Physics 2205 Quiz 4—Form A

9 September, 1999

1. A car accelerates from 36 km/h (10 m/s) to 72 km/h (20 m/s) in 100 m. What is its acceleration?

a.
$$6.0 \text{ m/s}^2$$
 c. 1.5 m/s^2

c. 1.5
$$m/s^2$$

b.
$$2.5 \text{ m/s}^2$$
 d. 0.5 m/s^2

d.
$$0.5 \text{ m/s}^2$$

2. Susan hits a fly-ball into right field, and it stays in the air for 4.0 seconds. What was its initial velocity upward? (Assume its initial height is negligible.)

Useful equations: $x = (1/2) a t^2 + v_0 t + x_0$ $\mathbf{v} = \mathbf{v}_0 + \mathbf{a} \mathbf{t}$ $v^2 = v_0^2 + 2 a (x - x_0)$ $g = 9.8 \text{ m/s}^2$

Physics 2205 **Quiz 4—Form B**

9 September, 1999

1. If a car decelerates from 72 km/h (20 m/s) to zero in 4.0 seconds, what g-force do the occupants experience in the horizontal direction?

2. How long will it take a bomb to drop from an altitude of 1000 m to the ground? Its initial velocity is 300 m/s in the horizontal direction.

Useful equations: $x = (1/2) a t^2 + v_0 t + x_0$ $\mathbf{v} = \mathbf{v}_0 + \mathbf{a} \mathbf{t}$ $v^2 = v_0^2 + 2a (x - x_0)$ $g = 9.8 \text{ m/s}^2$

$$g = 9.8 \text{ m/s}^2$$