Physics 2305 Quiz 4—Form A

4 February, 2000

Fiona skis down a hill with a slope of 25° from the horizontal.

- If we assume the slope is frictionless, what is her acceleration down the slope?
 - A) 4.1 m/s^2
 - B) 4.6 m/s^2
 - C) 8.9 m/s^2
 - D) 9.8 m/s^2
- 2. What is her acceleration if $\mu_k=0.10$?
 - A) 1.0 m/s^2
 - B) 3.3 m/s^2
 - C) 3.7 m/s^2
 - D) 8.0 m/s^2

Useful constants and equations:

$$\Sigma \mathbf{F} = m \mathbf{a}$$

$$g = 9.8 \text{ m/s}^2$$

$$F_{\varphi} = m g$$

$$f = \mu N$$

$$F_g = m g$$

 $f = \mu N$
 $a_r = v^2/r$

Physics 2305 Quiz 4—Form B

4 February, 2000

Leo accelerates his hot new car at 4.0 m/s² on level ground.

- 1. What would the coefficient of friction between Leo's coffee cup and the dashboard have to be to keep the cup from sliding backwards?
 - A) 0.18
 - B) 0.41
 - C) 1.00
 - D) 2.45
- 2. Leo's fuzzy dice will lean back, so that the string tied to the rear-view mirror makes an angle from the vertical. What is this angle?
 - A) 22°
 - B) 24°
 - C) 66°
 - D) 68°

Useful constants and equations:

$$\Sigma \mathbf{F} = m \mathbf{a}$$
 $F_g = m g$
 $f = \mu N$
 $g = 9.8 \text{ m/s}^2$ $a_r = \sqrt[2]{r}$

Physics 2305 Quiz 4—Form C

4 February, 2000

Becky swings a yo-yo of mass 0.10 kg in a vertical circle of radius 0.65 m.

- 1. If the yo-yo is moving with a velocity of 3.3 m/s at the bottom of the swing, what is the tension in the string?
 - A) 0.7 N
 - B) 1.5 N
 - C) 1.7 N
 - D) 2.7 N
- 2. What is the minimum velocity at the top of the swing needed to keep the string from going slack?
 - A) 0 m/s
 - B) 2.5 m/s
 - C) 3.9 m/s
 - D) 6.4 m/s

Useful constants and equations:

$$\Sigma \mathbf{F} = m \mathbf{a}$$
 $F_g = m g$
 $f = \mu N$
 $g = 9.8 \text{ m/s}^2$ $a_r = \sqrt[2]{r}$