Nicholas M. Law

Assistant Professor

University of North Carolina, Chapel Hill

Astronomical Instrumentation, Exoplanets and Very Wide Field Surveys

My group's research is based on the new generation of very large time-domain sky surveys and adaptive optics instruments, with a focus on using them for exoplanet detection and characterization. Our major projects are listed below.

email: nmlaw around

office phone: 919 962 3019

CV & publication list: a recently-updated version is here


Jul 2017: Carl Ziegler is giving a talk on his Robo-AO + Kepler results at the Keele Transiting Planets conference.

Feb 2017: Carl Ziegler has published the latest update to the Robo-AO Kepler planet candidate survey -- Carl searched 1629 planet candidate hosts for nearby stars and found 223 nearby stars, including stars nearby 26 potentially habitable worlds.

Jan 2017: In collaboration with San Diego State University and Research Corporation, we're funded for the construction of a Northern Evryscope at Mount Laguna Observatory, California -- likely deploying by the end of 2017.

Jan 2016: NSF CAREER award funds Evryscope operations until 2021!

May 2015: We've deployed the Evryscope at CTIO!

May 2015 Two new papers from the group: "Multiplicity of the Galactic Senior Citizens: A High-resolution Search for Cool Subdwarf Companions" and "Evryscope Science: Exploring the Potential of All-Sky Gigapixel-Scale Telescopes"

April 2015 The Evryscope has achieved first light and we're shipping it to CTIO for deployment in May.

Jan 2015: We used Robo-AO to confirm Kepler-444: 5 terrestrial planets around an ancient (11-billion-year-old) star! The paper was covered by dozens of news outlets; here's the Popular Science article.

Jan 2015: Group presentations at the AAS meeting:

      202.07. The Evryscope: the first full-sky gigapixel-scale telescope (Nick Law)

      258.06. Mechanical design for the Evryscope: a 10,000-sq-deg FoV, gigapixel-scale telescope (Jeff Ratzloff)

      258.07. Image Quality of the Evryscope: Method for On-Site Optical Alignment (Phil Wulfken)

      332.09. Targeted-mode pipeline for the Evryscope: 10,000-sq.deg. FoV gigapixel telescope (Octavi Fors)

      345.03. Multiplicity of the Galactic Senior Citizens: Cool Subdwarf Companions w. AO (Carl Ziegler)

Nov 2014: Carl Ziegler: Multiplicity of the Galactic Senior Citizens: A high-resolution search for cool subdwarf companions (accepted by ApJ)

Nov 2014: NASA's Exoplanets Research Program (XRP) has funded UNC Chapel Hill (Lead institution; PI Nick Law), IfA Hawaii (Institutional PI: Christoph Baranec) and Princeton (Institutional PI: Tim Morton) to complete the Robo-AO high-angular-resolution survey of Kepler exoplanet host stars!

August 2014: Construction of the Evryscope has been fully funded by NSF-ATI!

August 2014: UNC's Daily Tar Heel: "UNC telescopes could get robotic lasers"

August 2014: Nature News and Views has published an article on our Robo-AO Kepler survey.

July 2014: MIT Technology Review has written an article on the Evryscope.

Current Projects

UNC-CH students: please feel free to contact me to discuss research projects in any of the below areas.

The Evryscope

The Evryscope (“wide-seer”) is an array of telescopes pointed at every part of the accessible sky simultaneously and continuously, together forming a gigapixel-scale telescope monitoring 9,000 square degrees every 2 minutes.


Robo-AO is the first robotic laser guide star adaptive optics system. Our small team built it for extremely high-efficiency observing on the Palomar 60-inch telescope. Robo-AO is in full science operation, covering 200+ targets a night for projects ranging from our Kepler-exoplanet chacterization programs to the most-comprehensive binarity survey of nearby stars. Robo-AO is now in full-time operation on the Kitt Peak 2.1m telescope.

North-Pole Exoplanet Surveys

My group is pioneering new extremely wide-field survey instruments that use mass-produced consumer camera and sensor technology to dramatically lower costs compared to conventional survey instruments. Our prototype survey continually monitors about 1200 square degrees around the North Celestial Pole, searching for exoplanets transiting bright stars. We hope to deploy an Arctic version of the Evryscope to greatly expand this survey.

We based our prototype survey at a site in the Canadian High Arctic, close to the North Pole, where the winter's continuous darkness greatly improves our exoplanet detection efficiency. Our robotic cameras have already operated throughout winter 2012/13 and 2013/14 (2013 sunrise here) and have returned over 40TB of data. A paper on the first run's results is here.

PTF/M-dwarfs (PI) -- Mining Supernova Survey Data for Exoplanet Transits

PTF/M-dwarfs is a search for giant planets around M-dwarfs using data from the Palomar Transient Factory, as well as followup by other telescopes. We developed ways to efficiently mine the nearly-100TB PTF supernova-search dataset for rare transit events. So far we have observed over 100,000 M-dwarfs, with sensitivity to planetary transits around each one. A brief description of the project can be found in the PTF science cases paper, a recent poster from the Cool Stars conference is here, and the Cool Stars conference proceedings are here and here. A recent ApJ paper with results from the project is here.

Other current collaborations (and links to recent papers): the Palomar Transient Factory; the PTF Open Cluster rotation and activity survey; searching for close companions in very wide M-dwarf binaries; astrometric microlensing of local dark matter microhalos as a probe of the small-scale primordial power spectrum.

Selected past projects

The Palomar Transient Factory (Project Scientist)

PTF is a transient search using an 8-square-degree imager on the Palomar 48-inch telescope. PTF (PI: Shri Kulkarni) is a collaboration of over 70 people in many institutions. The system completed commissioning in summer 2009; a full description of the system is published in Law et al. 2009 (PASP 121.1395L). PTF has found thousands of extragalactic transients, discovered a whole new class of supernova, and published over 100 refreed papers including many in Science and Nature.

LAMP: LuckyCam + AO on the Palomar 200" (PI)

Using a combination of Adaptive Optics (AO) and Lucky Imaging we achieved the highest-resolution-ever images taken with visible light from the ground or space. The paper describing the results is here. The project was somehow named one of Time Magazine's best inventions of 2007.

Lucky Imaging

My PhD thesis research was on Lucky Imaging, the first system capable of reliably taking images with Hubble Space Telescope resolution from the ground using visible light and faint guide stars.

Last updated Jul. 2016