monopole. How would you modify
Maxwells equations {for free space) and the Lorentz force law to accommo-
date them? b) If the magnetic field is constant and uniform, show that the
vector potential can be written as A = -1/2(r x B). What gauge have you
chosen for this vector potential?

(EM-2):
A long straight wire carrying current I is placed a distance a above a semi-
infinite magnetic medium of permeability p. Calculate the force per unit
length acting on the wire; be sure to specify the direction of the force.

(EM-3):
Calculate the capacity C of a spherical capacitor of inner radius R; and outer
radius Ry, which is filled with a dielectric varying as

€= €y + €1 CO8% 0

where 6 is the polar angle.

26



(EM-4):
Two parallel conducting plates are a distance 2b apart; one is at potential
V, while the other is held at V. At z = 0, there is a grounded conducting
plate, perpendicular to the other two and insulated from them. Caleulate the
electrostatic potential f(x,z) for the enclosed volume by (perhaps) working
through the following steps:
a) Write down the potential f0(x) for large z.
b) Define f1{x,2) = f(x,7) - f0(x) and write down the differential equation for
f1(x,2) and its boundary conditions.
¢) Calculate f1(x,z) by using an appropriate series of orthogonal functions,
and finally find f(x,2).

{EM-5):
Suppose that the electrostatic potential in empty space were governed by the
equation
Vi —me =0

with m being a positive constant.

a) Find the solution of this equation in rectangular coordinates. b) Show
that the solutions to this equation are unique. ¢) What is the appropriate
solution for the situation shown below:

27



Winter 2004 Qualifying Exam

(EM-1):

Using the four-dimensional form of Green’s theorem, solve the inhomoge-
neous wave equations

—4
DQAM = --*E"?EJM

(a) Show that for a localized charge-current distribution the 4-vector poten-
tial is
_ 1 a8
Aulz) = m:/ R? @5
where R* = (33’ - é)'u(fl: - &)#’7 Ty = (93?%3, Zt) and d4§ = d€1d€2d£3d£4~
(b) From the definition of the field strengths F,, show that

_ 2 (J X Ry
FMVW?TC./ R @

where {(J x R),, = J, R, — JuR,.

(EM-2):
A rectangular wave guide (0 < 7 < a, 0 <y < b) has felds:
E = mijgw—ﬁ—‘m sin{rz/a)sinlkz — wt),

H = Hy[&(ka/)sin(rz/a) sin(kz ~ wt) + 2 cos(wz/a) cos(kz — wt)],

with: %, ¥, % being unit vectors; z,y, z being coordinate distances, and

k? = eu? — (7/a)?, i.e. a TEp mode,

(a) Find the surface charge densities on the conducting walls.

{b) Find the surface current densities on the conducting walls.

(¢) Find the time-averaged Poynting vector, < S >, and its space-average,
<< 8§ »>, across the wave guide cross-section.

28



(EM-3):

Consider an astrophysical region like a giant radio lobe associated with an ac-
tive galaxy. In this volume of space there are relativistic electrons of Lorentz
factor «y orbiting in a weak magnetic field. For simplicity, assume that the
magnetic field B is uniform and that the orbits are planar and circular.

(a) Use the covariant Lorentz force equation to determine the position vector
#(t) and the velocity of the 7(t) of an electron. Using the covariant expres-
sion of Larmor's formula for the electric dipole power, or any other means,
derive the expression for the total synchrotron power Feynen.

(b) How does the net synchrotron power depend upon the energy density up
of the magnetic field?

Let the cosmic microwave background radiation have energy density Ucmb
and take the average CMB photon energy to be hD.

(¢) Soft CMB photons will inverse Compton (IC) scatter from the relativistic
electrons, creating high energy gamma rays and degrading the energy of the
electrons. Give an order of magnitude estimate of the IC power FPrc.

(d) How does the inverse Compton power depend upon the energy density
Uemb OF the microwave background?

(EM-4):

Consider two charged particles that either scatter off of each other or orbit
each other in response to their electrostatic interaction. Let the first particle
have charge g; and mass m; while the second particle has charge g2 and mass
meg. Take the particles to have position vectors 71 and 75 with respect to their
barycenter (center of mass).

(a) Find the electrostatic force on each particle (assume the motion is non-
relativistic) and set up the two vector equations of motion (differential equa-
tions).

(b) Obtain an expression for the net instantaneous radiated power in the
dipole approximation valid at any point on the orbit. Hint: you need not
solve the equations of motion.

(¢} Show how the radiated power depends upon the charge-to-mass ratios
of the two particles. Under what circumstances would two charge particles
interact but emit no radiation in the dipole approximation? Explain,
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(EM-5):
One of the dominant decay channels for the W vector boson is
Wt — et + v,

which occurs 10.72 percent of the time. Assume that the W boson is at rest
when it decays. Assume that the neutrino mass is zero.

(a) In terms of the W mass my and the electron mass m., give expressions
for the energy Fi. and the Lorentz factor v of the electron and the energy
En of the neutrino.

(b) Given the values my = 80.42 GeV (note GeV!} and m. = 0.511 MeV,
compute the values of Ee, v and E,.

(¢) What is the difference 1 — # = 1 — v/c for the electron?
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Winter 2004 Qualifying Exam

(QM-1):

Show that the partial wave decomposition of the scattering amplitude fk(iz')
for scattering from initial momentum k to final momentum k'

=

8

FlK) = (21 + 1) ¥ sin 6,(k) P (k.K)

x|

(=2

is consistent with the optical theorem

g = %Imfk(lz)

(QM-2):

Let two spin-half particles 1 and 2 have total spin S = 8; 4+ S; and take
as a basis for the 4-dimensional direct product spin space eigenvectors of
Si, and Sop (wog, aife, Bioe, Biffz),  where o, 0 have eigenvalues
S, = +1/2, ~1/2 respectively.

Work out the 4 x4 matrix S2 in this basis and show by explicit diagonalization
that

S2(ay By + Brovg) = 20 (on B + Brae), S (cuflz — Prawg) =0

(QM-3):

For a particle in a one-dimensional harmonic oscillator, A = P2/om +
mw?z2/2, & coherent state |A > is defined as an eigenstate of the annihilation
operator 4, &]A >= AlA >.

(a) Using the coherent state as a variational state, estimate the ground state
energy of the particle in the potential V(x) = (mw?/2)(z® + /2k/(mw)z).
(b) Calculate exactly the ground state energy in this potential.
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(QM-4):

A hydrogen atom in its ground state [nim >= |100 > is subjected to a time
dependent (but spatially uniform) electric field, E(t) = Eoe t7, t >0,
along the z-direction.

(a) Using the first order time dependent perturbation theory and symmetry
considerations, show that there is only one non-zero transition probability
between the ground state and the first four excited states: 200 >,[211 >
1210 >,]21 — 1 >,

(b) Calculate the non-zero transition probability (You do not need to evaluate
any integrals explicitly.)

(QM-5):

For a time-independent Hamiltonian H and a trial wave function ¥, we define
the function A
Jle M HIT >
< Ple= MY >

(a) Prove that F(0) > Ep when Hipy = FEpify and Engo > Ey (this is, in
fact, a well known result).

{b) Also, prove that limny.c F(A) = Ey

(one can, in fact, show that dF/dA is non-positive for all A > 0).
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Winter 2004 Qualifying Exam

(Astro-1):

Curve of growth:

A curve of growth is log{wy /) vs. log(ng/)), where n, is the abundance of
element z in a given stellear model atmosphere (defined by Tyrf, log g, and
chemical compesition.

1. Sketch a curve of growth qualitatively and quantify the three major
regimes of log(wx/)\) vs. log(ny/A). Cite the approximate slopes of each
regime.

2. Sketch the appearance of an absorption line profile as the abundances pass
through each of the regimes. (Intensity from 0 to 1, with 1 as the continuum
vs. A.)

3.0nce a line saturates a$ the line center, upon what does its residual inten-
sity depend?

4. How does microturbulence affect a curve of growth? How can you use
this behavior to estimate an appropriate value for the model atmosphere’s
microturbulence?

5. Compare the curves of growth for a dwaxf star and a giant star, assuming
identical Tesy, log g, and chemical abundances. Explain why they differ.

{Astro-2):

Supernovae distances:

A type 11 supernova is discovered to be near maximum light in a distant
galaxy. Its spectrum reveals essentially a blackbody spectrum with a number
of superposed emission lines from a few elements, and in differing ionization
states. At that time, V = 22.0 and B —V = -0.10.

1. How might the spectra be employed to estimate the surface temperature
of the expanding remnant? -

2. Suppose it is thereby determined that the temperature is 30,000K. As-
suming the colors can be well represented by the table of synthetic blackbody
colors, what is the color excess ("reddening”) for the supernova’

3. Model calculations predict that luminosity at this stage to be L =
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3 % 10°Le. If the Sun’s bolometric magnitude is +4.75, what is My for
the supernova?

4. Using the interstellar extinction law, what is the distance modulus,
(m — M)o, for the supernova? :

5. Why does an infinite temperature blackbody have a finite B — V color
index?

{Astro-3):

Convection:

By analogy with a perfect, non-degenerate gas, Chandrasekhar defined adi-
abatic exponents for a gas with non-negligible radiation pressure as I'y, I's,
and I'y, where:

dP dv
Mﬁ”“{"FlT/—"—-—O
P, I &,
P 1-1,T

dT dv
“f,“”l’"(rg—i)—{/_—-—o

for adiabatic changes of state.
1. Show that the condition for buoyant stability is:
L pdP _dp

I‘_l—lg?i? > dr
(Hint: The density of an element displaced by dr, adiabatically, is p* =
(7 + 6 Padiabasic: Coropare this to p(r + dr), which is just p(r) + (dp/dr)dr).
2. Explain why this condition implies that the temperature gradient in the
star must be less than the adiabatic gradient

(Dl < 15 e

{Hint: think of the pressure of a displaced blob compared to 8.
3. Show that this leads to the stability condition:

daTr 1.7 ,dp

(5)3#&&1‘ > (1 - “ﬁ;)};(g)star
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(remember that ¢ and &7 are both negative).

4. What happens to I'y, s, and T'; in a region where gas is partially jonized?
Are convections zones in a star more likely or less likely to be associated with
partial ionization zones?

(Astro-4}:

Equations of Stellar Structure:

Consider two stars with equal masses, but with radii that differ by a factor
of two. Assume both are in hydrostatic equilibrium (or at least quasi-static
equilibrium}.

1. Derive the differential equation for hydrostatic equilibrium.

2. Using dimensional analysis, compare the expected central pressures of the
two stars.

3. Assuming identical density profiles (with r) compare their central densi-
ties.

4. Assuming identical, non-degenerate core composition, compare their cen-
tral temperatures.

5. Suppose the energy given off is provided by nuclear reactions at a rate
of E = EopT*, compare their luminosities. Compare their expected surface
temperatures.

(Astro-b):

Opacity /SAHA

1. Write the SAHA equation and explain what it has to do with the opacities
in the Fig.1 appended below.

2. Explain why the opacities from each source (b-f, £-f, b-b, electron scatter-
ing) must be summed to get the effective opacities, but conductive opacities
must be added thus: £ = - 4 L

[ Hrad Reond
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Winter 2004 Qualifying Exam

(HEAstro-1):

A neutron star of mass M and radius R is surrounded by a thin stationary
accretion disk being fed mass at a rate ma. Consider a narrow annular sec-
tion of the disk of inner radius r and radial width dr. As mass crosses from
the outer radius to the inner radius of the annulus it gives up gravitational
potential energy. Assume the disk is in equilibrium and all of the released
energy is radiated from both the top and bottom surfaces of the disk.

(a) Give an expression for the local effective temperature of this annular sec-
tion of the disk.

(b} Take the neutron star mass to be M = 1.4 Mg (Mg = 1.989 x 10¥ g},
its radius to be R = 10% cm, and the inflow rate to be i = 107% Mg yr~l.
Compute the value of the temperature of the disk near where the disk meets
the surface of the star. (Ignore the additional energy release on the surface
of the star.}

(c) Given this temperature, the mean photon energy has what value in elec-
tron volts? The emitted radiation lies in what band?

(HEAstro-2):

A particular high-mass X~ray binary (HMXB)} is composed of an O type
main sequence star of mass Mo in orbit with a neutron star of mass My.
Accordingly Mx <« Mgp. The binary has an orbital period of P. Let the
radius of the neutron star be Ry. Furthermore, assume that the O star
emits a strong wind of total mass loss rate m,, and terminal velocity v,

(a) Give an expression (or expressions) that estimates the rate rac at which
mass is captured by and accreted onto the neutron star. What fraction of
the mass lost by the O star ends up being accreted?

(b) Give an expression (or expressions) for the accretion luminosity Lx.

(HEAstro-3):
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Consider a neutron star of mass M and radius R that is reasonably well
modeled by an n = 1 Newtonian polytrope, which has a density profile given
by

plr) = ,o,:E sinmr/R,
7

where p. is the central mass density. An n =1 polytrope implies that

p(r) = Kp(r)* = {pe/ 02)o{r)?,

where p. is the central pressure. Ignore all general relativistic effects.

(a) Integrate the mass distribution to show that the central density is

Pe = E_RE

.(b) Integrate the equation of hydrostatic equilibrium to find the gravitational
potential ®(r) inside the star and the pressure profile p(r).

(¢} As part of solving (b), it is necessary to determine p. and K. Express
these parameters in terms of M, R, and Newton’s constant G,

(d} Assume the neutron star has a mass M = 1.4 Mg and radius R = 11 km
(Mg = 1.989 x 10% g). The inner crust of nuclei and superfluid neutrons
gives way to the outer core of superfluid protons and neutrons at a density
of 2.0 x 10" g cm™2 (nuclear density). How far below the surface of the star
is this transition layer?

(HEAstro-4):

Consider a massive CO white dwarf composed of equal amounts of carbon
and oxygen by mass. Assume that the white dwarf has been slowly accreting
mags from a companion star and now has a mass of M = 1.25 Mg (Mg =
1.989 % 10%® g), a radius of R = 1.8 x 10® cm, and has reached the point of
instability. Asswme moreover that just as collapse begins the central density
reaches the point at which carbon burning is initiated. The binding energies
per nucleon of carbon, oxygen and iron are 7.6 MeV, 8.0 MeV, and 8.8 MeV,
respectively.

(Given the above information, make a set of energy estimates to determine the
fate of this star. Does it collapse to form a neutron star or does it explode?
Justify your answer.
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(HEAstro-5}):

In the inner core of a neutron star, densities may be high enough to allow
pions (77) to be in equilibrium with »n, p, and e”. In addition to beta
equilibrium

p+e = nly, Nn—opte -+l

the reaction
no-rptr

can oceur but has a high threshold because of the pion rest energy of m, =
139.6 MeV. Pions are bosons so their chemical potential at zero tempera-
ture is py = myc2, independent of density. (In fact, pions are speculated to
form a Bose-Einstein condensate in neutron stars.) The rest energies of the
proton, neutron, and electron are 938.3 MeV, 939.6 MeV, and 0.511 MeV,
respectively.

(a) Write down the three equations that must be satisfied in nuclear equilib-
rivm.

(b) Compute the values of the fermion relativistic factors ., zp, and =, at
the threshold for 7~ production. Give the ratio of neutron density to proton
density at pion threshold.
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Spring 2004 Qualifying Exam

{CM-1):

A particle of mass m moves in a plane under the action of a central force
flr) = —dV(r)/dr.

(a) Write down expressions for the angular momentum and energy in polar
coordinates.

(b) Use conservation of angular momentum and energy to obtain an equation
for the orbit ().

(¢) The orbit of the particle is a spiral of the form 7 = rpe’. What is the
dependence of the force f(r) on r?

(CM-2):

Fluid flow and the Liouville theorem: Consider the flow of all points
in Hamiltonian phase space corresponding to a system with N coordinates
and N conjugate momenta. Each trajectory corresponds to a different set of
intial conditions. Let p(g,p,t) be the density of points, which can vary over
phase space. [Here g and p are shorthand for all 2N ¢'s and p's.] Because no
trajectory can disappear, p must satisfy the continuity equation

opla.pt) g

ED [p(va:t) U(Q'np)t)] = 07

where ¥ is also a function of points on phase space and represents the velocity
of a given point in phase space.

(a) Show that if the system obeys Hamilton’s equation for some Hamiltonian
H, the divergence of the velocity field ¢ vanishes everywhere.

(b) Write down an expression for p(g, p, t), the total time derviative of the
density around a point as that point moves along its trajectory. Use the
continuity equation to show that the vanishing of the V - 7 implies that
o =0, i.e., that the density in a region doesn’t change as the region moves.
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(CM-3):

A bead of mass m slides down a parabolic wire that has a shape given by
y = b

(a) \%frite down the Lagrangian in the coordinates x and y.

(b) Obtain the equations of motion, incorporating the constraint relating =
and y via a Lagrange multiplier A. What is the physical meaning of A7

(¢) The bead is initially released from rest at a height yo. Find the value of
A when the particle is at the origin. [Hint: This is easiest if you make direct
use of energy conservation.

(CM-4):

The Earth is in equilibrivm between its internal pressure gradient and its own
gravitational field. The mass and radius of the Earth are M = 5.98 x 10°" g
and R = 6.38 % 108 cm. Newton's gravitational constant is G = 6.67 x 1078
dyne cm® g%, Assume that a seismic disturbance occurs at some point on
the Earth's surface.

(a) Give order of magnitude expressions, in terms of M, R, and (, for the
velocity v of seismic pressure waves and for the time T it takes for the pres-
sure wave to pass through the Earth and reach the surface on the opposite
side.

(b) Evaluate these expressions numerically and give order of magnitude es-
timates of v and T'.

(CM-5):

Consider the transformation from variables g and p to a new set of variables
@ and P given by

= Ag"cosp, P = Aq"sinp,

where A and n are constants.
(a) Use Poisson brackets to find what values of A and n are required in order
for the transformation to be canonical.
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Spring 2004 Qualifying Exam

(SM-1):

Show how a consideration of the appropriate partition functions leads to
Fermi-Dirac and Bose-Einstein statistics. By analogy, find also the distribu-
tion function f{e) resulting from "parastatistics”, in which no more than two
particles may occupy the same quantum state characterized by the energy
eigenvalue €.

(SM-2):

In a porous material an ideal gas of argon atoms {in the pores) is in equi-
libriam with argon atoms adsorbed on the internal surface (the surface of
the pores). Per unit volume of the porous material, there are p, sites at
which the atoms can be adsorbed, and when the are, their energy is —¢ per
one adsorbed atom. Assuming that the particles behave classically, show
that pue/p, = pXe/*2T. Here p, is the gas density, poq is the number of
atoms adsorbed per unit volume of the material, and A = h/v/2rmkgT is
the thermal wavelength of the argon atoms at temperature T,

(SM-3):

A harmonic one-dimensiona) oscillator has energy levels B, = hw(n + 1/2)
where w is the characteristic frequency and the quantum numbern = 0,1, ...,
Suppose that the oscillator is in thermal contact with a heat reservoir at tem-
perature T such that kT < Fiw.

(a) Find the ratio of the probability of the oscillator being in the first excited
state to the probability of its being in the ground state.

(b) Assuming that only the ground and the first excited states are appre-
ciably occupied, find the mean energy of the oscillator as a function of the
temperature T
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(SM-4):

In plasmas, a degenerate electron fluid is neutralized by a uniform positive
ion background of the same density. The Hartree-Fock internal energy of the
system at T = 0 is (kinetic energy plus exchange):

62 (k}FCLU)S 3 g 3
= 2an a2 [g(kFCLO) “%(kﬁ"aﬂ)}

where (kpag)® = 3n2a3N/V, N being the number of electrons, V' the volume,
and ap the Bohr radius,

Further, suppose that thermal effects can be neglected for the electrons while
the positively charged ion background can be described as an ideal gas.

(a) What is the pressure due to the electrons?

(b) What is the total pressure (due to both the electrons and ions) as a
faction of temperature T7

(c) At T — 0 the neutral electron-ion fluid can co-exist in two phases of
different densities. What are these densities?

(SM-5):

An ideal gas has a temperature-independent molar specific heat C, at con-
stant volume. Let v = C,/C, dencte the ratio of its specific heats. The gas
is thermally insulated and allowed to expand quasi-statically from an initial
volume V; at temperature 7; to a finite volume V7.

(a) Use the relation PV7 = const to find the final temperature T of the gas.
(b) Alternately, use the fact that entropy remains constant in this process to
find the final temperature 7.
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Spring 2004 Qualifying Exam

(EM-1):

A conducting sheet at zero potential fills the z — y plane. Sitting on the
sheet is a hemispherical sheil with inner radius a and outer radius b, centered
on the origin (see Fig.1). The shell has a permanent electric polarization P,
pointing in the z-direction. Find the electric potential for all z > 0.

(EM-2):

A ring of radius a has charge g uniforroly spread on it. The ring is surrounded
by a concentric sphere of radius b, held at zero potential. Find the potential
fora<r<b

(EM-3):

A quadrant of empty space (z > 0,y > 0 for all z) is bounded by two semi-
infinite perfectly conducting planes that intersect along the line z =y = 0.
The potential on the surfaces is held to V = 0. A charge g is located at the
position z =y = @, z = 0.

Find the direction and magnitude of the force on the charge.

(EM-4):
(a) If a magnetic field is due entirely to a localized distribution of permanent
magnetization, show that the integral taken over the entire space
[erBR =0
(b) The magnetic field between the pole pieces of a cyclotron is given by
B,(r, z) where r is the distance from the central axis (r? = 2 + 7). If | B,

is a decreasing function of r, show that the field lines bow outward, as shown
on Fig.2,
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(EM-5):

A thin uniform metal disc lies on an infinite conducting plane. A uniform
gravitational field is oriented normal to the plane. Initially the disc and
plane are uncharged; charge is slowly added. What value of charge density
is required to cause the disc to leave the plate?
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Spring 2004 Qualifying Exam

(QM-1):

Answer following questions briefly:

(a) List two differences between quantum mechanics and classical mechanics.
(b) What are the differences between Schrodinger and the Heisenberg pic-
tures.

(¢) What is the significance of the Bell’s inequality?

(d) Whait is the difference between a qubit and a bit? What makes quantum
computing superfast?

(e) When two physical operator A and B commute, what does it imply? If
they do not commute, what does it imply?

(QM-2):

A particle initially is in the first excited state of the infinite potential well:
V(z) = 0, for 0 < z < L, otherwise V(z) = co. At timet = 0, the left
potential wall suddenly moves from z = 0 to z = L.

(2) What is probability of finding the particle in the second excited state of
the new potential well?

{b) If the energy is measured, what is the probability that its value is the
same as that measured before the wall has moved?

(c) The answer found in b) is less than 1. Explain why this should be
expected.
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(QM-3):

Consider an ensemble of non-interacting spin 1/2 particles all of which has
the orbital angular momentum [ = 2.

{a) If the ensernble is random, write down the density operator matrix in the
basis [j,m >.

(b) If all particles are in the identical quantum state {j = 5/2,m = 3/2 >,
write down the density operator matrix in the basis i, s;my, m; >.

(c¢) 1 the two ensembles in a} and b) have the same number of particles and
are mixed together, and one measures the total angular momentum j, what
is the probability that j = 3/27

(QM-4):

A particle is in the ground state of a narrow one-dimensional potential well
approximated as U(x) = —ad(z).

At t = 0 the potential well starts moving at a speed v. Find the probability
that the particle remains in the ground state of the moving potential.

(QM-5):

Two particles with angular momenta L; = 1 and L, = 2 are in a state with
a total anular momentum L = 2 and its z-component L, = 1. Find the
possible values of the linear combination 201, — 3L,, of the z-components
of the particles’ individual momenta and the probabilities of obtaining such
values when measuring them in the above state. )

Also, compute the average < L = 2, L, = 112]312 3L L= 2,1, =1 >.

Hint: make use of the following Clebsh-Gordon coefficients: f;l”‘;;fz’f;m tmat

Ch2 = 1/v3, I3t = —1/v/2, and Cp17 = 1/V6.
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Spring 2003 Qualifying Exam

(CM-1):

A sphere of radius R is centered at the origin, which is also the center of a
force field F' = {a/r™)#, where « is & positive constant, n > 3, and 7 is the
unit outward normal vector.

(a) What is the cross section o(E) for a projectile of energy E to hit the
sphere? (It will help if you first make sure you understand the meaning of
this cross section. There is only one sensible definition.)

(b) Is your answer negative for some energies? If so, what does the negative
cross section signify?

(CM-2):

A ball is dropped from a vertical tower of height A in the northern hemisphere
and lands a distance d; to the east of the tower’s base. A second experiment
is done in which another ball is launched from the ground at the base of
the tower. The ball’s initial velocity is strictly vertical and sufficient for it
to reach a height equal to the tower before falling back down. What is the
distance dy from the base where the ball lands and to which side of the tower
does it land?

(CM-3):

A particle of mass m is constrained to move on the surface of a sphere, which
is in a uniform gravitational field of strength g. The radius of the sphere is a
given function of time R(¢) (i.e., R(t) is not a dynamical degree of freedom}.
(a) Choose coordinates and write down the Lagrangian.

(b) Find the canonical momenta and the Hamiltonian H.

(c) Is H equal to the energy E7 Explain.

(d) Is H conserved? Explain. If H # E, is E conserved?
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(CM-4):

A dynamical system consists of two degrees of freedom, z and y, in which
(small) oscillations occur. The Lagrangian for the system is given by

R P
L= L(zy,5,9) = 5(# + 97y = 5wi(a® +y’) + eay.

If the interaction term exy were absent, the system would consist of two un-
coupled oscillators that would both oscillate with frequency wy. The presence
of the interaction term couples the oscillators.

{a) Find the eigenfrequencies, w; and ws. Determine the time dependence of
the normal modes of oscillation, & (t) and & (¢}

(b} Using the relationship between the normal coordinates (£:, §2) and the
original coordinates (z,y), obtain the time dependences of z(t) and y(¢).

(CM-5):

A particle of mass m moves in two dimensions under the influence of a po-
tential given in Cartesian coordinates by

1 I3
V= "'2“.1{!1%'2 -+ Ekgyz.

(a) Write down the Lagrangian for the system and find the conjugate mo-
menta.

(b) Obtain the Hamiltonian for the system.

(¢) Solve completely for the motion of the particle using the Hamilton-Jacobi
approach. Determine the conserved quantities and their physical significance.
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Spring 2003 Qualifying Exam

(SM-1):

The average energy of a system in thermal equilibrivm is < £ >.

(a) Prove that the mean square deviation of the energy is given by

< (E— < E >)? »= kgT?C,, where C, is the constant volume heat capacity
of the system.

(b) Show that for a macroscopic system this deviation is negligible compared
to the total energy of the system.

(SM-2):

Consider a group of 10° adsorption sites for Oy molecules. Each adsorption
site can accommodate at most one Oy molecule with adsorption energy €4 =
~0.010¢V. Now, turn on a magnetic field B = 100 Tesla and place the
adsorption sites in diffusive and thermal contact with an Op gas at 300 K
with exp(t/kgT) = 107° where p is the chemical potential. The Op molecule
has spin § == 1 with magnetic moment up = 5.788 x 107%eV /Tesla).
Calculate the average number of sites which are occupied by Os.

(SM-3):

How would the black-body radiation (BB) be changed if the photons obeyed
the Fermi-Dirac (FD) statistics? Specifically:

(a) What is the would-be Planck radiation formula?

(b) How does the heat capacity C, depend on temperature?

Next, consider our Universe pervaded by the 3K BB radiation. In a simple
view, this radiation arose from the adiabatic expansion of a much hotter
photon cloud which was produced during the Big Bang. Let us continue to
assume that the photons obey the FD statistics.

(c) If in the next 10'° years the volume of the Universe increases by a factor
of two, then what will be the temperature of the BB radiation?

(d) How much energy per unit volume is contained in this cloud of radiation?
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Estimate the result within an order of magnitude in J/m®.
Use: kp = 1.4 8J/K, h=10"%Js, and ¢ = 3 x 10°m/s.

Derive {not simply guess!} your results (e.g., start by considering a har-
monic oscillator with only two levels), but don’t do any complicated dimen-
sionless integrals.

(SM-4):

A cloud chamber contains water vapor at its equilibrium vapor pressure
P (Tp) corresponding to an absolute temperature Tp. Assume that

1) the water may be treated as an ideal gas; 2) the specific volume of water
may be neglected compared to that of vapor; 3) the latent heat [ of conden-
sation and v = C,/C, may be taken constant; I = 540cal/g, v = 3/2.

(a) Calculate the equilibrium vapor pressure Po(7h) as a function of the ab-
solute temperature T

(b) The water vaport is expanded until the temperature is T, T < Tp. As-
sume the vapor is now supersaturated. If a small number of droplets of water
is formed, what is the equilibrium radius of these droplets?

(SM-5):

(a) Calculate the grand partition function Z(z,V,T) for a two-dimensional
ideal Bose gas and obtain the limit

lim log_Z(z,V,T}

Vo vV
where V = L? is the area available to the system.
(b) Find the average number of particles per unit area as a function of z and
T
(¢) Show that there is no Bose-Einstein condensation for a two-dimensional
ideal Bose gas.
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(EM-1):

A line charge of length 2d with a total charge @ has a linear density varying as
(d? ~ 2*) where z is the distance from the midpoint. A grounded, conducting,
spherical shell of inner radius b > d is centered at the midpoint of the line
charge.

Find the potential ®(F) everywhere inside the spherical shell as an expansion
in terms of the Legendre polynomials.

(EM-2):

Consider a spherically symmetric potential due to a surface charge on a
sphere of radius o

Oy >a) = ?

b(r<a)= - Amegr

g .
deg/ar’

(a) What is the total charge on the surface of the sphere of radius a?
(b) A point dipole in vacuum has the potential

If the dipole is aligned along the +2 axis and enclosed is a cavity of radius
R within an infinite grounded conductor,

1) find ®,:(F) for r < R by solving the Laplace equation in spherical coordi-
nates;

2) find ¢(#) on the cavity surface.

(EM-3):
(a) Write down the Maxwell's equations in vacuum, with sources, in a differ-

ential form. .
(b) Show that in terms of the scalar potential ® and the vector potential 4,
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two of these equations are automatically satisfied.

(¢) Describe the gauge invariance of the two remaining equations for ® and
A

(d} Show that even after imposing the Coulomb gauge these equations are
still invariant under some residual gauge transformations.

(EM-4):

Laplace’s equation in cylindrical coordinates is

a2<1>+ acb L A
Bp* 23¢2 822

where r = 1/p? + 22,
(a) Solve for ®(p, ¢, z) by using a separation of variables. Find the three ordi-
nary differential equations, solve them explicitly for the ¢- and z-dependence,
and discuss the natural solutions of the radial equation.
(b) Find ®(p, ¢, #) inside the cylinder of radius a and height L that satisfles
the following boundary conditions:

P(p, bz = 0) = 0 for 0 < p < & @(pm(},gb,z):(}for()ﬁzgf;;
&(p,p,z=L)=V{p,¢)for0<p<a

(EM-5):

Compute the total magnetic field induced by an external field ﬁext w By
inside a uniformly magnetized sphere of radius R by introducing a " magnetic
scalar potential” H = —VW (this is possibie because V x H=J=0)and
using the separation of variables by analogy with the electrostatic Poisson
equation.
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Spring 2003 Qualifying Exam

(QM-1):

A coherent state of a one-dimensional simple harmonic oscillator is defined
as the eigenstate of the annihilation operator a~. Prove that

|A >= exp(—1A]?/2) exp{Aa™)|0 >

is & normalized coherent state with eigenvalue A

(QM-2):

A composite particle is made of two spin 1 particles.

(a) What are the possible values of the total spin of the composite?

(b) If the composite is in the state |§ = 2,5, = 0 > and one measures S1s,
what are its possible values and the associated probabilities?

(QM-3):

A particle initially is in the ground state of the infinite potential well

V(z) = 0 for 0 < 2 < L; otherwise V() = oco.

At time ¢ = (, the right potential wall suddenly moves from & = L to x = 2.
(a) What is the probability of finding the particle in the ground and the first
excited state of the new potential well?

(b) If one measures the position of the particle, what is its expectation value
at t = 07 What is the expectation value at ¢ = co?

(QM-4):

An electron spin is placed in a magnetic fleld B = Bs. At ¢ =0 the spin is
in the state with a definite value +7/2 of the operator 5.

Find the (time-dependent) average value < S.{t) > at t > 0 and the proba-
bilities Py(t) of measuring S, and obtaining +%/2 and ~h/2, respectively.
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(QM-5):
Derive the uncertainty relation
CoOH > ji_| <p>|
2m
where o, and ¢y are the variances of the coordinate operator £ and the

Hamiltonian H = $%/2m + V(z).
What does this relation turn into in the case of a stationary state?
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Winter 2003 Qualifying Exam

(QM-1):

Consider spin-1/2 electrons in the one-dimensional infinite potential well
(V(z) =0 if |z| < L/2 and V(z) = oo if |z] > L/2).

1. If there is only one electron, what are the ground state energy and its
degeneracy? Under parity symmetry operation, is the ground state even or
odd?

9. If there are two non-interacting electrons, what are the energy, degener-,
acy, and parity of the ground state?

3. If there are two electrons with the interaction V' = —JS; - Sz where J > 0
is much larger than the energy level spacing of the potential well, then what
are the energy, degeneracy, and parity of the ground state?

(QM-2):

Consider a particle in an anisotropic two-dimensional harmonic potential
V(z,y) = dm({wiz? + wiy?) where wy < wy < Zwy.

A) What is the ground, 1st, 2nd excited state energy?

BlAt time ¢t = 0 the particle is in the ground state and the perturbation
V(t) = ze 7 is turn on. Using the time dependent perturbation theory,
calculate the probability that the particle will be in the first excited state at
time ¢ — 00.

(QM-3):

Consider elastic scattering of a particle of mass mn which is initially in a plane
wave state with the wave vector k off of a spherically symmetric potential
V(r) = —V/r for a < r < band V(r) = 0 elsewhere. Using the first order
Born approximation, calculate the differential scattering cross section as a
function of the angle @ between the incoming and the outgoing plane waves.
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(QM-4):

Let ¥ be the variational trial function for the ground state ¥, of a system
with non-degenerate energy eigenvalues. Assume that ¥ and ¥q are real,
normalized to unity, and that [ UWdr is positive.

Show that

<H>-Eyup 1<H>-F

1
- —~WolPdr <1 — (1~ R
2/]‘1’ of'dr <1 —( B, — By 5 Fy ~ By

where F, and F; are the exact energies of the ground and first excited states,
and < H > is the expectation value of the Hamiltonian in the state W.

(QM-5):

A particle is in the ground state of a one-dimensional é-functional potential
U(z) = —ab(z). At t =0 the potential starts moving at a speed v.

Find the probability that the particle remains in the ground state of the
moving potential.
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Winter 2003 Qualifying Exam

(EM-1}):

Show how the residual gauge symmetry for the potentials A, = (f_f, i®) which
satisfy the Lorentz condition can be used to prove that in four space-time
dimensions the photon has only two physical degrees of freedom.

(EM-2):

Show that it is possible for electromagnetic waves to be propagated in a
hollow metal pipe of rectangular cross section with perfectly conducting walls.
What are the phase and group velocities?

Show that there is a cutoff frequency below which no waves are propagated.

(EM-3):

Using conservation of energy and momentum for a system of charged par-
ticles and electromagnetic fields (but without invoking special relativity),
derive the expression for the 3-vector which represents the energy fHow of
the electromagnetic field {Poynting vector). Then discuss how this 3-vector
becomes part of a covarlant 4-vector in a relativistic treatment.

(EM-4):

If neutrons from a cosmic ray interaction one light-year from Earth were to
reach here with a probability 1/e or greater, what must their minimum en-
ergy be?

If they decay, what is the maximum angle to the flight path at which their
decay electrons could be produced?

Hint: Neutron decays n — p + e~ + V.. The rest lifetime is 7, = 880
seconds. Use the masses M, = 939.6MeV, M, = 938.3MeV, M, = 0.5MeV,
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and My = 0.

{(EM-5):

Find time dependence & (%) of the energy of a relativistic charge of mass m
rotating in a constant uniform magnetic field B due to electromagnetic radi-
ation.

Hint: apply the so-called Lienard’s generalization of the (non-relativistic)

Larmor formula for the total radiation power in the case of the perpendicular
& and 4.
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Winter 2003 Qualifying Exam

(HEAstro-1):

The giant radio lobes associated with radio galaxies like Cyg A and Her
A are observed because of synchrotron emission of relativistic electrons in
a magnetic field. The radio flux, when combined with inferred distance of
the galaxy, allows us to compute the total synchrotron luminosity L. The
synchrotron emission depends upon the strength of the magnetic field B, the
total number of relativistic electrons N,, and their Lorentz factor v. Assume
that the total energy Fp in the radio lobe is the sum of the relativistic
electron energy E. and the magnetic energy Fp. The observed synchrotron
flux from Her A, for example, implies a minimum total energy in the lobe of
Ep ~ 10% ergs.

Assume that v > 1 and let the volume of the radio lobe be V.

1. Derive the expression for the total synchrotron luminosity L.

2. Express the luminosity in terms of the magnetic energy density and the
relativistic electron energy density.

3. Obtain the condition for minimum total energy in the lobe based on fixed
synchrotron luminosity and Lorentz factor .

(HEAstro-2):

Consider the degenerate electron equation of state in the relativistic limit
(hint: ¢(z) = «?/127%). Assume that a star with this equation of state
(nearing the Chandrasekhar mass) has . = 2.

1. Work out the effective polytropic relationship between pressure and mass
density. That is, compute the X and v that give the correct limiting rela-
tionship p = Kp".

2. Using dimensional analysis, express the pressure and mass density in terms
of the star’s mass M and radius R.

3. Using parts (1) and (2) above, derive an approximate expression for the
Chandrasekhar mass M, in terms of h, ¢, G, and m,. Compute the numerical
value of this approximation.

69



(HEAstro-3):

Using dimensional analysis (or self-similarity) find the Sedov-Taylor type
solution for a cylindrical blast wave. Assume that a large amount of energy
per unit length, o = Fr/L, is injected instantaneously along an infinite line
and that a shock wave expands into a quiescent medium of mass density po.
1.Determine how the radius R, velocity v, and pressure p of the cylindrical
shock scale with time.

9. If the quiescent medium has a pressure py, determine the radius at which
the self-similar solution (or simple dimensional analysis) breaks down.

(HEAstro-4):

Consider a stationary, thin accretion disk surrounding a compact star. You
may assume that the disk thickness is proportional to radius, A(r) = ar, with
o < 1. Likewise, you may assume that the inspiral of gas is gradual, with
the magnitude of the radial velocity being a small fraction of the azimuthal
(orbital) velocity: v, = aug. Assume that energy is radiated away locally
from the surface of the disk just as fast as it is released. Assume local black
body emission from each spot on the disk.

1. Derive the dependence between effective temperature Teg and radius r
(i.e., determine the temperature profile of the disk). .

(HEAstro-5}:

Say you have a radio lobe that is inflated with relativistic electrons that are
emitting synchrotron radiation. Assume there is no active injection of fresh
relativistic electrons and there is no additional acceleration occurring. The
electrons are merely aging because of their radiative losses. Take the mag-
netic fleld to be of uniform strength B.

1. Using the expression for total synchrotron power, calculate the time de-
pendence of the energy of electrons whose initial energy is Fy > MeC*

9. Assuming that the relativistic electrons have a spectrum No(E) which ini-
tially extends to infinite energy, define a “cutofi” energy for these particles
as a function of time.
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3. For synchrotron radiation, the critical frequency ves, where the spectrum
of radiation emitted by an electron of energy E peaks, is given by

Verig = CBE2>

where C' = 3¢/4mm3c® is a constant. Use this information to define a “cutof”
frequency of the radio lobe containing aged relativistic electrons.
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Spring 2002 Qualifying Exam

(CM-1):
Using the Hamilton-Jacobl method, solve the probiem of the motion of a
point particle of mass m that is under the influence of a uniform vertical
gravitational field and is confined to a vertical plane. Let z be the horizontal
coordinate and y be the vertical coordinate. Assume that the particle is fired
off at time t = 0 from the origin, z = 0 and y = 0, with an initial velocity @
that makes an angle o with respect to the horizontal.
(1) Solve the Hamilton-Jacobi equation for the principal function S and
characteristic function W. Obtain the constants of integration and evaluate
them in terms of the initial values given above.
(2) Find both the trajectory of the projectile y(z} and the time dependence
of both of its Cartesian coordinates (i.e., give (¢} and y(t)).

(CM-2):

Consider the motion of a particle of mass m, under the influence of gravity,
that is constrained to move without friction on the surface of a paraboloid
of revolution (i.e., a parabolic bowl). The paraboloid lies open upward with
a shape given by .

2

y= Ea”r ’

where y is the vertical height and r is the cylindrical radial distance from the
axis of symmetry. Let ¢ be the angular coordinate.
(1) Write down the Lagrangian describing motion on the surface and deter-
mine its symmetries. Compute the conjugate momenta.
(2) Obtain the energy equation for radial motion and the effective potential.
Write down the equation that determines the turning points of radial motion.
Show how many real solutions this equation has.
(3) Obtain the conditions for circular motion within the bowl. Derive the
physical properties of the circular orbit (energy, angular momentum, period,
etc) whose radius is some ro.

{CM-3):
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Consider the longitudinal oscillations of two identical masses (m) that are
held between two walls by three identical springs (k). Working from first
principles:

(1) Find the Lagrangian and Lagrange’s equations.

(2) Obtain the eigenfrequencies and eigenvectors, Sketch the motions.

(3) Obtain the normal coordinates and diagonalize the Lagrangian.

(CM-4):
Let I = 7 x 7 be the angular momentum vector. Its components are

Ly = yps — 2py, Ly = 2pz — zps, Ly == xpy = YDa.

(1) Compute all combinations of the Poisson brackets [L;, L;]. (2) Using the
previous result, calculate the brackets [L;, L?].

(CM-5}:
Consider the transformation

Q=+ee® —p2 P =cos (pe?).

Determine whether or not this transformation is canonical.
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Spring 2002 Qualifying Exam

(8M-1):
The average energy of a system in thermal equilibrium is < £ >. Prove that
the mean square deviation of the energy is given by the formula
< (E— < B >)? >= kT?C, where C, is the heat capacity of the entire
system at constant volume. Use this result to show that the energy of a
macroscopic system may ordinarily be considered constant when the system
is in thermal equilibrium.

(SM-2):
Calculate the grand partition function for a system of N non-interacting
guantum mechanical harmonic oscillators, all of which have the same natural
frequency wy. Do this for the following two cases:
(a} Boltzmann statistics;
(b) Bose statistics.

(SM-3):
Consider a lattice of N atoms of spin 1/2 described by quantum mechanical
operators & which form s triplet of the Pauli matrices. The Heisenberg
model of ferromagnet has the Hamiltonian

N
Hy= = 6 - 300k
i > il

where < 17 > denotes nearest-neighbor pairs, k is & uniform magnetic field,
and €, ;¢ > 0. Another model, the Ising one, has the Hamiltonian

N
H{ = —€ Z stj "—,LLZS?;hz
geel

<if>

where S; = 1 are the Ising spins and h, is the z-component of R. Use the
variational principle to prove that, for a given temperature T, the free energy
of the Heisenberg model is not greater than that of the Ising model.

(SM-4):
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Two vessels, A and B, contain an ideal gas of N and 2/N molecules, respec-
tively. Initially, the vessels are thermally isolated from each other and have
temperatures 74 and Tg. The vessels are now brought into thermal contact.
Find the change in entropy of the entire system after the new equilibrium is
established.

(SM-5}:

Consider a lattice with N, {Avogadro number) atoms. The solid circles

represent the normal positions of the atoms whereas the open circles represent

the positions of interstitial defects. Both the numbers of normal and defect

positions are N,. Assume that is costs energy U/ to move an atom from a

normal to a defect position. Find the number of occupied defect sites n (this

is also a huge number (n >> 1) even when it is only a small fraction of Naj
at temperature T in the limit n < N4. (Ignore all the other effects such as

phonons, etc.).
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Spring 2002 Qualifying Exam

(EM-1):
A charge g is situated a distance d away from the semispace (z < 0) filled
with uniform linear dielectric material of susceptibility x.. Use the method
of images to find the total charge induced on the surface of the dielectric
medium and the force acting on the charge ¢.

(EM-2):
Find the electric dispiacement ﬁ, the electric field ﬁ, and the electric polar-
ization P due to a point charge ¢ in a linear dielectric medium.
Find the energy density and compare it to the energy density of & point
charge in vacuum.

(EM-3):

Find the potential ﬁ(:ﬁ'} due to a magnetic dipole at the origin by ex-
panding 1/|% — #'| as a Taylor series in the solution of the Poisson equation
V2A = —upd for a general localized steady current density J(Z), in Coulomb
gauge.

(EM-4):
Starting with the differential expression
4B = TdixZ
c lzf®

for the magnetic induction produced by an increment [ dl of current, show
explicitly that for a closed loop carrying a current I the magnetic induction
at an obhservation point P is

B=-1%0

c
where 2 is the solid angle subtended by the loop at the point P.
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(EM-5):
A coaxial cable consists of two conducting cylindrical tubes, separated by
linear insulating material of magnetic susceptibility xm. The current I which
is flowing down the tubes in the opposite directions is uniformly distributed
over the tubes’ surfaces.
Find the magnetic field B(r), magnetization M(r}, and the bound currents
Ju{(r) in the region between the tubes, and K; on the tubes’ surfaces.
Compute the energy (per unit length) stored in the magnetic field.
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Spring 2002 Qualifying Exam

(QM-1):
Consider a potential V(z) = 0 for z > a, V(z) = —Vs for 0 < z < a, and
V{z) = oo for z < 0.
Show that for > a the positive energy solutions of the Schroedinger equa-
tion have the form exp{ikz + 2i8) — exp(—tkx}. -
Calculate the scattering coefficient |1 — exp(2i8)|* and show that it exhibits
maxima {resonances) at certain discrete energies if the potential is suffciently
- deep and broad.

(QM-2):
A rigid body, with mass M and moment of inertia / (along the z-axis) is
constrained to rotate around the z-axis but is free to translate parallel to it.
(1) Write the time-dependent Schroedinger equation for this system,
(2) State the boundary conditions required for the wave functions.
(3) Solve (1) and (2) to explicitly obtain the stationary eigenstates and eigen-
energies of the system.
(4) Give examples of degenerate stationary states with definite parity (ie.,
also eigenstates of the parity operator r — —r), both of even and odd parity.
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(QM-3):
Consider an ensemble of composite particles. Each composite particle is
made of two particles with angular momentum J; = J; = 2.
(a) If the ensemble is in the pure state |J = 3, J, = 2 > and one measures
Jiz, what are the possible values and the associated probabilites?
(b) If the ensemble is random and one measures the total angular momentum
J, what are the possible values and the assoctated probabilites in this case?

(QM-4):
Coonsider a particle in a simple harmonic potential V(z) = mw®z?/2. At time
¢ = 0, the particle is known to be in a linear superposition of the first and
second excited states with equal probabilities.
(a) Evaluate the expectation values of z, p, and H at a time ¢,
(b) Show explicitly that the uncertainty relation does hold in this situation.

(QM-5):
Consider an electron with a magnetic moment M = 48 in a uniform external
magnetic fleld B = B2,
(a) At time t = 0 the observer measures S, and finds the value +Hk/2. Then
s/he immediately measures S,. What is the probability that the value will
be +7/27
(b) If a measurement of S, was done at the time ¢ = 0 and the value was
found to be +//2, then what are the possible values and the associated
probabilities of S, measured at a later time ¢ = T7
(c) A measurement of S, was done at the time ¢ = 0 and the value was
found to be +h/2, then S, was measured at the time ¢ = T, and, finally,
S, was measured at the time ¢ = 27", What are the possible values and the
associated probabilities of the final measurement?
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Winter 2002 Qualifying Exam

(EM-1}:
Show that it is possible for electromagnetic waves to be propagated in & hol-
low metal pipe of rectangular cross section with perfectly conducting walls.
What are the phase and group velocities? Show that there is a cutoff fre-
quency below which no waves are propagated.

(EM-2):
Inside a superconductor, instead of Ohm’s law (J = o'E), we assume London’s
equations to be valid for the current density J:

a
eV x (AJ) = —-B, 55()\3) =E

(in Caussian units), and regard A as a constant, Otherwise, Maxwell’s equa-
tions {with ¢ = 1,4 = 1) and the corresponding boundary conditions are
unchanged.
Consider an infinite superconducting slab of thickness 2d (—d < z < d), out-
side of which there is a given constant magnetic field parallel to the surface:

H,=H,=0, H,=H

(same value for z > d and z < —d), with B == D = 0 everywhere. If surface
currents and charges are absent, compute H and .J inside the slab.

(EM-3):
Find a parametric form of the trajectory of a charged particle with a charge
g in the perpendicular E and H fields of the same magnitude {in V/m and
T, respectively).

(EM-4):
A highly relativistic electron e~ (particle 1, rest mass m) collides with a
second electron e~ (particle 2, rest mass m) that is at rest in the lab frame
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prior to the collision. There is just enough energy in the collision (i.e., at
threshold) to produce a proton-antiproton pair {each with rest mass M),
The reaction is

e+ e — e 4+ e +pt+ P
(The two electrons, of course, also emerge from the collision.)
The rest energy of an electron is 0.511 MeV and the rest energy of & proton
is 938 MeV. Calculate the total energy in MeV that the relativistic elec-
tron must have in order to produce a proton-antiproton pair. Calculate the
Lorentz factor of the incident electron.

(EM-5):
In the electric dipole approximation, the angular distribution of radiated
power is given by
dP . C 2 -t ""* _ C 4 — i 2
d—Q_S_WRe[T n-(ExB)] ——8—7{.&: (7 x d) x 1%,
where d is the electric dipole moment, which has a harmonic time d(ipendence
[exp(—iwt)]. Here the wavenumber is & = w/c and wave vector is k = kil
Assume that a circularly-polarized plane wave, with complex electric field

E(t) = By &, e ™",

is incident upon an electron at rest. Here, &, = (& + i€y)/ V2. Let the
incident wave have a wave vector i;;m that points in the z direction. Use the
above radiation formula to calculate the Thomson scattering of this polarized
wave from a single electron. Without loss of generality, take the scattered
wave vector to lie in the (z, ) plane; i.e.,

E/k =1 = sinf &, + cosf &,

Compute the angular distribution of power %(9). Compute the differen-
tial cross section é‘%(ﬂ) {angular distribution of power divided by incident
Poynting flux).
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Winter 2002 Qualifying Iixam

(QM-1):
Consider an electron in a uniform magnetic field in the positive z-direction.
The result of & measurement has shown that the electron spin is along the
positive z-direction at ¢ = 0. For t > { compute guantum-mechanically the
probability for finding the electron in the state (a) S» = 1/2, {(b) Sy = —1/2,
and {(¢) 8, = 1/2.

(QM-2):
Consider the He atom.
{a) Write the electron Hamiltonian neglecting spin terms. :
(b) Assume that the electron-electron interaction can be treated as a pertur-
bation and write explicitly the unperturbed ground state wave function and
energy with the electrons treated as distinguishable, one with spin up and
the other down.
(¢) To first order in perturbation theory, use the results of (a) and (b) to set
up an expression for the ground state energy (do not attempt to compute
ith).

(QM-3):
Consider two identical particles with mass m and spin 3/2 in a one-dimensional
infinite potential well: V(z) = 0 for |z} < [ and V{z) = oo elsewhere.
(a) If there is no interaction between the particles, what is the ground state
energy and its degeneracy?
(b) What is the energy of the first excited state and its degeneracy?
{c) Do the ground state and the first excited state have definite parity under
parity operation?

(QM-4):
A particle in a one-dimensional simple harmonic oscillator of frequency w
is subjected to a time-dependent, spatially-uniform, force F(t) = Fycos(at)
at t = 0. Initially, the particle is in the first excited state. Use first order
time-dependent perturbation theory to calculate the probabilities of finding
the particle in various eigenstates {n > at time t.
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(QM-5):
Consider scattering of a plane wave with momentum k off a three-dimensional
S-function potential V(r) = (yA*/2m)d(r — R). Use the first order Born
approximation to calculate the total scattering cross section as a function of
the transferred momentum q.
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Winter 2002 Qualifying Exam

(Astro-1):
The equation of transfer involves the determination of the source function,
Jv
G e dE 1
Yk, Oy (1)

In turn, %, depends on the absorption coefficient per atom, a,, and o, is the
scattering coefficient.

(a) Write down 7,. Define your terms.

(b) Assume local thermodynamic equilibriur and detailed balance. De-
rive the relation between a,{low — up) and ¢, (low — up).

{Astro-2):
The attached figure (Fig.1) depicts the ratio of the specific intensity at various
emergent angles, 8, to that at the center of the solar disk. The ratio is
obvicusly a function of wavelength, A.

(a) What is imb darkening. Describe the cause gualitatively using a
sketch.

(b) What physical or atomic/molecular effects cause the dip shortward of
5000 A and the rise near 1.6 mu?

{¢) Using the gray atmosphere approximation, show how we may use such
information to estimate the mass absorption coefficient, sy

(Astro-3):
Given the simple scaling law between luminosity, L/Lg, mean molecular
weight, 1, the mean mass absorption coefficient, o, and stellar mass, M/Me,
describe qualitatively the differences in luminosity that arise from the follow-
ing two situations. In both cases, also describe physically why this happens.

(a) A star with the same chemical composition a3 the Sun but a mass
larger by 50%. What is the ratio of Juminosities? Why, physically, is there
such a profound difference?

(b) Consider a star with the same mass and heavy element mass fraction
as the Sun, but with a helium mass fraction, Y, that is 0.35 compared to the
value for the Sun of 0.28. You need not work out the quantitative numbers
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but show how they would be obtained. Explain physically why the helium
mass fraction affects stellar luminosity.
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(Astro-4):
Assume a stellar core in a very advanced state of evolution. Assume the
conditions are such that the temperature is 5 x 10° K. Pair production is
creating enormous numbers of neutrinos.

(a) What is the neutrino energy emission rate in ergs,/sec?

(b) What is the thermal energy density?

(c) What is the approximate timescale for this process before it snuffs
itself out?

(Astro-5):
Details of big bang nucleosynthesis.

(a) Write out the nuclear reactions involved in the PPL PPII, and PPIII
reazction sequences.

(b) What is the effective energy for the 3He(°He,2p)*He reaction when
the temperature T = 107 K?

(c) In Big Bang nucleosynthesis, why does the abundance of ‘He increase
with increasing density?

(d) Why does the abundance of deuterium decline more rapidly with
density than does *He?
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Winter 2002 Qualifying Exam

(HEAstro-1):
Assume that a steady wind exists as gas emerges and expands from a confined
region. Within the confined source region (e.g., near the surface of a star or
from the inner edge of an accretion disk) the gas has negligible initial velocity
but is under high pressure py with sound speed ay. We assume that the gas
is a perfect fluid with adiabatic index y and that the wind flow is adiabatic.
(Assume that gravitational forces are negligible.)
Derive the asympéotic wind speed, veo.
Does your answer depend upon any assumed geometrical shape of the wind
flow? Explain.

(HEAstro-2):
Consider a hypothetical neutron star with a mass of M = 1.4Mg. Ignore
any residual electrons, protons, and nuclet, and assume that the neutron star
is supported primarily by the degeneracy pressure of the neutrons. Assume
¢hat equilibrium occurs because the Fermi energy of the neutrons is mildly
relativistic.
Give an expression that estimates the radius R of the neutron star under the
above simplifying assumptions and compute the numerical value of R.
Note: In CGS units, 1.0Mg = 1.989 x 10% g.

(HEAstro-3):
An astrophysical accretion source is observed to have a continuous spectrum
that peaks in the ultraviolet. While it seems likely that several emission
mechanisms contribute to the spectrum, a black body component is strongly
suggested with a temperature Tog that produces a spectral peak at 20 eV.
Tt has also been ascertained that the absolute bolometric luminosity of the
source is L = 100 erg s7%,
Compute the lower bound on the mass of the accreting object.
Compute the effective temperature. Estimate the radius of the thermally
emitting region.
The mass and radius can be used to determine the dimensionless strength of
the gravitational field. What is this parameter and what is its value here?
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Given the strength of the gravitational field, estimate the mass accretion rate
M (in solar masses per year) that yields L.
Note: In CGS units, op = 0.665 x 107% cm? and 1.0Mg = 1.989 X 10% g

(HEAstro-4):

Clonsider a meutron star with a radius of R = 10.2 km and a mass of
M = 14Mg. (Mg = 1.989 x 10% g.)
Assume that the neutron star has a constant internal density 5. Neglecting
general relativistic effects, calculate the functional forms of the pressure pro-
file P(r) and the gravitational potential ®(r) inside the star. Determine the
numerical value of the pressure P, at the center of the neutron star,
¥ hydrostatic equilibrium were disturbed, one possible oscillatory motion
would be the f-mode (or breathing mode) in which the neutron star would
expand and contract spherically by a slight amount. What characterizes the
fmode is that the oscillation occurs in phase throughout the volume (ie.,
there are no nodes within the star such that some regions are contracting
while others are expanding). Provide a numerical estimate {and justification)
for the period of the f-mode of the neutron star.

(HEAstro-5): ,
The analysis of the periodic Doppler shifts in the spectrum of HDE 226868
(the companion star of Cygnus X-1) along with the observed orbital period
of 5.60 days, leads to a direct observable constraint on the masses of the two
stars and on the orbital inclination 4. Let My be the mass of HDE 226868
and M, be the mass of the compact object. This constraint is the so-called
mass function, f, and for Cyg X-1 it has the value f =025 Mg.
Derive the expression for the mass function f.
Optical observations indicate that the supergiant HDE 226868 has an ef-
fective temperature of T = 30,000 K and a bolometric luminosity of L =
2.5 % 10% erg 7, after accounting for distance, extinction and reddening.
Spectroscopic analysis and model atmosphere calculations are used to deter-
mine that HDE 226868 has a surface gravity of g1 = 6.5 % 10% cm 572,
Determine the mass M; of HDE 226868 and determine a bound on the mass
M. of the compact object.
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Spring 2001 Qualifying Exam

(CM-1):
Use Poisson brackets to show that the three components L of the angular
momentum of a particle are constants of the motion for ceniral forces, i.e.
when the Hamiltonian has the form

1

H=—
2m

2+ Vi),

(CM-2):
The Hamiltonian for a particle in a magnetic field Bis H = s | — eAl?
where A is the vector potential, For a uniform field in the z-direction this
gives (in the Landau gauge)

1
H= —2;';[@2 -+ (py - 6356)2]

a) Write down the Hamilton-J acoby equation for the Hamilton’s character-
istic function W,

b) Use the existence of a cyclic variable to write down a separable form for
W

¢) Solve for z(t) in term of 3 arbitrary constants

Note: [ =y = sin~(z/a).

d) Find the shape of the orbit.

(CM-3):
Compute the differential cross section o(8) for a particle scattering elastically
from a hard-sphere target (e.g., a heavy superball) of raduis K.
What is the total scattering cross section? Does the result make intuitive
sense’

(CM-4): :
Three equal mass points have equilibrium positions at the vertices of an
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equilateral triangle. They are connected by equal springs that lie along the
arcs of the circle circumscribing the triangle. Mass points and springs are
constrained to move only on the circle, so that the potential energy of a
spring is determined by the length of the arc.

Determine the eigenfrequencies and eigenvectors (normal modes) of small
oscillations of the system. What implications can be drawn by comparing
the eigenvalues? Describe the motion of the modes.

(CM-5):
The Hamiltonian for the one-dimensional harmonic oscillator can be written
as

1
H=— 2 2, 2.2
2m(p L mfwg®)

a) Determine the value of the constant ¢ such that the following equations
define a canonical transformation from the old variables (g,p) to the new
variables (@, P):

Q = C(p + imwg), P =C(p—imwq)

b) Obtain the generating function S(g, P) for this transformation;

¢) Express the Hamiltonian in terms of the new canonical variables;

d) Write down the Hamiltonian’s equations in terms of these new variables
and solve the resulting equations. (Note: in quantum theory this transfor-
mation defines the creation and annihilation operators).
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Spring 2001 Qualifying Exam

(EM-1}:
A sphere of raduis R is uniformly charged with the bulk charge density g,
except for the spherical cavity of a radius r whose center is located at a
distance d from the center of the larger sphere (d+7 < R).
Find the electric field inside the cavity.

(EM-2):

A plane electrode emits electrons with negligible initial velocity in the di-
rection: of the opposite electrode. After having been emitted, the electrons
accelerate in the electric field created by the two electrodes separated by a
distance d. The emission continues until the steady state is achieved where
the field of the bulk electric charge compensates the external field at the
surface of the emitter: %ﬁ{mg = 0. '

Find the steady state current J = vp (here v is a local charge velocity) as
a function of the potential difference V' between the electrodes by using the
Poisson equation A¢ = —4dmp.

(EM-3):
A solid metallic sphere of radius R is placed in a uniform slowly oscillating
magnetic field A(t) = Hq coswt.
Find the power of the dissipated heat if the sphere’s conductivity is o and
its magnetic permeability is p.

(EM-4):
Compute the magnetic scalar potential ¢ar, where H = —Véu, for a uni-
formly m_‘a,gnetized sphere with an effective surface magnetic charge density
oy = WM = Mycos, both inside and ousside the sphere.
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Note:
: 1 o] I

7
B <5 Pi(cos ¥)

l"E - j’Il =0 t}

where cos’y = cos f cos §+sin 8 sin 0 cos(p—¢'), and re, 75 Is the set: |2, 1.
Note: Ji¥ df sin @’ cos 6 Pi(cosy) = 81,13 cos 6.

(EM-5):
Using E = —V¢, consider a point charge ¢ located at #; relative to the
origin. At the origin is a grounded sphere of radius R.
Find the potential ¢{Z} such that #(|Z| = R) = 0 on the radius of the sphere,
using the method of images.
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Spring 2001 Qualifying Exam

(SM-1):
Obtain the pressure of a classical ideal gas as a function of N,V, and T by
calculating the partition function.
Obtain the same by calculating the grand partition function.

(SM-2):
In a cavity of blackbody of volume V' the density of states of photons over
an energy interval de is given by g(e)de = fsigf;ezde.
a) Derive the Stefan-Boltzmann law of radiation;
b) Calculate the average number of photons in this cavity at temperature T,

Note: [§° 29 = «4/15 and [5° g;%ﬂ = 2.404.

A0S 1

{SM-3}):
A system of particles is in diffusive contact with a reservoir at temperature
T and chemical potential u. Find the expression of mean-square deviation
from the average number of particles < N > in terms of T\, and < N >.

{SM-4):
A wire of length | and mass per unit length g is fixed at both ends and
tightened to a tension 7.
What is the rms fuctuation, in classical statistics, of the midpoint of the
wire when it is in equilibrium with a heat bath at temperature T 7
(Note: $%°_o(2m + 1) = 7%/8).

(SM-5):
Consider a sample of an ideal classical gas consising of N identical diatomic
molecules of mass M contained in a volume V' at temperature T. Kach
molecule has a permanent electric dipole moment F. A uniform static electric
field F is applied to the gas.
a) What is the probability that the dipole moment makes an angle 8 with
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respect to the direction of the applied electric field?
b) What is the electric polarization and the dielectric constant for this gas

in the high temperature limit?
¢) What is the electric dipole contribution to the heat capacity? Sketch the

temperature dependence of this quantity at high T
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Spring 2001 Qualifying Exam

(QM-1):
A particle of mass m is acted upon by the potential V(z) = mygz for z > 0
and V = oo for z < 0.
Use the variational wavefunction 9(z) = Cz/a for 0 < z < a; C(2 - z/a) for
a < z < 2a, an 0 elsewhere (after sketching it}, to estimate the ground state
energy of the particle.

(Note: < ¥l >=2C%, < Pzl >= FC%".
Numerically, for an electron near the Earth’s surface (h? /m2g)"/* = 0.11cm).

(QM-2): ‘
Consider two particles with masses m; and mjy moving in one dimension and
interacting via '

k
V{zy, x) = §(|331 — | ~ a)’

where k is a spring constant, and ¢ is their equilibrium separation.

a)Carry out, explicitly, the transformation to the center-of-mass and relative
coordinates for the systems’ Hamiltonian;

b)Suppose that the lowest energy for the relative motion is much less than
ka?/2. In that case, write down the approximate wave function for the system
in the relative motion ground state and arbitrary center-of-mass energy.

(QM-3):
A particle of mass m moves in the spherically symmetrical potential V(r) =
—Vy forr < aand V(r) =0 forr > a.
Find the least value of V5 such that there is a bound state of zero energy and
zern angular momentum.

(QM-4):

The Schroedinger equation for the linear harmonic oscillator is

hE d2

1
“%EEQ/M + Emw2m2'€bn = En"pn
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with solutions: 9n(z) o< Hy(x/2q) exp{—a?/223) where mg = fmw/h, BEn =
(n+ 1/2)hw.

The first four Hermite polynomials are: Ho(z) =1, Hi(z) =2z, Ha(z) =
4z — 2, Hi(z) = 8z° — 12z.

a) Explain carefully in terms of parity symmetry (z -+ —x) why the solutions
satisfy: ¥n(~1z) = T, (z).

b) What is meant by the statement that a function is an eigenfunction of the
parisy operator P Px = —27

c) How does the result in a) correspond to the classical motion of a particle
moving in a harmonic potential?

(QM-5):
Rayleigh’s expansion for a plane wave along the z-axis in terms of the spher-
ical Bessel functions and Legendre polynomials is

o0
ez’k:z — eik’rcosﬂ - Z(Zl + 1}%';]';(]6?”)5(008 9)
I=0

Note: [}, P(z)Pa(x)dz = 28,/ (21 + 1).

a)What is the z-component of the angular momentum associated with this
wave? Explain.

b)Calculate the probability of finding angular momentum of L units at a
given 7, integrated over the polar angles 0 and ¢.

¢)This formula was used by Rayleigh in research on sound in the nineteenth
century, before quantum mechanics in which it’s often used. What’s the
connection?
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Winter 2001 Qualifying Exam

(EM-1):
Calculate the scattering of electromagnetic waves of frequency w by a small
dielectric sphere of radius R and dielectric constant . Assume R < A = ¢/w
Specifically, find the total cross section up to & numerical factor and a factor
inolving e. If you were to guess that factor involing e, what would it be for
the case € — 17

(EM-2):
The accompanying figure shows a section through the cylindrical plate (radius
b) and filament (radius a) of the magnetron. The filament is grounded, the
plate is at V volts positive, and a uniform magnetic field H is directed along
the axis of the cylinder. Electrons leave the filament with zero velocity and
travel in curved paths toward the plate. Below what level of V' will the
current be suppressed by the field HY

{EM-3}:
At a given moment of the retarded time ¢’ the velocity of a relativistic par-
ticle 7 is parallel to its acceleration di/dt. Find the angular dependence of
the instant radiation intensity dI(t)/dS?, instant total intensity I{t}, and the
integral energy loss rate (—dE/dt’).

(EM-4):
A plane polarized electromagnetic wave E = B %" is incident normally
on a flat uniform sheet of an excellent conductor {& > w) having a thickness
L. Assuming that in space and in the conducting sheet p = ¢ = 1, show
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that, except for sheets of very small thickness, the transmission coefficient is
approximately equal o

32(Ref)%e2L/?

I= 1 — 2e~2L/8 cos(2L/8) + e~4L/é

where 8 = /3(1 ~ i) and § = ¢/v2mwo.
(Hint: use the fact that § < 1).

(EM-5):
Show that the force equation f, = (1/¢}F,,J" can be written as
oz
Ju= dz¥
where

1
TR &%[FW\FX . EQMUFAUFAO’]
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Winter 2001 Qualifying Exam

(QM-1):

A two-dimensional oscillator has the Hamiltonian
1 1
H = =(p +p}) + 5(1 4 8ay)(2” + 9°)

where h = 1 and § < 1. Give the wave functions for the three lowest energy
levels for § = 0; evaluate the first-order perturbation of these levels for § # 0.

{QM-2):
(a) Rotation of an angular momentum eigenvector [jm,0 > through Euler
angle § produces new eigenvectors |jm’, 3 >. These have the property

i, B+ 2 >= (=LY% g, B >

What consequence does this property have for half-integer j (7 = 1/2,3/2,...)7
How has this been verified experimentally?

(b) Spherical harmonics, Y (6, ¢), are eigenfunctions in spherical polar
coordinates of angular momentum eigenstates with integer j = [:

Ylm(a ¢’) =< g, géilm =

Explain carefully in terms of operator symmetries why the ¥, must have a
definite parity symmetry Vi (7 — 0,7+ ¢) = (—1)"¥,(0, @) (but you are not
to derive this formula).

(¢} What is the fundamental reason the angular momentum eigenvalues
are quantized, thus § = 0,1/2,1,... only? For example, suppose that quan-
tum mechanics turns out differently in the future, will this property still
probably be true? Justify your answers.

(QM-3):

Two identical spin 1/2 particles move in a one-dimensional infinite potential
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well V(z) =0if 0 <z <L and V{z) = oo elsewhere.

(a) Write down the ground state wave function and the energy when the
two particles are constrained to a triplet spin state.

(b) Do the same for the spin singlet state.

(¢) If a very short range repulsive interaction is turned on between par-
ticles, discuss qualitatively whether the energy difference between the two
states will increase or decrease.

(QM-4):

Consider a particle of mass m moving in a two-dimensional cylindrical po-
tential well V(r) = 0, if r < R, and V(r) = oo, if r > R. Use the trial wave
function ¢(r) = R? ~ 7% {o estimate the ground state energy.

(QM-5):
Find a total scattering cross section for slow particles of mometum k in &
spherically symmetrical potential V{r) = ~Vp, if » < R, and V(r} = 0, if
r > K.
(Hint: use the Born’s approximation and kR < 1).
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Statistical Mechanics (SH)

{5M-1} The energy levels of a particle of mass M confined in a cubic box of dimension L are described by

=123 ..

- T2 7 2 o
En= (_l] (n_t- -y A ) D L
2M ML

(A} Derive the partition function Zyof the ideal gas consisting of & such identical particles.

(B) Show (using Z from {A)) that at given temperature 7 the chemical potential of such ideal gas
is given by

1t =kaT In{ning) n = NIL® = NIV; ng = (MksTr27r *J12

Info: exp(—xz}d.r S Nl = })—] n(? J’E) + ('\ + l—) h¥ - N
' 2 2

o = - -

(5M-2) Consider an adsorbent surface having independent adsorption sites. Euach of the adsorption sites cun
be either empty or occupied by one molecule. An adsorbed molecule has energy — £y compared
one in the free state. Show that the coverage rono 6 (number of occupied sites versus the total
number of sites), when the adsorbent surface is exposed to an ideal gas at temperature 7 and
pressure P, 1§ given by

6=—F  where Py= {"“"{k-‘v’r}j‘"l o-0fkaT keT
P+ (T} it

I

Info: For ideal gas g = kg7 In (ning) n = NIV ng = (MkaT727h *P7

-

(SM-3} If a systemn is put in an external magnetic field /, then the Helmholiz free energy is given by

Fw=U—TS—mh,where m isthe magnetization, so that my = ~a F/ d h, etc. Consider N
N
free and independent spins in an external magnetic field h, so that the Hamilonian If = - hzz Si.

i 1
Assume Sz = £ [ only. Show that the magnetization is given by m = I\ taah [h—’)
kg T

(SM-4) Derive the density of states D{g) as a function of energy ¢ for a free electron gas in @ ONE-
dimensional chain of length L. Then calculate the Fermi energy €F (at zero temperature) for an N
electron system. Use m to denote the mass of an electron. (By the density of states, we mean

N=| D(e}n{e)de, wherem {£) denotes the mean occupation number with energy £.)



—

(5M-3} Tor an ultra-relativistic particle, its energy depends on momentum as s(p) = a where ¢ iy speed

of light. Consider N such ¢lassical non-interacting particles in a hox of volume V at temperature
T. Putec=1.

(A) Start with the partition function Z{V.T). show that the Helmholtz free enerey is given by
T =— kg TN[In{V/38) - 1a N + 1]
where
7% = 8mks T 2mh P

(B) Determine the equation of state, i.e., how is the pressure related to N, T, and V7

(You may recall the Stirling formula
In N = NlnlN — N for large N,

Also you may use

e
>
4

d3p efe o dp PE ¢ BP =4 (}a__: dp e~ BIJ_)

0 21



Quantum Mechanics 1 (QM)

(QM-1) A one-dimensional harmonic oscillator is described by using the operator

o f&)
‘ Voon [\X m

{A) Show that the oscillator Hamultonian 1s then
H={a%a+ 12)h
where + denotes Hermitean conjugate.
(B) Suppose we know that
aln> = ¥7 [n—1>, a*|n> = Yo+ | |n+ 1>

Derive the tollowing formulas:

<n'ix|n> = ’\I.l'l:ll 5 (Vﬁ E.)nJ.n—l + V TH'I 5]'_’,Zl+1]
 Imao
<n’ x*jn> = n (‘f' a(n-1) 80" oz + (2041)84 0w - ¥{nr1) n+2} Sy ,,+3]
2min

Give simple explanations of why <n[x!n> = 0 and <n|x*|n> = {n+1/2) b/(mw).

(QM-2) (a) Explain why there is 2 quantum-mechanical uncertainty relation (start with the commutation
relation of x and py)

AXxApce2 b2

(B) It is often stated in texts on quantum mechanics that the uncertainty relation At AE = b
follows by analogy with the result in {A). What is wrong with such reasoning?



(QM-3)

(QM-4)

(QM-5)

The Heisenberg equation of motion for operator A and a non-relativistic single-particle
Hamiltonian, H, with potential V., is

dA - 1A H]
d i
{A) Derive that ffﬂ =— :iVV:}' and discuss the relation of this Ehrentest theorem w Newton's
equation.
FH
B daL! ¢ - T . . .
By LetA=L =r xp, Show that —£L=i{- (r X VWV Jf and discuss how this relates o classical
mechanics. d '

{C) The formulas in {A) and (B} contain quantum expectation values, but otherwise correspond to
formulas in classical mechanics. [s it necessary to take a classical limit 1o ensure this
correspondence? Explain vour answer briefly.

Find the ENErgy eigenvalues and time-independent eigentunctions tor the one-dimensional bax
gy £ £
P()t[‘,ﬂ[i.’ll, where

V(x)=esstorx=0,x>L

V{x) = 0 for 0< x <L.

(B) Normalize the cigenfunctions o L.

If two operators A and B commute | A,Bi = 0, then prove that A and B have a set of nontrivial
common eigentunctions.
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(CM-1)

(CM-2)

(CM-3)

Classical Mechanics

Atoms attract each other in a way that ¢an be described by 1 potential

6
Vir) = -V, I
i;

when 1y is roughly an atomic radius and Vyis a constant . Suppuse a beam of Hydrogen atoms
{mass m) is shot at some Cesium atoms {mass M=>m). A Cesium hydride molecule forms if the
atoms ever get closer together than ry. Find o, the cross section for forming a molecule.

Noether's theorem implies that if the transformations
gi = qi + Efi(q)

don't change the value of the Lagrangian L, then the quantity

e
T da

is conserved. Suppose that a particle of mass m moves in a potential V{p.kd~z), where p..z are
cylindrical coordinates.

a)  Find the transformation that preserves L

by Find the conserved quantity X

A projectile is shot due east with velocity vy and angle @ to the horizontal, at latitude # in the
rorthern hemisphere. The Coriolis force has components in the up/down and east/west directions
that both atfect the range of the projectile { the distance east that it travels before landing}. To first
order in w, the rotational velocity of the earth, the effects can be treated separately. To this order
find

a) the change AR; in the range due to the vertical component of the Coriolis force

b} the change ARy due to the east/west component



{CM-4y Consider a long thin straight wire of negligible mass suspended in a uniform atmosphere of gas of
initial density pe. Suppose a very large electrical current is passed through the wire suddenly,
depositing a large amount of energy per unit length & The wire explodes and produces, in the
central regions, a cylindrical shock wave that expands into the surrounding gas.

Determine answers to the following questions without solving the hydrodynamic equations for the
detailed solution. Give your reasoning.

4] Determine what powers of time, +% are exhibited by {f} the radius of the shock, (if) the
velocity of the shock, and (i1} the pressure behind the shock.

by Building on the results from the first part of the question, give order-ol-magnitude correct
expressions for the radius of the shock front r, the velocity of the shock front v, and the pressure
behind the shock p as functions of time 1.

c) l.et the pas density be pg = 107t gem™® and the energy release per unit length be
a=10° erg em™. At a time of one microsecond after the energy release give the approximaie
radius and velocity of the shock and the pressure behind the shock.

(CM-3) A particle of mass m is constrained to move within the x-v plane. The particle's potential energy,
£(x,y), is given by

Lixy)= U torx <0, and

Hxyy=Lhaforx >0,

where I/, and U/, are constants. The particle starts in the left half-plane, x < 0, with velocity v,
and moves into the right half-plane, x > 0, where its velocity 18 v2. Find the change in the
particle’s direction of motion by computing the ratio

—

AHE

and expressing the result in terms of {/;, /5, and the initial speed of the particle, vi = Here,
& and & refer to the angles, on the left and right respectively, between the directions of motion

and the x-axis (i.e., the normal to the line marking the discontinuity in the potential cnergy).



(SM-1}):
Obtain the pressure of a classical ideal gas as a function of N, V), and T by
calculating the partition function.
Obtain the same by calculating the grand partition function.

(SM-2):
[u a cavity of blackbody of volume V' the clonqit\' of states of photons over
an encrgy interval de is given by g{e)de = Th;.c *de.
a) Derive the Stefan-Boltzmann law of radiation;
b) Calculate the average number of photous in this cavity at temperature 7.

- 3
Note: f;° ;,fl = 7%/15 and I eu,}_ = 2.404.

(SM-3):
A systemn of particles is in diffusive contact with a reservoir at temperature
7" and chemical potential p. Find the expression of mean-sguare deviation
from the average number of particles < N > in terms of 7', i, and < N >.

(SM-4):
A wire of length ! and mass per unit length g 1s fixed at both ends and
tightened to a tension 7.
What is the rms fluctuation, in classical statistics, of the midpoint of the
wire when 1t is in equilibrium with a heat bath at temperature T 7
(Note: 52 (2m + 1)7% = x2/8).

:—JmU

(SM-5}):
Consider a sample of an ideal classical gas consising of /N identical diatomic
molecules of mass M contained in a volume V' at temperature 7. FEach
umlet‘ule has a permanent electric dipole moment py. A uniform static electric
eld £ is applied to the gas.
a,) What is the probability that the dipole moment makes an angle # with
respect to the direction of the applied electric field?
b) What is the electric polarization and the dielectric constant for this gas
in the high temperature limit?

."



Electromagnetism [

From the micrgscopie Maxwell's equatiens in ST units, derive the Bint-Savart expression for the
magnetic fizld Biry produced under staticnary conditions by a loculized, micrascopic current density
Ity

Consider a line charge of constunt lingar churze density A along the z-axis hetween z = -L und
z =L Cualeulate the slectrostatic potenial @r) for all points for which © > L. expressed s o
sertes of Legendre polynomial P {cos 83,

..

A point electric dipole of moment p 15 a distance b from the center of 4 groundad spherical
conducter of radius a, a<h. The dipole points roward the certer of the sphere, Calenlate the wetal
charge  on the surface of the sphere, in terms of p, 2. and b Hine: consider the dipele as the
dimit of two separated point charges.

Rayleigh Scatering of Light by Hydregen,

—.'I’\tr:l'a‘—:Ct_‘l

b= —
E =£5¢

d
A

R .
Bahr

H-atom

A light wave incident on a hvdoegen atom induces an electnie dipole mome:

d= % Ruiua

where Rpoygr = 3.3 ¢ 107! Lm is the BOHR radius. This dipole momene oscillates with the
frequency w of the wave, At what rate does the atom radiate ¢icctromagnetic radration
ienergy/time;, in terms of £, 0. RBOHR. and o7

Two circular wires of radiss R osie in parallel planes, a distance D apart. Each wire carmies an

electrical current [ iod the sume signd, What is the force berween the wires. i the limit De»RY



¢) What is the electrie dipole contribution to the heat capacity? Sketch the
temperature dependence of this quantity at high 7.

(QM-1):
A particle of mass rn 15 acted upon by the potential V{z) = mgz for z > 0
and V" = oc for z < 0.
Use the variational wavefunction ¢(z) = Cz/a for 0 < z < a; C(2 — z/a) for
a < z < 2a, an { elsewhere (after sketching it}, to estimate the ground state
energy of the particle.

(Note: < 9ly >= 2C%a, < |zjw >= 2C%% _
Nutuerically, for an electron near the Earth’s surface (% /m?g)%*® = 0.11em).

(QM-2):
Consider two particles with masses rn; and m, moving in one dimension and
Interacting via

L”'(Il,l'g) - E(!:cl - .’ng — a)2

where k is a spring constant, and a is their equilibrium separation.

a)Carry out, explicitly, the transformatiou to the center-of-mass and relative
coordinates for the systems’ Hamiltonian,

biSuppose that the lowest energy for the relative miotion is much less than
ka®/2. In that case, write down the approximate wave function for the system
in the relative motion ground state and arbitrary center-of-mass energy.

((QM-3):
A particle of mass m moves in the spherically symnietrical potential V(r}) =
~Vyforr <gand V(r) =0 for r > a.
Find the least value of ¥ such that there is a bound state of zero energy and
zero angular momentuimn.



(QM-4):
The Schroedinger equation for the linear harmonic oscillator is
R? d? 1

—— iy, + omete iy, = B
2mdz® " 2 o e

with solutions: ¢, (x) oc Hp{x/zp)exp(—x%/223) where 2y = \{.-""'-:rnw;.«’ﬁ, £, ==
(n+1/2)hw.

The first four Hermiite polynomials are: Hy(z) =1, H\{z) = 2z, Hy(z) =
4r* — 2, Hy(z) =82% — 12z

a) Explain carefully in terms of parity symmetry {z — —x) why the solutions
satisfy: ¢,{—z) = £, (z).

b) What is meant by the statement that a function is an eigenfunction of the
parity operator P : Pr = —z7

¢) How does the result in a) correspond to the classical motion of a particle
moving in a harmonic potential?

(QM-53):
Rayleigh’s expansion for a plane wave along the 2-axis in terms of the spher-
ical Bessel functions and Legendre polynomials 1s

etk — threosf Z(QE + 1)'.isj{(k:'f‘)P£(COS 9)

=0
Note: [', P{z)P,(z)de = 26,,/(20 + 1).

a)What is the z-component of the angular momentum associated with
this wave? Explain.
b)Calculate the probability of finding angular momentum of L units at a
given 7, integrated over the polar angles # and ¢.
¢)This formula was used by Rayleigh in research on sound in the nineteentlh
century, before gquantum mechanics in which it's often used. What's the
connection?
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Classical Mechanics (CM)

(CM-1) A small block is free to slide (under gravity) down a notch along the
surface of a cone. which is forced to rotate with angular specd . The
conec has opening angle 0.

a} Write down the Lagrangian for the block in terms of the generalized
coordinate X shown.

b} Determine the conjugate momentum p and write down the
Hamiitoman H.

¢) Is H the energy? Why or why not?

d)} Isenergy conserved? Why or why not”?

(CM-2) A particle of mass m moves in 2 dimensions under the influence of a

. l ki T T . . - .
potential V = 5 ma (X~ +y~ ). cormesponding to an isotropic harmonic

oscillator.

a) Fmd the Hamiltonian of the system.

b} Use the Hamilton-Jacobi equation to solve for x and y as a function of
t and 4 arbitrary constants. What is the physical meaning of the
generalized momenta you have used?

(CM-3) Two pendulums, each of mass m and length {, are connected at their ends
by a massiess spring of spring constant &. The separation of the
pendulums and the equilibrium length of the spring 1s . or small
oscillations about equilibrium:

a) Find the Eigenfrequencies.
b) Find the normal modes (eigenvectors). Describe the motion of the two
normal modes.



{CM-4)

(CM-3)

There is no fuel whose combustion releases energy adequate to raise its
owr mass oul of the Earth's potential well. At one time, this was given as
an argument against the possibility of building rockets for space travel.
The argument is wrong because it is the rocket, not the fuel. that must be
raised off the Earth. The fuel is expelled as a gas to propel the rocket.

a)

b)

C)

d)

Write down the equation of motion for a rocket launched vertically in
a gravitaitonal field if it is expelling gases with a velocity v',

Integrate this equation to obtain the velocity of the rocket. v. as a
function of its total mass m {(rocket plus fuel). assuming a constant
time rate of mass loss.

From energy conservation. derive the formula for escape velocity.
Calculate its value for the Earth (ignore arr resistance).

For a rocket starting from rest, with v/ = 2 km/s, what is the initial ratio
ot fuel weight to rocket weight required to reach escape velocity?
Assume the rocket expels 1/60™ of its initial mass during each second
of thrust.

Consider a wheel with mass m. radius R. moment of inertia f, around the
"axle” axis, and moment of inertia /1 about an axis through the center of
mass in the plane of the wheel. The wheel rolls on a flat surface; it can
turn but not tip. Its orientation can be described using 4 coordinates as
shown:

There are 2 non-holonomic constraints relating 9, ¢, %,and ¥ . What
are they?

Write the Lagrangian.

Write the equations of motion, including the constraints, through 2
Lagrange multiphers.



Electremagnetism [

(EM-1) Consider an electron of charge —e moving in a circular orbit of radius, R, around a nuclear charse
of +e in an electric field, Eq, directed at right angles to the plane of the orbit. Show that the

polarizability, o, of this atom 15 approximately R°. (note: consider the positive charge as being
infinitely massive so it does not move).
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(EM2) A rod of length, [, mass, m, and electrical resistance, R, is free to slide down frictionless, parallel
conducting rails. These rails are also superconductors so their zlectrical resistance s 0. The
sliding rod therefore closes a conducting loop as shown below. The plane of the rails makes an

angle, 8, with the horizontal and a umform vertical magnetic field, B, throughout the region.

2y Find the terminal velocity of the sliding rod in terms of 1, m, 8, B and the local acceleration
due to gravity, g.

b}

Show that the rate of resistive heating in the rod is equal to the rate at which the rod 1s losing
gravitational potential energy.

ot




(EM-3) A uniform electric field, Eq is to be completely shielded from the interior of a sphere of radius, R,
by placing a charge layer, g, on its surface. Find the distribution of the charge (the geometry is

shown below).

(EM-4) An infinitely long solid metal cylinder rotates about its axis with constant angular velocity, w. A
uaniform magnetic field, By, exists parallel to the cylinder axis. Obtain the following quantites

a) Charge deasity inside the cylinder
b)  Surface charge density

¢} The electric field and the scalar potential

i . =~y
S, Nl
O l\ -, ||
Wl

(EM-5) A point charge, q, is a distance, d, away from an infinite plane conductor held at zero potential.

Use the method of images to find:

g} the surface charge density on the plane

b) the force between the plane and the charge
the work necessary to remove the charge from its position to infinity

S
the potentia! between the charge g and its image {compare with answer to {¢)}



