Name: Partner(s):
Student ID# Date:

Introductory Activities

3.1 Fill in the follwing table in order to find out how many 238U atoms would be left after 27 billion years, if you started out with 8 billion.

Time

0

Number of atoms

8 billion

4.5 • 109 yr

4 billion

9.0 • 109 yr

 

13.5 • 109 yr

 

18.0 • 109 yr

 

22.5 • 109 yr

 

27.0 • 109 yr

 

3.2 Sketch the decay of the virtual "test sample" in the space provided below.

Linear plot: Semi-log plot:













Radioactivity Data

 

RUN 1 

RUN 2 

RUN 3 

RUN 4 

RUN 5 

100 s           
100 s           
100 s           
100 s           

Average background per 100 s = _______________

Average background per 50 s  = _______________

DATA:

Time Interval 

Run 1 

Run 2 

Run 3 

Run 4 

Run 5 

Total Number of Counts 

Total Minus Background 

1 

             

2 

             

3 

             

4 

             

5 

             

6 

             

7 

             

8 

             

9 

             

10 

             

11 

             

12 

             

13 

             

14 

             

15 

             

16 

             

17 

             

18 

             

19 

             

20 

             

21 

             

22 

             

23 

             

24 

             

25 

             

26 

             

27 

             

28 

             

29 

             

30 

             

When plotting data:

1. Label axes and title the graph (underline).

2. Start the time axis at Interval 1 (t = 10 sec) and continue for 30 intervals.

3. Determine the order of the vertical (activity) axis from lowest and highest counts (2 decades).




Questions

1. The isotope Ag110 has a much shorter half-life than Ag108. Therefore, the majority of counts during the first few time intervals is due to the decay of Ag110. Pretend that all of these counts were due to the decay of Ag110, and determine its half-life from your best-fit curve. (Remember there are 10 + 1.5 = 11.5 seconds between measurements.)





2. Use your answer to #1 to determine how long you have to wait before there is only 1/32 of the original amount of Ag110. How many time intervals does this correspond to?





3. Once the amount of Ag110 is negligible (say less than about 1/32 of its initial amount), the counts are due primarily to decay of Ag108. Keeping your answer to #2 in mind, determine the half-life of Ag108 from your best-fit curve.





4. Is your result for #3 consistent with the assumption you made in #1? Why or why not?





5. Why are neutrons used in bombarding the silver?





6. Which decay products are detected by the counters?





7. Is there a maximum amount of radioactive silver which can be produced in our process? Why or why not?





8. Radioactive dating experiments assume that half-lives are constant in time and independent of physical conditions. Is this a good assumption? Why or why not?