Physics 2305 Quiz 1—Form A

- 1. Jamie slams on his brakes and decelerates from 45 mph (20 m/s) to rest in 3.5 seconds. What is his deceleration?
 - A) -5.7 m/s^2
 - B) -9.8 m/s^2
 - C) -70 m/s^2
 - D) You must know the stopping distance.
- 2. Which of the following appears on the website for this course?
 - A) Answers to even-numbered problems
 - B) Old exams
 - C) Lecture notes
 - D) Figures from the textbook in PDF format

$$x = (1/2) \ a \ t^2 + V_o \ t + X_o$$

 $v = V_o + a \ t$
 $v^2 = V_o^2 + 2 \ a \ (x - X_o)$
 $g = 9.8 \ \text{m/s}^2$

Physics 2305 Quiz 1—Form B

- 1. Joanne drops a coin out of her window, and it hits the ground 3.5 seconds later. How far did it fall?
 - A) 17 m
 - B) 60 m
 - C) 120 m
 - D) There is not enough information.
- 2. Which of the following appears on the website for this course?
 - A) Old exams
 - B) Lecture notes
 - C) Figures from the textbook in PDF format
 - D) Handouts from previous lectures

$$x = (1/2) a t^{2} + v_{o} t + x_{o}$$

 $v = v_{o} + a t$
 $v^{2} = v_{o}^{2} + 2 a (x - x_{o})$
 $g = 9.8 \text{ m/s}^{2}$

Physics 2305 Quiz 1—Form C

- 1. If Judy decelerates at a rate of -6.6 m/s² from 75 mph (33.5 m/s) to rest, what is her stopping distance?
 - A) 2.5 m
 - B) 85 m
 - C) 170 m
 - D) You must know how long it took.
- 2. What is the policy for late homework?
 - A) Late homework is not accepted.
 - B) Late homework is penalized 50% per day.
 - C) Late homework is penalized 10% per day.
 - D) There are no penalties for late homework.

$$x = (1/2) a t^{2} + V_{o} t + X_{o}$$

 $v = V_{o} + a t$
 $v^{2} = V_{o}^{2} + 2 a (x - X_{o})$
 $g = 9.8 \text{ m/s}^{2}$

Physics 2305 Quiz 1—Form D

- 1. If a jar dropped from rest hits the sidewalk below at a speed of 22 m/s (50 mph), how far did it fall?
 - A) 1.1 m
 - B) 2.2 m
 - C) 25 m
 - D) 50 m
- 2. Where will you find the procedures for submitting homework?
 - A) On the Introduction handout
 - B) In our lecture notes from the first week
 - C) On the Administrative Issues webpage
 - D) Posted on Dr. Sloan's office door

$$x = (1/2) a t^{2} + v_{o} t + x_{o}$$

 $v = v_{o} + a t$
 $v^{2} = v_{o}^{2} + 2 a (x - x_{o})$
 $g = 9.8 \text{ m/s}^{2}$