Physics 2205
 Quiz 8-Form A

26 October, 1999

1. What is the gauge pressure at the bottom of a swimming pool 3 m deep? The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
A) $3 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$
B) $2.9 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
C) $1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
D) $1.3 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
2. A wheel of radius 0.4 m takes 10 seconds to stop when decelerated at a rate of $25 \mathrm{rad} / \mathrm{s}^{2}$. What was the initial velocity of the rim?
A) $2.5 \mathrm{~m} / \mathrm{s}$
B) $100 \mathrm{~m} / \mathrm{s}$
C) $250 \mathrm{~m} / \mathrm{s}$
D) $625 \mathrm{~m} / \mathrm{s}$

Equations and constants:

$$
\begin{array}{ll}
\Delta \mathrm{P}=\rho \mathrm{gh} & \mathrm{~V}=\omega \mathrm{r} \\
\mathrm{~F}_{\mathrm{b}}=\rho_{\text {fluid }} \vee_{\mathrm{g}} \mathrm{~g} & \theta=(1 / 2) \alpha \mathrm{t}^{2}+\omega_{0} \mathrm{t}+\theta_{0} \\
\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} & \omega=\alpha \mathrm{t}+\omega_{0} \\
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
\end{array}
$$

Physics 2205
 Quiz 8-Form B

26 October, 1999

1. What is the bouyant force on a 24 kg rock of volume $0.0080 \mathrm{~m}^{3}$ at the bottom of a pool 3 m deep? The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$?
A) 78 N
B) 160 N
C) 240 N
D) none of the above
2. A wheel of radius 0.4 m slows from 25 rad/s to a halt in 10 seconds. What was its angular deceleration?
A) $-1.0 \mathrm{rad} / \mathrm{s}^{2}$
B) $-2.5 \mathrm{rad} / \mathrm{s}^{2}$
C) $-10 \mathrm{rad} / \mathrm{s}^{2}$
D) $-250 \mathrm{rad} / \mathrm{s}^{2}$

Equations and constants:

$$
\begin{array}{ll}
\Delta \mathrm{P}=\rho \mathrm{gh} & \mathrm{~V}=\omega \mathrm{r} \\
\mathrm{~F}_{\mathrm{b}}=\rho_{\text {fluidid }} \vee_{\mathrm{g}} \mathrm{~g} & \theta=(1 / 2) \alpha \mathrm{t}^{2}+\omega_{0} \mathrm{t}+\theta_{0} \\
\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} & \omega^{2}=\alpha \mathrm{t}+\omega_{0} \\
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
\end{array}
$$

