A post-pipeline processing algorithm for Short Wavelength
Spectra from the ISO'

G. C. Sloan??, Kathleen E. Kraemer*®, Stephan D. Price?,

and

Russell F. Shipman®

ABSTRACT

We describe in detail an algorithm to generate a database of all valid SWS
full-scan spectra (2.4-45.4 ym). The algorithm is designed to process these data
in as uniform a manner as possible. It consists of a series of procedures writ-
ten primarily in the Interactive Data Language (IDL), and these procedures are
available to the community on-line.

1. Introduction

The STARTYPE program began as a series of proposals to obtain spectra with the
Short Wavelength Spectrometer (SWS) on the Infrared Space Observatory (ISO) with two
objectives: (1) to obtain spectra of as many different classes of astronomical objects as
possible and to use these as the basis for an infrared spectral classification system, and (2)
to make all full-scan spectra obtained with the SWS available to the astronomy community.

'The Infrared Space Observatory is a project of the European Space Agency (ESA), funded by ESA
Member States (especially the Principal Investigator countries: France, Germany, the Netherlands, and the
United Kingdom) and with the participation of the Institute of Space and Astronautical Science (ISAS) and
the National Aeronautics and Space Administration (NASA).

2Institute for Scientific Research, Boston College, Chestnut Hill, MA 02467

3Infrared Spectrograph Science Center, Cornell University, Ithaca, NY 14853-6801
sloan@isc.astro.cornell.edu

4 Air Force Research Laboratory, Space Vehicles Directorate, 29 Randolph Rd., Hanscom AFB, MA 01731
kathleen.kraemer@hanscom.af.mil, steve.price@hanscom.af.mil

SInstitute for Astrophysical Research, Boston University, Boston, MA 02215

6SRON, Space Research Institute of the Netherlands, Groningen, the Netherlands
russ@sron.rug.nl



-2 -

These tasks have been accomplished by Kraemer et al. (2002,hereafter Paper I)and Sloan et
al. (2003 hereafter Paper II) respectively.

As described in Paper II, the atlas of SWS spectra is available from the ISO Data
Archive (IDA). The Uniform Record Locator (URL) on the web for this site is:

http://www.iso.vilspa.esa.es/ida/index.html

This document describes in detail the algorithm which generated the atlas, and it ex-
plains how to access both the spectra which comprise the atlas and the procedures used to
generate them. The procedures which make up the algorithm are known collectively as the
swsmake code’. Paper II provides a general overview of the algorithm in the main body, and
in the appendix it elaborates over some of the details. The purpose of this document is to
relate the steps in the algorithm to the specific procedures used to enable the potential user
of the atlas to understand how the spectral files were generated, and if necessary, how to
modify the algorithm to suit their own purposes. The file swsmake.tzt, which accompanies
the software, provides detailed instructions on running the various procedures.

2. A Detailed Description of the Post-Pipeline Processing

The swsmake algorithm begins with output from the ISO Off-Line Pipeline (OLP),
version 10.1. A typical output file has a name with the format swaaNNNNNNNN. fit, a
FITS file where the string NNNNNNNN is the Time-Designated Target (TDT) number. The
TDT number uniquely identifies each observation with IS0 and is used here to distinguish
individual spectra.

2.1. Initial steps

The initial processing of the FITS data involves three programs. The initial step uses
the “First Look” program flslws developed at the Infrared Processing and Analysis Center
(IPAC) to translate the binary FITS tables of the AAR files into ASCII format. This
program is available from the IPAC website in executable form for a variety of Unix-based
or VMS-based operating systems®. IPAC requests that third parties do not distribute the
First Look software, so interested users should obtain the fislws directly from them at:

"Names of programs and procedures are indicated with italics

8We have not had a lot of success with the Linux version.



-

http://www.ipac.caltech.edu/iso/firstlook /first_look.html

Two further routines read the output from fislws, and sort it by segment, scan direction,
and detector. The program isotrim.c performs the first two tasks, separating the text file
produced by flslws into 24 files, two for each of the 12 segments, one for each scan direc-
tion. The program isosort.c sorts the data in each of these 24 files by detector number and
wavelength.

The remainder of the analysis is performed by routines written in Interactive Data
Language (IDL) in two major steps®. First, the swsmake software processes the data to
reduce each spectral segment to a single spectrum with the IDL procedure swsmakel. Second,
the software combines the 12 separate spectral segments into a single continuous spectrum
using the IDL procedure swsmake?2.

2.2. swsmakel

The swsmakel procedure saves the un-normalized spectra as a “pws” file. The swsmakel
procedure reads this file in, normalizes the segments to each other, trims the overlap, and
saves the result as a “sws” file. Both procedures write information to a “log” file which
accompanies the two data files.

The swsmakel procedure processes each of the 12 spectral segments by making 12 suc-
cessive calls to the segment procedure, which performs the following steps:

The procedure segmentread reads the files containing data in the two scan directions
and then generates a low-resolution wavelength grid (matching the wavelength spacing of
the data from a single detector) for use by the following procedures.

The procedure segmentmed generates a median spectrum for each scan direction by first
regridding all data to the low-resolution grid generated in the previous procedure and then
finding the median at each wavelength. This median is converted into a pseudo-continuum
by the elimination of all narrow spikes with a median filter, whether these spikes arise from
glitches or actual emission lines. If the minimum flux in a segment is less than 15 Jy, or the
maximum is less than 20 Jy, segmentmed sets a flag to use additive corrections in the rest of
the algorithm instead of multiplicative.

9The IDL procedures are compatible with IDL versions 5.4 or 5.5; but have not been tested with later
versions. Earlier versions of IDL will not work due to the use of new commands such as “BREAK” not
previously implemented in IDL.



— 4 —

The procedure segmentmrg combines the medians from the positive and negative scan
directions (illustrated by Fig. 3 in Paper II). For spectral segments from Bands 1-3, each
direction receives equal weight, but in Band 4 (segment 13), the lack of any memory cor-
rection requires a different approach. Only the negative scan is used, since it occurs after
the positive scan, allowing more time for recovery from any hysteresis. When both scan
directions are used, the procedure may still discard portions of one scan direction if the two
disagree by more than 20%. When this happens, it prints a statement to the log file that it
is using variable weights to combine the medians.

The median generated by segmentmrg serves multiple purposes. First, it is used to
generate coefficients to correct the spectrum from each detector and scan direction in a
spectral segment. It also serves as the basis for filtering data and estimating uncertainties
(in segmentpass and segmenterr described below).

If segmentmed has not flagged the spectrum as low-flux, then segmentmod determines the
multiplicative corrections needed to force the spectrum from each detector and scan direction
to the shape of the median spectrum. To preserve detailed features in the actual data, the
multiplicative corrections vary as a cubic function of wavelength. If the low-flux flag has
been set, then segmentmad is called instead of segmentmod. This procedure makes additive
corrections, and these corrections can only vary linearly with wavelength. The coefficients
generated by segmentmod and segmentmad for each detector and scan direction are saved
in the log file. They indicate the reliability of a detector. (For example, detectors 34 and
36 are often problematic, which is reflected in their having significantly different coefficients
compared to the other detectors.) These routines finally apply the polynomial corrections
to the original unregridded data, bringing the 24 spectra into line with each other.

Next, segmentpass determines the acceptable range of deviations of the data from the
median at each wavelength. This step is applied independently to each scan direction. The
final array of acceptable ranges is produced by taking the minimum range from both scan
direction at each wavelength. This ensures that an atomic line, which will appear in both
scan directions survives, while a glitch which simultaneously affects all detectors in one scan
direction will not.

The main procedure (segment) then combines the unregridded data corrected by seg-
mentmod or segmentmad from both scan directions into a single array, which is passed to
segmentsort. This procedure sorts the data by wavelength, rejecting data which fall outside
the range appropriate for their wavelength (as defined by segmentpass). The procedure seg-
menthigh regrids these data onto a uniform wavelength grid based on the segment number
and the speed of the observation (as detailed in Table 2). Finally, segmenterr estimates the
uncertainty at each wavelength, using data in the low-resolution grid and re-gridding these



—5—

estimated uncertainties to the higher-resolution grid generated by segmenthigh.

After all the spectra from each detector and scan direction have been combined for each
segment, swsmakel concludes by writing the results to a “pws” file. This file contains two
header lines, each of 12 integers, followed by the data in 4-column format. The first header
line contains the number of data for each of the 12 segments, and the second contains a
number for each of the segments, set to 0 if the spectra from the detectors were combined
multiplicatively and set to 1 if the corrections were additive. The remaining lines in the
file contain the wavelength (in gm) in the first column, the flux (in Jy) in the second, the
statistical uncertainty in the flux (in Jy) in the third, and the total uncertainty in the flux (in
Jy), including normalization errors, in the fourth. Because the normalizations are performed
by swsmake2 after the “pws” file is written, in the “pws” file, these are simply set to be
equal to the statistical uncertainties in column 3.

2.3. swsmake2

The swsmake2 procedure completes the post-pipeline processing by performing two
tasks. It first normalizes all the segments to their neighbors to eliminate discontinuities
in flux, and it then trims the segments to eliminate regions of overlap between them.

The swsmake2 procedure first determines the starting point for the segment-to-segment
normalization: either Band 1E or 3D (segments 4 or 11), depending on which is brighter.
The procedure then normalizes from one to the other, and then from Band 1E to Band
1A. In each case the procedure is identical. The two segments are passed to seg2segin,
which calls splice_in to determine the correction factor, which seg2segin then applies. The
correction factor is based on the average flux in the specified region of overlap. The software
determines the normalization uncertainty and propagates this from segment to segment
as the total statistical uncertainty (fourth column in the data files). The corrections will
be multiplicative or additive for bright and faint sources, respectively; the conditions are
identical to those used in swsmakel.

Normalization of Bands 4 and 3E to Band 3D suffers from the complication that the
good data in Band 3D does not overlap the other bands. Here, swsmake2 calls seg2segout,
which calls splice_out to fit polynomials to the adjacent segment and determine the correc-
tion factor by evaluating the polynomial at a specified wavelength. The uncertainties from
normalizations between Bands 1A and 3D are not propagated into Bands 3E and 4, but the
errors determined through extrapolation are usually much larger.

Calls to swsmake2 can modify the standard normalization procedure by invoking the



-6 —

parameter type. As described by Paper II, this parameter determines (1) how the normaliza-
tion of segment 13 (Band 4) to segment 11 (Band 3D) proceeds, and (2) if any wavelengths in
boundary regions need to be avoided when normalizing due to the presence of emission lines.
The values of type depend on the infrared spectral classifications defined and determined in
Paper 1. Table 5 in Paper II shows the correspondence of the type to the infrared spectral
class.

Appendix B.2. in Paper II describes the normalization applied for each value of type.
Here, we relate these to the routines called by swsmake2. Setting type=0 uses the default
extrapolation, while setting type=1 modifies the extrapolation parameters used by splice_out
to those appropriate for reddened carbon-rich dust sources, and type=2 will use parameters
appropriate to the red spectra from sources in Groups 4 and 5. Adding 10 to the type value
(10, 11, or 12) invokes the extrapolation method used by splice_out appropriate to the last
digit (0, 1, or 2), but with modified wavelength ranges to avoid the Br « line in the Band
1E/2A interface. The result of these higher type values is for seg2segin to call a modification
of splice_in (known as splice_in2) which expects two wavelength ranges instead of the usual
one so as to avoid the wavelengths affected by the emission line. For 4.PN and 4.PU sources,
we use type=11 to account for Br a and to prevent the [O IV] emission line at 25.9 pm from
affecting the Band 3D/4 normalization. Tables 4 and 5 show which values of type apply to
the different infrared spectral classes defined in Paper 1.

The normalization of segment 12 (Band 3E) to its neighbors also requires special treat-
ment due to its unstable behavior. The procedures seg2segtwo and splice_two find an average
over the wavelength ranges 26.3-27.3 um (segment 11) and 27.7-28.7 um (segment 13), then
finds the normalization for segment 12 such that its average from 27.3 to 27.7 pym fits the
mean of the averages from its neighbors.

Finally, swsmake2 calls cut which truncates data outside of the given wavelength range,
eliminating all overlaps between segments. The result is written to the “sws” file.

Three utilities are called by various programs. The utility gridlo regrids spectra from
one wavelength grid to another, using a Gaussian convolution. The utility spike uses a
median filter to identify and remove spikes. Both of these routines are called by routines
within swsmakel. Another utility, segmentavg computes the average flux of a spectrum
between two wavelengths. It is called by swsmake2 to determine the starting point for the
segment-to-segment normalization and by splice_two as part of the normalization of segment
12.



-7 -

3. Spectral data files
3.1. The preliminary SWS file (“pws”)

The results from swsmakel are saved in a file with the extension “pws”. The first two
lines of the “pws” file give the number of wavelength elements for each of the 12 spectral
segments, followed by the flag which discriminates between multiplicative and additive cor-
rections (flag set to 0 and 1 respectively). Both lines contain integers. The data follow, in
four columns of floating-point numbers: wavelength (in pm), flux (in Jy), and two columns
of uncertainties in the flux (both in Jy). The first column gives the statistical uncertainty,
while the second includes the additional uncertainty generated by the normalization process.
Since the spectral segments in the “pws” file are not yet normalized to each other, the fourth
column in a “pws” file equals the third.

3.2. The final SWS file (“sws”)

The swsmake2 procedure reads the “pws” file, normalizes the spectral segments to each
other, trims the spectra at the boundaries of the segments to eliminate overlaps, and writes
the result in a “sws” file. The format of the “sws” file is identical to the “pws” file, except
now the fourth column differs from the third where the uncertainty in the normalization is
significant.

3.3. The log file

For each TDT, a log file (“.log”) accompanies the two spectral data files. It contains
two sections written separately by swsmakel and swsmake2.

The swsmakel section includes details for each spectral segment, then a brief review giv-
ing the number of wavelength elements for each spectral segment and the flag value. For each
segment, the log gives details about the low-resolution grid used to generate a median. Then
for each scan direction (down scan first, then up scan), either segmentmod or segmentmad
will print out the polynomial coefficients used to fit spectra from individual detectors to the
median. These coeflicients can be used to determine the correction at a specific wavelength
for each detector. For additive offsets, segmentmad prints the detector number (0-11 for all
segments), the y-intercept, and the muliplicative coefficient. For multiplicative corrections,
segmentmod prints the detector number followed by the four coefficients for a cubic fit (in
order of increasing degree). The final line for each segment repeats the flag and gives the



-8 —

weight assigned to the down scan when determining the median. In addition, segmentmrg
will generate a message at the top of the segment report if it had to vary the weights as a
function of wavelength when finding the median.

The swsmake?2 section first reports how the segments were spliced together, identifying
the routine used for each neighboring set, the wavelength range used, the mode, and where
appropriate, the degree of the polynomial for extrapolation. The mode corresponds to the
flag used in swsmakel; it is 0 for multiplicative corrections and 1 for additive corrections.
For extrapolations, two wavelength ranges are printed, along with the wavelength (or wave-
length ranges) at which the extrapolations are fitted. The degree of the polynomial usually
only applies to segment 11, not segment 13. It also prints the length, flag (or mode) and
normalization of each segment, along with the estimated error for this normalization. Finally
swsmake2 prints the wavelength ranges used to trim overlaps from the segments, along with
the final number of wavelength elements retained for each.

REFERENCES
Kraemer, K. E., Sloan, G. C., Price, S. D., & Walker, H. J. 2002, ApJS, 140, 389 (Paper I)

Sloan, G. C., Kraemer, K. E., Price, S. D., & Shipman, R. F. 2003, ApJS, in press (Paper II)

This preprint was prepared with the AAS IATEX macros v5.0.



