1. A car accelerates from 36 km/h (10 m/s) to 72 km/h (20 m/s) in 100 m. What is its acceleration?

 a. 6.0 m/s²
 b. 2.5 m/s²
 c. 1.5 m/s²
 d. 0.5 m/s²

2. Susan hits a fly-ball into right field, and it stays in the air for 4.0 seconds. What was its initial velocity upward? (Assume its initial height is negligible.)

 a. 160 m/s
 b. 40 m/s
 c. 20 m/s
 d. 5 m/s

Useful equations:
- \[x = \frac{1}{2} a t^2 + v_0 t + x_0 \]
- \[v = v_0 + a t \]
- \[v^2 = v_0^2 + 2 a (x - x_0) \]
- \[g = 9.8 \text{ m/s}^2 \]
1. If a car decelerates from 72 km/h (20 m/s) to zero in 4.0 seconds, what g-force do the occupants experience in the horizontal direction?

 a. 0.5 g c. 5 g
 b. 1.0 g d. 10 g

2. How long will it take a bomb to drop from an altitude of 1000 m to the ground? Its initial velocity is 300 m/s in the horizontal direction.

 a. 0.07 sec c. 51 sec
 b. 14 sec d. 204 sec

Useful equations:

\[x = \frac{1}{2} a t^2 + v_0 t + x_0 \]
\[v = v_0 + a t \]
\[v^2 = v_0^2 + 2 a (x - x_0) \]
\[g = 9.8 \text{ m/s}^2 \]