

The James Webb Space Telescope Absolute Flux Calibration. III. Mid-infrared Instrument Medium Resolution Integral Field Unit Spectrometer

David R. Law¹ , Ioannis Argyriou² , Karl D. Gordon¹ , G. C. Sloan^{1,3} , Danny Gasman² , Alistair Glassey⁴ , Kirsten Larson¹ , Leigh N. Fletcher⁵ , Alvaro Labiano^{6,7} , and Alberto Noriega-Crespo¹

¹ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

² Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

³ Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA

⁴ UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK

⁵ School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK

⁶ Telespazio UK for the European Space Agency, ESAC, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Spain

⁷ Centro de Astrobiología (CAB), CSIC-INTA, ESAC, Carretera de Ajalvir km4, 28850 Torrejón de Ardoz, Madrid, Spain

Received 2024 September 09; revised 2024 November 21; accepted 2024 November 22; published 2025 January 13

Abstract

We describe the spectrophotometric calibration of the Mid-Infrared Instrument's (MIRI) Medium Resolution Spectrometer (MRS) aboard the James Webb Space Telescope. This calibration is complicated by a time-dependent evolution in the effective throughput of the MRS; this evolution is strongest at long wavelengths, approximately a factor of 2 at 25 μm over the first 2 yr of the mission. We model and correct for this evolution through regular observations of internal calibration lamps. Pixel flat fields are constructed from observations of the infrared-bright planetary nebula NGC 7027, and photometric aperture corrections from a combination of theoretical models and observations of bright standard stars. We tie the 5–18 μm flux calibration to high signal-to-noise ratio (S/N; \sim 600–1000) observations of the O9 V star 10 Lacertae, scaled to the average calibration factor of nine other spectrophotometric standards. We calibrate the 18–28 μm spectral range using a combination of observations of main belt asteroid 515 Athalia and the circumstellar disk around young stellar object SAO 206462. The photometric repeatability is stable to better than 1% in the wavelength range 5–18 μm , and the S/N ratio of the delivered spectra is consistent between bootstrapped measurements, pipeline estimates, and theoretical predictions. The MRS point-source calibration agrees with that of the MIRI imager to within 1% from 7 to 21 μm and is approximately 1% fainter than prior Spitzer observations, while the extended source calibration agrees well with prior Cassini Composite Infrared Spectrometer and Voyager Infrared Interferometer Spectrometer and Radiometer observations.

Unified Astronomy Thesaurus concepts: [Infrared spectroscopy \(2285\)](#); [Flux calibration \(544\)](#)

1. Introduction

Spectrophotometric (i.e., “flux”) calibration is an essential part of the calibration of any astronomical spectrometer. Accurate relative flux calibration is essential both to reliably determine the shape of a given spectrum, and for determining line ratios that encode fundamental parameters (temperature, metallicity, density, etc.) of the object in question. There are few truly absolute calibration sources, however, and in practice calibrations are typically bootstrapped from comparing observations of spectrophotometric standard stars to high-resolution models built upon extensive multiwavelength data. In the mid-infrared however this can be challenging, both because models are more uncertain, and also because even the brightest standard stars become quite faint longward of 20 μm when dispersed at moderate spectral resolution.

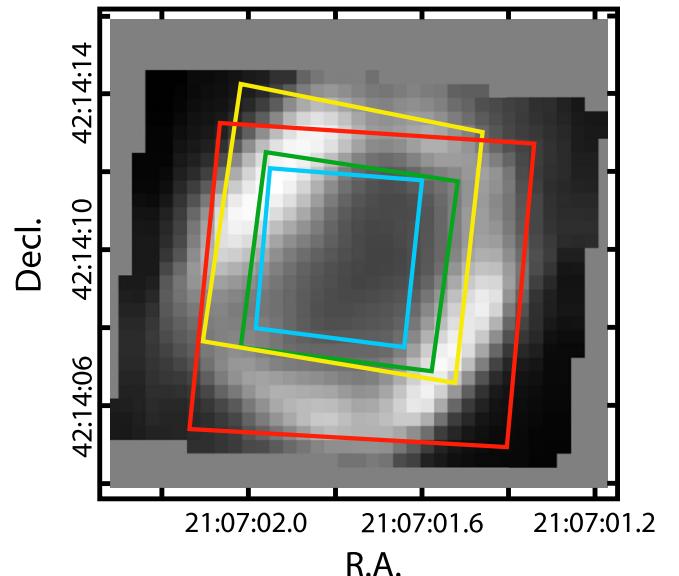
In this contribution, we discuss the calibration of the Mid-Infrared Instrument (MIRI; G. H. Rieke et al. 2015; G. S. Wright et al. 2023) Medium Resolution Spectrometer (MRS; M. Wells et al. 2015; I. Argyriou et al. 2023a) aboard the James Webb Space Telescope (JWST; J. P. Gardner et al. 2023). The MRS consists of four discrete and roughly concentric integral field units (IFUs) that jointly cover the

wavelength range 5–28 μm using a series of dichroic beam splitters. Each of these four channels is split into thirds using a pair of wheels hosting the dichroic and grating assemblies (DGAs); the three DGA wheel positions respectively select light in the first (A/SHORT), middle (B/MEDIUM), and last (C/LONG) third of light within the wavelength range covered by each of the IFU wavelength channels. Light from Channels 1–2 and 3–4 are dispersed onto the IFUSHORT and IFULONG detectors, respectively. Twelve spectral bands are thus required in order to fully cover the wavelength range 5–28 μm .

Calibration of the MRS is made challenging by a few key factors that must be accounted for in our analysis. First, even standard stars of naked-eye magnitudes ($V=5$) are faint compared to the detector noise and thermal background at the longest wavelengths (J. R. Rigby et al. 2023). Second, observations have determined that the effective throughput of the MRS varies with time, changing by more than 50% at long wavelengths over the first 2 yr of the mission. The MRS also experiences significant (tens of percent) spectral fringing from constructive and destructive interference within the MIRI detectors and other optical components; the magnitude and phase of this fringing varies rapidly with source geometry and position (see, e.g., I. Argyriou et al. 2020b). Finally, charge migration (also known as the brighter-fatter effect) results in charge spilling that can bias adjacent pixel ramps (I. Argyriou et al. 2023b; D. Gasman et al. 2024).

Original content from this work may be used under the terms of the [Creative Commons Attribution 4.0 licence](#). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

We present here the spectrophotometric calibration of the MIRI MRS in the standard JWST calibration pipeline made available by STScI. This effort incorporates calibration data obtained over the first 2.5 yr of science observations and builds upon the commissioning and ground-based calibration methodology described by I. Argyriou et al. (2023a). Unlike these early calibrations, however, sufficient data now exist to fully separate the 2D flat-field and 1D photometric response terms that were previously combined by necessity. This approach is designed to provide a general-purpose calibration that can be used for all MRS observations regardless of the astronomical target, and is thus distinct from efforts to optimize both the fringe and photometric calibration for specific point-source data (e.g., D. Gasman et al. 2023).


In Section 2 we describe our approach to flat-fielding the MRS data, combining both static models of the spectral fringing with traditional pixel flats derived via self-calibration from observations of bright nebulae. In Section 3 we characterize the MRS time-dependent throughput loss, and develop a mathematical model for the loss fraction as a function of time since launch. We discuss the adopted aperture corrections based on our latest understanding of the MRS point-spread function (PSF) in Section 4. In Section 5 we discuss our approach to calibrating the spectrophotometric response in MRS Channels 1–3 ($\lambda < 18 \mu\text{m}$) using observations of bright spectrophotometric calibration standard stars. These stars are too faint to derive reliable calibrations at longer wavelengths, and in Section 6 we describe our hybrid approach to flux calibration for MRS Channel 4 (i.e., $\lambda > 18 \mu\text{m}$) using observations of bright red targets. We assess the repeatability of our calibration in Section 7 and discuss cross-calibration against other JWST instruments and missions in Section 8.

Throughout this work we use Build 11.0 of the JWST calibration pipeline (H. Bushouse et al. 2022), corresponding to jwst software tag 1.15.1 and CRDS reference file context 1276.

2. Flat Fields

As discussed by G. H. Rieke et al. (2015) and M. E. Ressler et al. (2015), the MIRI MRS uses a pair of 1024×1024 arsenic-doped silicon impurity band conduction detector arrays to record the light dispersed by the spectrometer optics. The relative response of individual pixels in these arrays must be calibrated prior to deriving a single 1D wavelength-dependent photometric calibration vector for each band. In the JWST science calibration pipeline (H. Bushouse et al. 2022) these calibration flat fields have two components: a static fringe flat representing the periodic amplitude modulations resulting from interference within the instrument for a uniformly illuminated extended source, and a pixel flat representing the relative area of each pixel on the sky convolved with the individual pixel responsivity.

Both “fringe flats” and “pixel flats” have been derived via self-calibration from observations of the bright planetary nebula NGC 7027 (Figure 1). This source was observed in JWST observing Cycles 1 and 2 (Program ID (PID) 1523 and 4489, respectively) using a 3×3 mosaic and a two-point dither pattern optimized for extended sources at each tile location, providing a total of 18 individual pointings per cycle across the nebula. A similar set of observations of planetary nebula NGC 6543 was obtained in commissioning (PID 1031 and 1047; see I. Argyriou et al. 2023a) and used to derive the initial commissioning fringe flats, although the signal-to-noise ratio

Figure 1. $18.5 \mu\text{m}$ image of NGC 7027 (gray scale) created from a 3×3 mosaic of MRS Channel 4A observations from PID 1523. The blue, green, yellow, and red rectangles represent the single-tile MRS fields of view for Channels 1, 2, 3, and 4 respectively.

(S/N) of these data was typically not as high as the NGC 7027 observations.

2.1. Fringe Flats

The process of deriving static fringe flats from observations of NGC 7027 is described in detail by N. Crouzet et al. (2024). These fringe flats characterize the interferometric fringing of the MRS detectors for uniform, spatially extended illumination in each of the 12 spectral bands.

These flats will thus never be perfectly representative for any astronomical scene, as deviations from uniform illumination will result in a slightly different fringing pattern (I. Argyriou et al. 2020b). In practice though they are sufficiently close for most extended sources that their application significantly reduces the amplitude of fringing artifacts. Point sources, however, have a sufficiently different fringing pattern that alternative methods are required to satisfactorily remove them from the data (see discussion in Section 5).

2.2. Pixel Flats

While the fringe flats correct for periodic amplitude modulations due to reflections of infrared light within the detectors, the pixel flats correct for variations in the projected detector pixel area and responsivity at fixed wavelength. These pixel flats are derived via self-calibration in an iterative process using our 18 different pointings within NGC 7027.

Since the JWST data are calibrated to units of surface brightness (MJy sr^{-1}), the largest single term in the pixel flat field is the relative solid angle of each pixel projected onto the sky. Our first-pass pixel flat is thus derived by using the MRS distortion solution (P. Patapis et al. 2024) to compute the footprint of each pixel in square arcseconds, and normalizing by the median pixel footprint in a given band. This gives flat fields in which the effective pixel responsivities range roughly $\pm 10\%$ about unity, with strong systematic trends from slice to slice and within slices following the distortion solution. We then iterate upon this solution in order to both refine the

nominal pixel areas and take into account the detector-based differences in pixel responsivity.

Each observation was thus processed through the JWST calibration pipeline⁸ up to and including application of the fringe flat (Section 2.1), and then flat fielded using our first-pass pixel flat field. No photometric calibration was applied prior to using the JWST 3D drizzle algorithm (D. R. Law et al. 2023) to combine the dithered observations into a composite data cube in units of flat-fielded Digital Numbers (DN) s^{-1} . We then computed the ratio between the individual flat-fielded pixel values and the composite data cube interpolated to the spatial and spectral coordinates of those pixels. We median combined these values across all 36 exposures (18 per cycle)⁹ to obtain a set of correction factors that we then multiplied by the first-pass flat field to determine our second-pass flat field.

This process was then iterated again, using the second-pass flat field to compute a new composite data cube and derive a second set of corrections to produce the third-pass flat field. During this step we compute the rms scatter between the interpolated cube spaxels at each wavelength and the immediately adjacent four spaxels; if this rms is more than 20% of the derived value we ignore this data point when averaging across the different observations. This excludes the most uncertain values where the on-sky intensity distribution is changing rapidly (e.g., in Channel 4 where the field of view extends beyond the edge of the nebula for some mosaic tiles). This iterative approach converges rapidly, with corrections in the second-pass flat field of about 2% on average, and corrections in the third-pass flat field of about 0.5%.

While this method works well at continuum-dominated wavelengths where the nebula varies smoothly both spatially and spectrally, it is unreliable in the vicinity of emission lines for which undersampling can severely bias the recovered surface brightness comparisons.¹⁰ We therefore patch such spectral regions (and others affected by a variety of detector artifacts) in these “dirty” flats by hand, interpolating from nearby spectral regions to fill in the missing information. This interpolation respects visible trends with spatial position along a given slice and known odd or even row and column variations. Additionally, we trim unreliable edge pixels within each slice, using only those pixels with 50% or greater relative responsivity to ensure that low-throughput pixels do not contaminate the final data cubes. Figure 2 shows the final “clean” pixel flat for Channel 2A and illustrates the typical features of the flat field and the necessity for interpolating over spectral emission features in the nebula.

Using the rms difference between the flat-field corrections provided by the 36 individual exposures, it is possible to estimate the uncertainty in the final flat field for each pixel. This uncertainty is typically about 1.5% in Channels 1–3, and about 4% in Channel 4. Empirically, we have found that these uncertainties are fairly accurate via an analysis of the noise properties of calibrated MRS standard star spectra (Section 8), indicating that flat-field uncertainties can be a limiting factor for the effective S/N of very bright targets. At present it is

⁸ Including, crucially, the stray-light correction step which both corrects for the MRS cross artifact (see Figure 4 of I. Argyriou et al. 2023a) and the residual pedestal dark current (see Section 2.5.1 of J. E. Morrison et al. 2023).

⁹ We combined the observations from Cycle 1 and Cycle 2 as there is no clear evidence for evolution between the two.

¹⁰ Since NGC 7027 is extremely highly ionized, these lines include both H I transitions (e.g., H I 6–5) as well as species such as [Ar V] and [Ne IV]; see the discussion by J. Bernard Salas et al. (2001).

unclear why the flat fields have this limiting uncertainty and whether it is due to our choice of calibration target/method or some innate property of the MRS detectors (e.g., the changing fringe signal between different pointings).

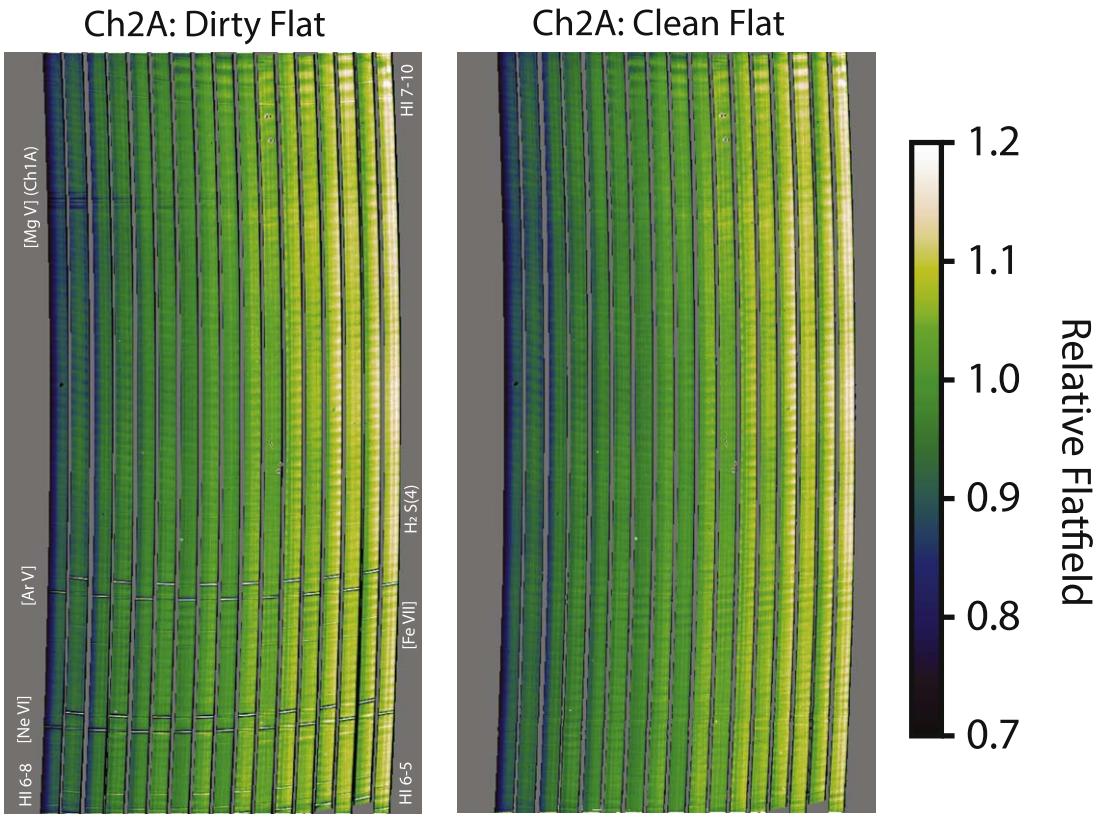
Unfortunately, it was not possible to derive new pixel flat fields for Channels 1A and 1B due to the limited S/N provided by NGC 7027 in these wavelength bands. We therefore continue to use the ground-based pixel flats described by I. Argyriou et al. (2023a) in these two bands.¹¹ This represents a trade-off in flat-field quality; while the ground-based flats had extremely high statistical accuracy given the brightness of the extended blackbody calibration source, they may have systematic biases resulting from the different cone angle and large-scale illumination patterns. Likewise, the substantially different fringe patterns observed between on-sky and internal calibration lamp observations limits the utility of such data for improving our understanding of the flat field appropriate for typical science observations.

2.3. 11.6 μm Artifact

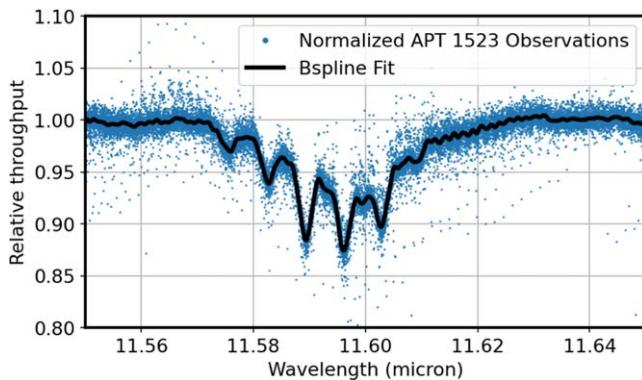
The Channel 2C pixel flats include an additional correction for a throughput artifact in the 11.55–11.65 μm wavelength range (shown in Figure 3).¹² This artifact has been unambiguously identified as due to germanium oxide (GeO) absorption in blocking filter BF2 (M. Wells et al. 2015), which is the only element in the Channel 2 optical path that includes a significant path length of germanium. This feature is not seen in Channel 3A data covering a similar wavelength range, since a blocking filter is not used in Channel 3.

While this feature might more obviously be incorporated into our photometric calibration vector, its high-frequency nature lends itself to better correction in the 2D pixel flat field, allowing the photometric calibration vector to vary smoothly with wavelength. We fitted the artifact with a high-frequency cubic basis spline (b-spline; C. de Boor 1977),¹³ evaluated at the wavelengths of each detector pixel in order to derive the necessary correction.

3. Time-dependent Count Rate


During the first year of observations, we discovered that the MIRI MRS (and to a lesser degree the MIRI imager; K. D. Gordon et al. 2025) has a significant time-dependent loss in the detector count rates produced by a fixed input signal. This effective throughput loss was not observed during ground testing or accounted for in the initial calibration vectors derived during commissioning (I. Argyriou et al. 2023a), and has been a significant complicating factor in deriving a reliable flux calibration for the MRS. We characterize this loss by comparing regular monthly observations of the MRS internal calibration lamps in all 12 spectral bands (JWST PIDs 1518, 4484, and 6612 for Cycles 1, 2, and 3, respectively) to identical observations obtained during commissioning on 2022 April 11 (JWST PID 1012).

In Figure 4 we plot the ratio of the calibration lamp spectra (in units of DN s^{-1}) observed in 2023 June and 2024 April to


¹¹ I. Argyriou et al. (2023a) combine the flat-field and photometric response vectors into a single 2D reference file; we divide out a 1D spline fit to their wavelength-dependent photometric response to leave just the pixel flat fields.

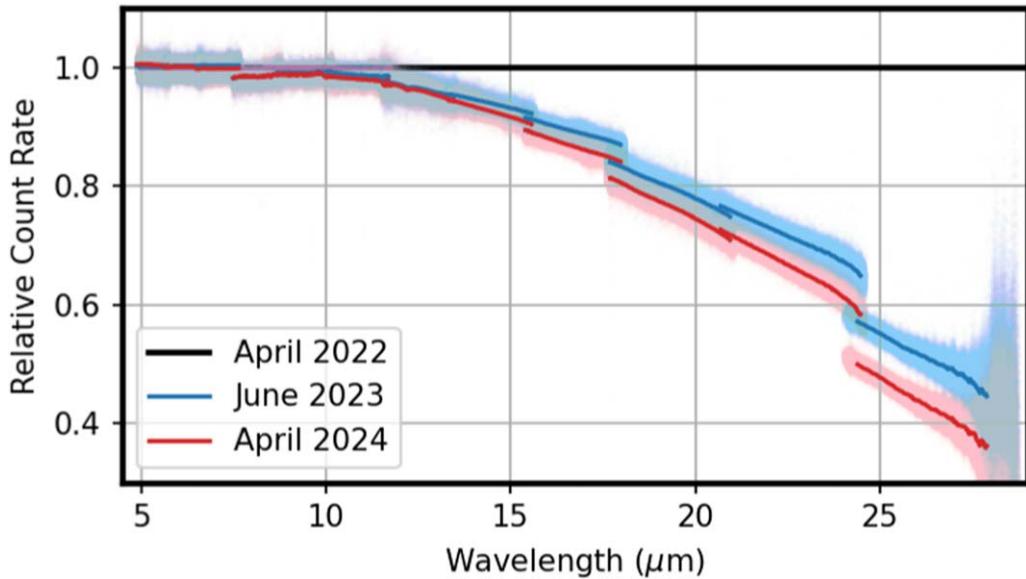
¹² While initially discovered in flight, this feature has been found to be consistent with ground test data as well.

¹³ We use the PyDL package (B. A. Weaver et al. 2024) implementing spline fitting functions used extensively by the Sloan Digital Sky Survey (e.g., A. S. Bolton & S. Burles 2007; D. R. Law et al. 2016).

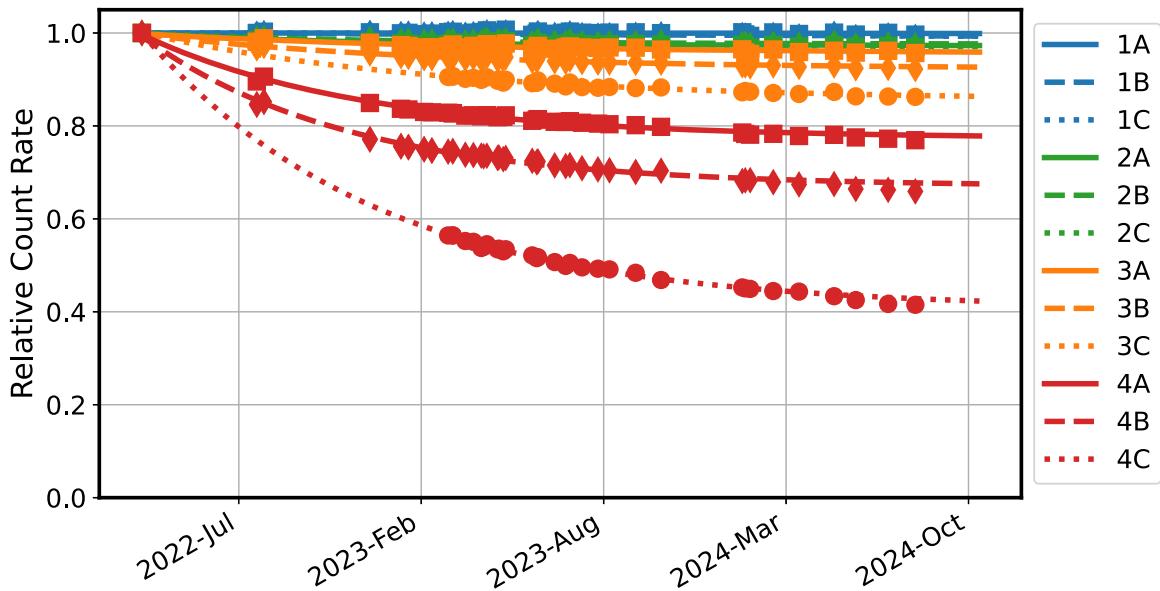
Figure 2. Pixel flat field for MIRI MRS Channel 2A (7.51–8.77 μm) derived from observations of the planetary nebula NGC 7027. Note the narrow artifacts in the “dirty” flat (left panel) due to bright emission lines within the nebula that are patched to create the final “clean” flat (right panel). Prominent spectral artifacts are labeled; dark artifacts near the top of the detector are due to extremely bright [Mg V] emission in Channel 1A on the other half of the detector. Large-scale variations in flat-field values between and across slices are due to differences in the effective pixel area, while bright (dark) periodic spectral banding in the vertical (dispersion) direction are due to the pixel flat fixing some residual fringing signal not fully corrected by the fringe flat.

Figure 3. Channel 2C spectrum of NGC 7027 (blue points) normalized by a continuum fit that interpolates over the 11.55–11.65 μm wavelength range. All detector pixels are plotted individually according to their native wavelength solution, resulting in a dramatic oversampling of the spectrum compared to the nominal spectral resolution of the instrument. The resulting spectrum (nicknamed the “bear claw”) shows strong evidence for systematic absorption due to GeO. The solid black line represents the cubic b-spline fit incorporated into the pixel flat field.

the original 2022 April observations.¹⁴ The throughput loss is most pronounced at longer wavelengths, with observations at $\lambda = 25 \mu\text{m}$ producing roughly 50% of the count rate on the detector in 2024 April as in 2022 April. The loss spectrum is


generally smooth with no evidence for spectral features resolvable by the MRS ($R \sim 3000$) that might be indicative of water ice contamination. There are, however, discrete jumps at fixed wavelengths between adjacent spectral bands. At $\lambda = 24.5 \mu\text{m}$, for instance, Channel 4B had experienced about a 40% loss of throughput relative to commissioning while Channel 4C had experienced about a 50% loss. The root cause of this decrease in effective throughput is most likely space weathering caused by postlaunch high-energy cosmic-ray impacts. These differences between bands then at least partially implicate the subband-specific optics in the DGA wheels, while the contribution of other components (including the detectors) are also under investigation.

This decrease in effective throughput is not only smooth with wavelength within each spectral band, but with time as well. Figure 5 shows the relative count rate at the median wavelength within each spectral band as a function of time since the original commissioning observation. As in Figure 4, the change is most pronounced at long wavelengths, but at all wavelengths we observe an asymptotic levelling off of the throughput over time. While Channel 4B lost 18% effective throughput in the first 6 months, it has lost just 1% in the 6 months prior to 2024 April. We therefore model the time-dependent instrument throughput T using an empirically motivated function of the form


$$T = T_0 e^{(-b |t - t_0|/\tau)} + c, \quad (1)$$

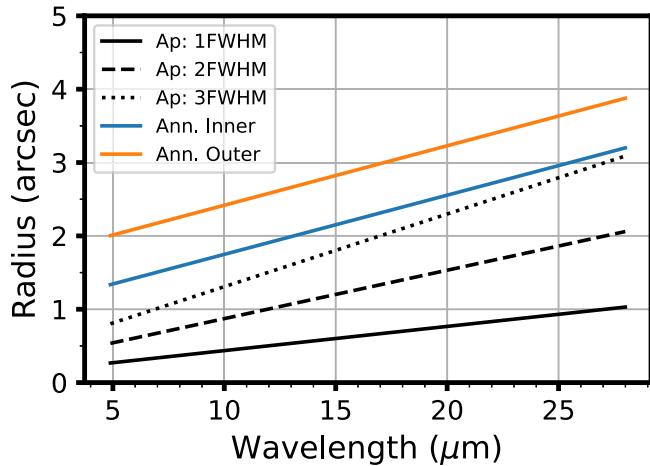
where t is the modified Julian date (MJD) of the observation, $t_0 = 59680$ is the MJD corresponding to 2022 April 11, and

¹⁴ These spectra have been additionally processed to remove residual fringing artifacts and any spatial variations due to slitmask contaminants, and isolate only the wavelength-dependent loss at high S/N.

Figure 4. Ratio of the count rate produced by identical observations of the MRS internal calibration lamps in 2023 June (blue points) and 2024 April (red points) to observations obtained in 2022 April. Light blue and red points indicate individual detector pixels, while the dark blue and red lines represent b-spline fits to the blue points at the spectral resolution of the MRS. The discontinuities at overlapping wavelength ranges represent jumps between individual spectral bands.

Figure 5. Relative count rate produced over time from identical observations of the MRS internal calibration lamps at the median wavelength of each of the 12 MRS spectral bands 1A–4C. Solid points show measured values while solid and dotted-dashed lines indicate the empirical model fits. Large gaps in time coverage appear when the MRS was offline in Fall 2022 for investigation of a (likely unrelated) grating wheel anomaly, and in Winter 2023 when multiple observations failed for unrelated reasons. Band “C” monitoring observations are missing prior to 2023 March due to an error in the PID 1518 program configuration, which complicates the fitting of a loss model without the corresponding Fall 2022 points.

$\tau = 100$ days is a characteristic time constant. T_0 , b , and c are all unknown constants to be constrained by observations. We calculate such models first for all data within each of the 12 wavelength bands to bound reasonable ranges for parameters T_0 , b , and c , and then repeat this fit for 10 equally spaced wavelength bins within each of the bands in which the parameters are allowed to vary only slightly about the initial solution.


By interpolating these models to the MJD of a given observation, and the wavelength of each detector pixel within each spectral band, we can therefore correct all MRS data back to the zeroth day count rate that they would have produced on 2022 April 11. The JWST calibration pipeline is designed to

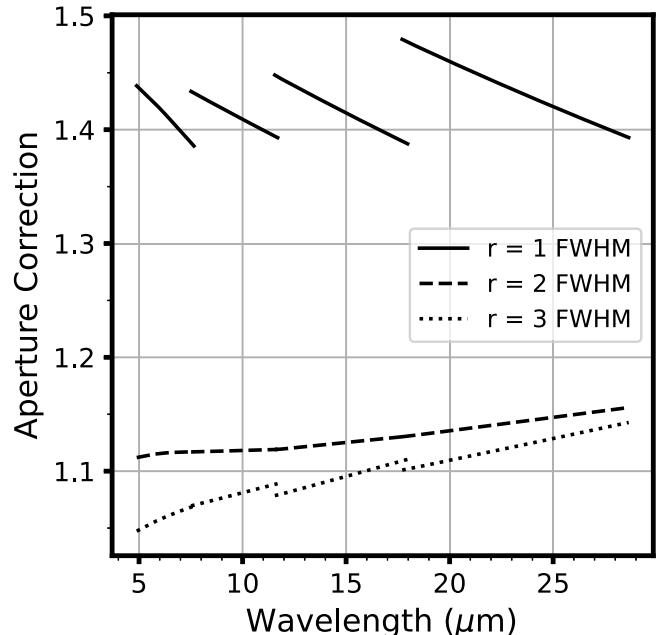
automatically apply this correction to all observations as part of the photometric calibration step.

In practice, our understanding of the count-rate loss continues to evolve, and periodic updates are made to the model coefficients as additional observations allow us to better constrain the loss function.

4. Aperture Correction

The field of view of the MRS is relatively small compared to the size of the PSF, particularly in Channel 4 (field size 7'' versus PSF FWHM 1'' at 25 μ m). At the same time, a relatively high thermal background necessitates the use of annular background

Figure 6. Default extraction aperture radius (blue line), and inner and outer background annulus radii (orange and green lines, respectively) for MRS point-source spectral extraction.


subtraction within this field to obtain reliable background-subtracted fluxes for observations of point sources. Correction factors for the finite size of the extraction aperture and the fraction of the PSF removed via the annular background subtraction¹⁵ are thus essential for proper flux calibration of the resulting data.

The JWST pipeline applies traditional imaging aperture photometry for point-source observations, performing circular aperture extraction and annular background subtraction at each wavelength plane of the 3D data cubes. Both the aperture extraction radius and inner and outer radii of the background annulus grow linearly with wavelength, resulting in a tapered conical aperture as the effective MRS PSF changes by roughly a factor of 5 due to diffraction over the 5–25 μm wavelength range (Figure 6). The default radius is chosen to be twice the PSF FWHM to minimize resampling artifacts (see discussion by D. R. Law et al. 2023), while the annular background region is chosen to be as large as possible while still fitting within the MRS field of view for a single pointing.

We used high-resolution models of the MRS PSF (P. Patapis et al. 2024, in preparation) to derive the necessary correction factors at the default extraction radius $r = 2$ FWHM, and find values of about 10%–15% (dashed line in Figure 7).¹⁶ We also estimated the relevant aperture-correction factors for nonstandard aperture radii ranging from $r = 0.5$ to 3.0 FWHM using a combination of high-resolution models and on-sky observations of bright point sources. The JWST calibration pipeline automatically interpolates between this grid of correction factors for any arbitrary radius within this range. As illustrated in Figure 7, some of these correction factors are discontinuous between spectral channels since the differences in spatial sampling have an appreciable impact on the structure of the reconstructed PSF in the data cubes.

5. Photometric Calibration: Channels 1–3

With flat fields, the time-dependent count-rate loss, and aperture-correction factors taken care of, we derived the 1D photometric calibration vector necessary to convert instrumental

Figure 7. MRS aperture-correction factors for point-source aperture photometry with extraction radii of 1, 2, and 3 times the PSF FWHM. Approximately 5%–10% of the total flux is lost outside the IFU field of view.

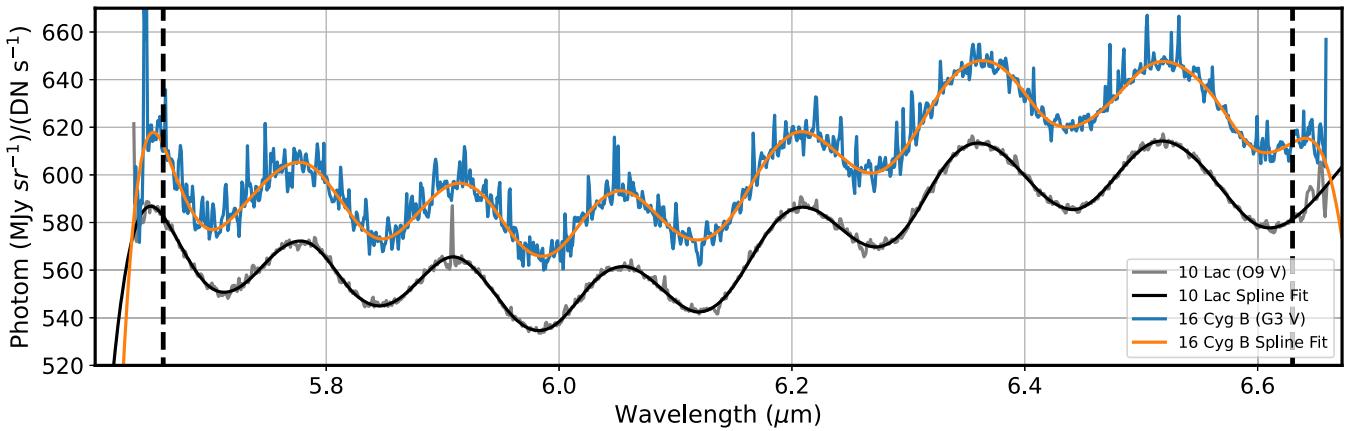
count rates in flat-fielded DN s^{-1} to physical units of MJy sr^{-1} for each spectral band. We discuss first the case of Channels 1–3 ($\lambda < 18 \mu\text{m}$), for which current JWST spectrophotometric calibration stars sufficed to obtain a reliable calibration.

5.1. Photometric Calibration

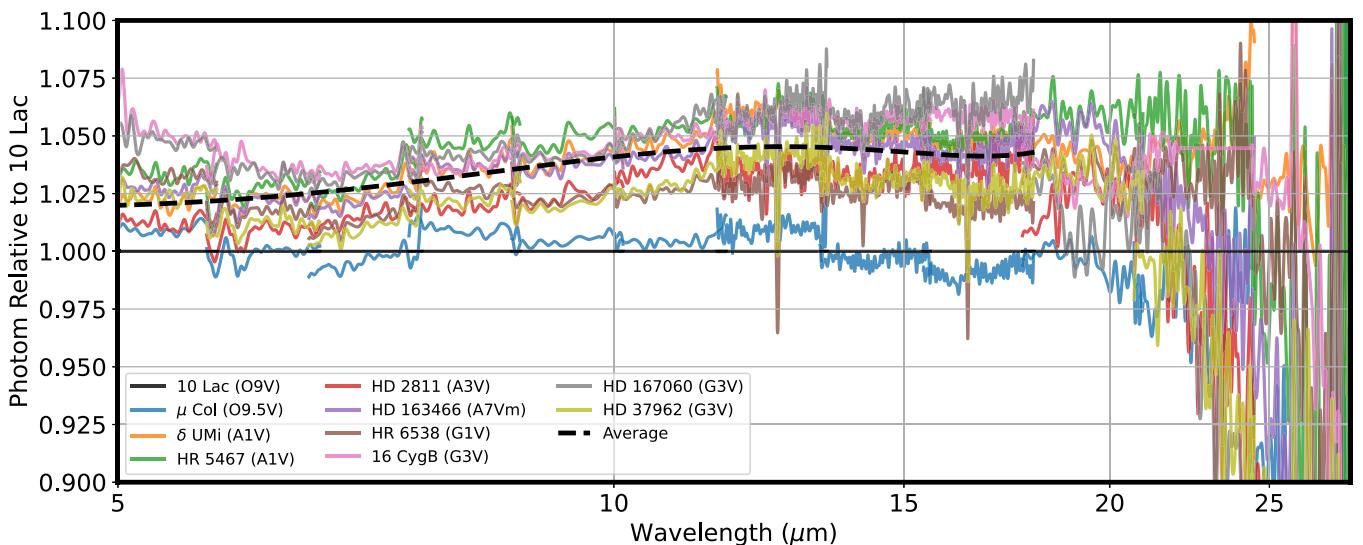
Table 1 lists the 10 different calibration stars selected from K. D. Gordon et al. (2022) that have been observed in all of the MRS wave bands. Nine of these stars were observed as part of the formal cross-instrument flux calibration program (Cycles 1 and 2 program IDs 1536, 1538, 4496, 4497, and 4498) and used a standard four-point dither pattern optimized for point sources at all wavelengths. One additional target was obtained as part of the MRS geometric distortion and PSF calibration program (program ID 1524), which dithered the bright O9 V star 10 Lac using a customized 57-point dither pattern designed to characterize the distortion solution throughout the field of view (P. Patapis et al. 2024).

We processed each set of observations through the standard CALWEBB_DETECTO1 pipeline to produce rate images in units of DN s^{-1} for each exposure, and through the CALWEBB_SPEC2 pipeline up to and including the stray-light, static fringe, and pixel flat-field calibration steps. As in Section 2.2 the stray-light step includes subtraction of a kernel-convolved model for the detector scattered light (i.e., the “cross artifact”), along with subtraction of the residual pedestal dark current determined from the median count rate in the region between the two MRS channels on each detector that sees no direct light from the sky. This latter correction is essential as the pedestal can be $\sim 0.3 \text{ DN s}^{-1}$, which is comparable to the signal from the thermal background in Channel 4 ($\sim 0.4\text{--}1.0 \text{ DN s}^{-1}$).

After these standard steps, we applied the time-dependent count-rate correction derived in Section 3 to correct all observations back to the zeroth day count rate that they would have produced on 2022 April 11. After this step we combined


¹⁵ Typically about 0.5% for Channels 1–2, 1% for Channel 3, and 2% for Channel 4; see Figure 15 of I. Argyriou et al. (2023a).

¹⁶ The aperture-correction factors shown here correspond to the `jwst_mir-i_apcorr_004—007` reference files available on CRDS (<https://jwst-crds.stsci.edu/>).

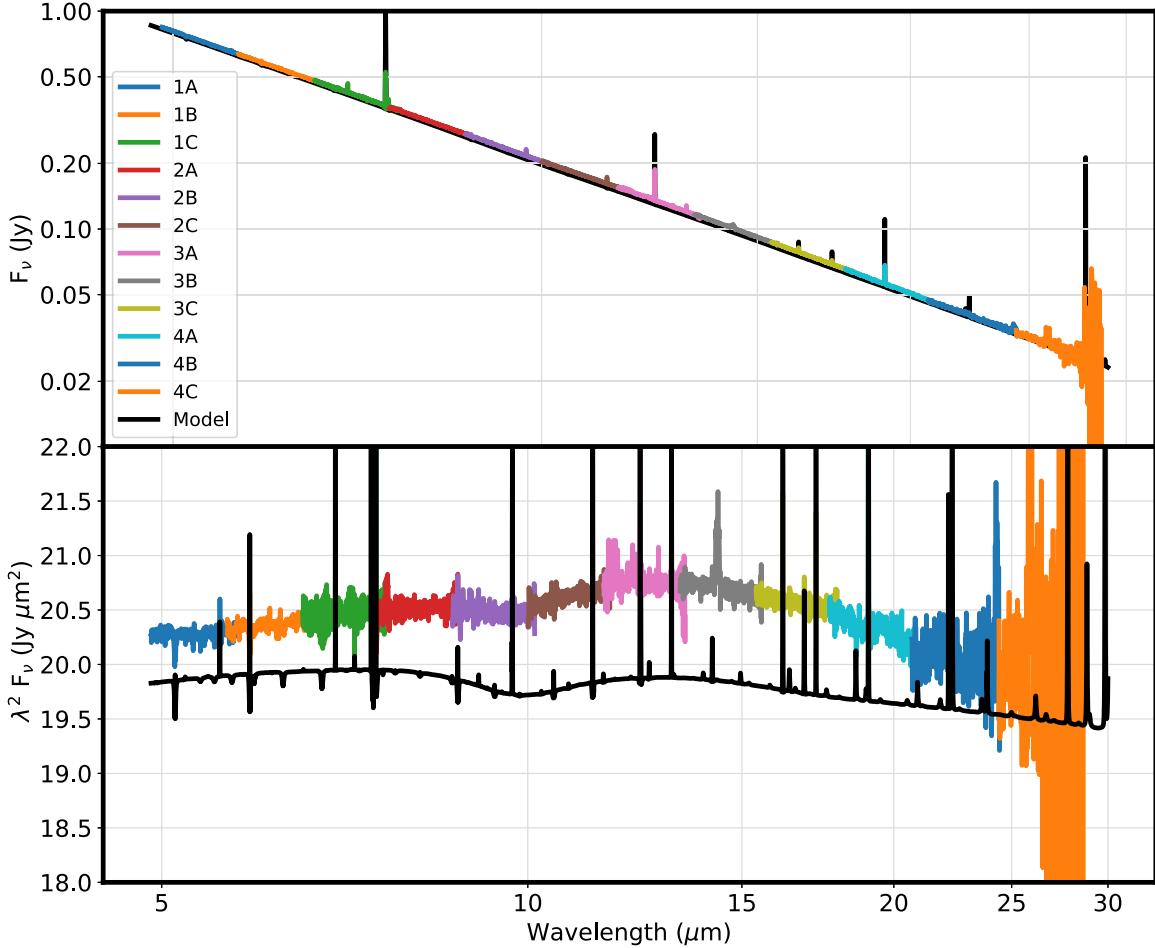

Table 1
Photometric Calibration Observations

Source	Type	PID	Observation	Date	CALSPEC Version	S/N ^a											
						1A	1B	1C	2A	2B	2C	3A	3B	3C	4A	4B	4C
10 Lac ^b	O9 V	1524	16	2022 Jul	5	975	1190	302	656	621	703	894	995	752	476	208	35
μ Col	O9.5 V	4497	4	2023 Dec	5	543	654	249	346	404	402	342	351	315	118	52	10
δ UMi	A1 V	1536	24	2023 Apr	5	453	536	374	376	444	439	584	716	659	445	214	45
HR 5467	A1 V	4496	9	2024 Mar	4	534	639	431	335	422	379	304	364	341	128	54	9
HD 2811	A3 V	1536	22	2022 Nov	5	501	539	344	340	393	337	399	362	257	157	51	10
HD 163466	A7 Vm	1536	23	2023 Mar	4	635	722	373	365	502	392	399	411	316	214	73	13
HR 6538	G1 V	4498	11	2024 Jun	7	98 ^c	265	365	365	470	383	299	389	347	119	59	11
16 Cyg B	G3 V	1538	1	2022 Aug	5	84 ^c	244	397	390	508	422	421	504	542	202	182	42
HD 37962	G3 V	1538	2	2023 Mar	9	99 ^c	364	431	450	458	377	387	418	339	186	77	13
HD 167060	G3 V	1538	3	2022 Aug	6	96 ^c	282	340	374	388	345	356	346	265	164	57	15
515 Athalia	Asteroid	1549	6	2023 Apr	...	13	43	127	252	377	485	727	799	737	658	464	165
SAO 206462	YSO	1282	55	2022 Aug	509	659	943	711	713	310

Notes.^a Bootstrapped S/N per wavelength element.^b Observed with a 57-point dither pattern to constrain distortion model during Cycle 1.^c Bootstrapped estimates are low due to CO band features in the spectrum.

Figure 8. Photometric calibration vectors for Channel 1B derived from observations of O9 V star 10 Lac and G3 V star 16 Cyg B. Gray and blue lines show the ratio of the model to observed stellar spectrum for 10 Lac and 16 Cyg B, respectively, while the black and orange lines show the basis-spline fits. The dashed vertical lines indicate the wavelength limits used by the standard pipeline to build spectral cubes for this band; outside these limits partial spatial coverage of the field makes the spectra unreliable. The vertical offset between calibration vectors derived from 10 Lac vs. 16 Cyg B is real. The emission feature in the 10 Lac spectrum at 5.908 μm is the H I 9–6 (Humphreys γ) transition.

Figure 9. Relative photometric calibration vectors of individual stars (colored lines) compared to that found for 10 Lac. Larger values correspond to stars that are fainter than the model and thus need larger correction factors to bring into agreement; note that discontinuities can occur between spectral bands. The dashed black line shows a low-order polynomial fit to the average of all 10 stars at $\lambda < 18 \mu\text{m}$; we adjust the calibration vector derived from 10 Lac by this model average.


the resulting data into data cubes for each of the 12 individual bands using the 3D drizzle algorithm (D. R. Law et al. 2023), and extracted 1D spectra from these cubes using the standard 1D aperture extraction with annular background subtraction and aperture correction at each wavelength plane (see Section 4). We use the default conical apertures in which the extraction radius is equal to twice the PSF FWHM (see Figure 6), and apply the optional arguments “ifu_autocen” to ensure that the extraction aperture is precisely centered on the star in each data cube and “ifu_rfcorr” to apply the 1D residual fringe correction (P. Kavanagh et al. 2024, in preparation). The results are uncalibrated source spectra, and the ratio between these and the corresponding stellar spectral model gives a (noisy) spectrophotometric calibration vector.

We adopted the latest STScI CALSPEC spectral models (Table 1; R. C. Bohlin et al. 2014, 2022)¹⁷ for our analysis. The corresponding ratios between the uncalibrated spectra and the

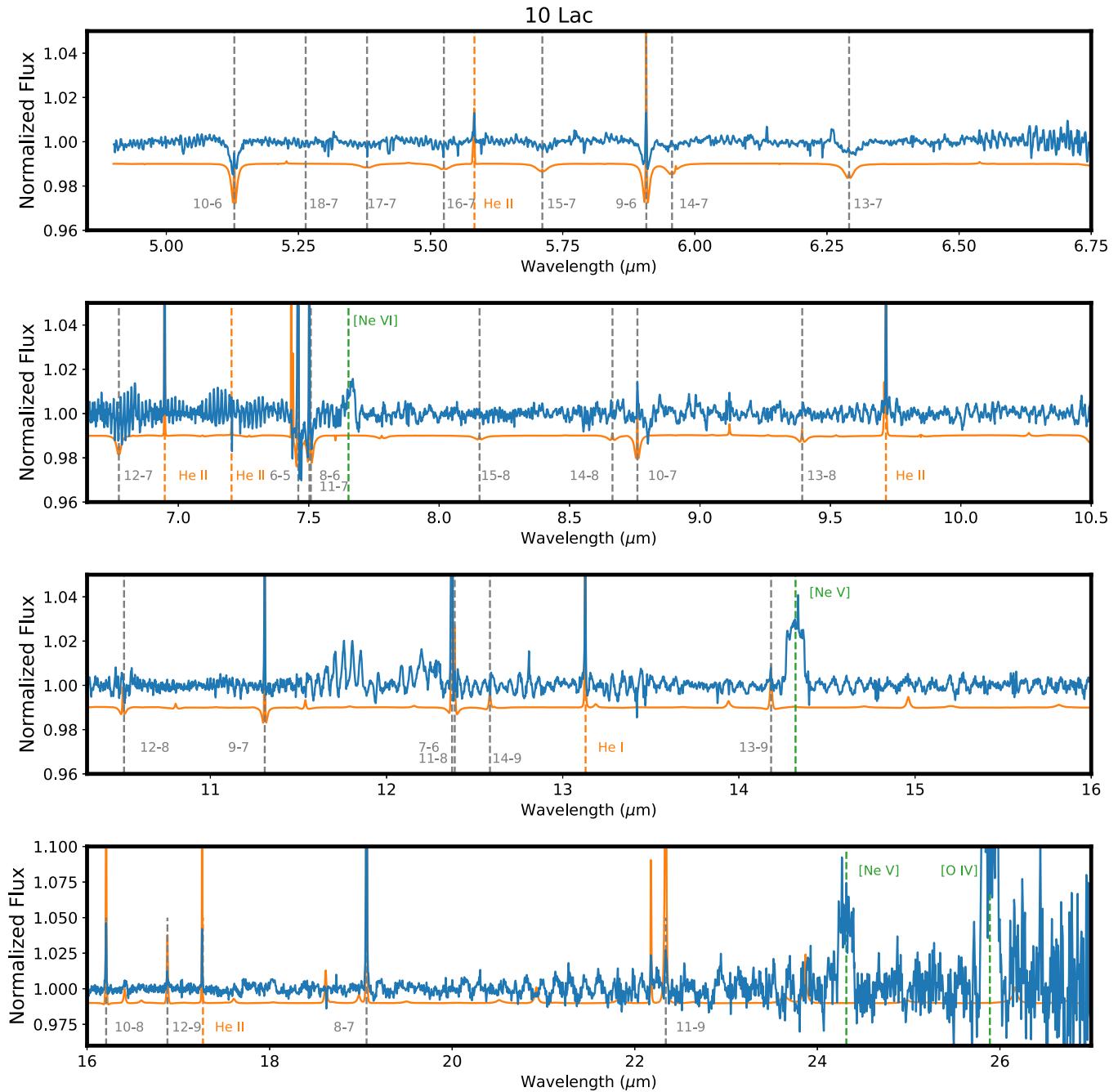
CALSPEC models are shown in Figure 8 for the example case of 10 Lac and 16 Cyg B in Channel 1B. As illustrated in this figure the direct ratio of uncalibrated spectra and CALSPEC model is noisy, and also shows periodic modulations in some bands due to low-frequency fringing caused by buried contacts in the detector that are not currently corrected by the static fringe flats (I. Argyriou et al. 2020a).¹⁸ We therefore fit this ratio with a basis-spline function to determine the best-fitting calibration factor for each star. We use the minimum number of spline break points necessary to convincingly fit broad variations in the spectral response function while iteratively rejecting and interpolating over narrow spectral features and any residual fringing artifacts. Likewise, we use these response functions to define the default wavelength cutoffs used for IFU cube building in the JWST pipeline, trimming those wavelengths where the calibration vectors from different stars start to diverge rapidly (dashed vertical lines in Figure 8).

¹⁷ <https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/astronomical-catalogs/calspec>

¹⁸ In the future, this periodic component may instead be incorporated into the fringe flats.

Figure 10. Flux-calibrated spectrum of O9 V star 10 Lac. Individual colored segments represent spectra from specific MRS bands while the solid black line represents the CALSPEC model. Note that the 10 Lac spectrum deviates systematically from the model as the MRS photometric calibration is normalized to the average of all standard stars.

Table 1 shows that the effective S/Ns¹⁹ of these 10 stars can vary considerably in different bands. The spectrum of 10 Lac has by far the highest S/N (typically 600–1000 throughout Channels 1A–3C; see also Figure 8) thanks to its intrinsic brightness, total integration time, and 57-point dither pattern marginalizing any flat-field systematics across the entire field of view. We therefore derive our initial Channel 1A–3C response function from the 10 Lac calibration vector as the bright O dwarf spectrum contains only moderate spectral features easily interpolated over by the spline routine.


Despite the high S/N of the 10 Lac spectrum, model predictions for any individual star typically have systematic uncertainties $\sim 2\%$ (R. C. Bohlin et al. 2014). Indeed, the calibration vectors derived from each of the different stars (Figure 9) show clear systematic offsets in addition to higher frequency variations due to differences in the spline model fit to the noisier spectra. We therefore fit a low-order polynomial to the average response vectors of all 10 stars (dashed black line in Figure 9), and multiply the 10 Lac calibration vector by this polynomial in order to obtain the final calibration vector for each band.

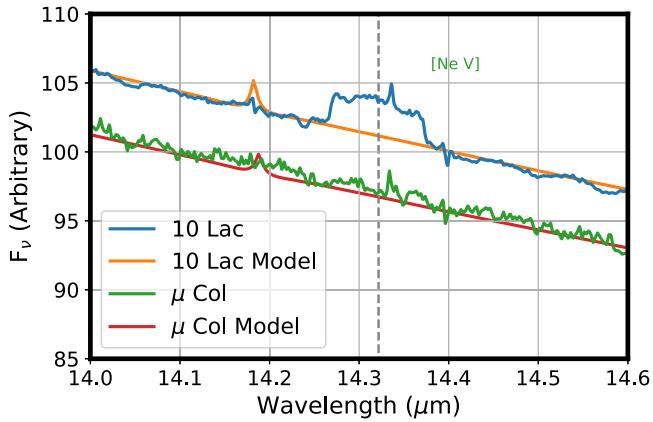
¹⁹ Estimated from a bootstrapped analysis of the spectra themselves by calculating the rms variations when the calibrated spectrum is divided by a moderate-order basis-spline fit to the spectrum to remove spectral features and any leftover residual fringing.

The resulting spectrophotometric calibration vectors are combined with the time-dependent loss models for each band and applied together by the JWST calibration pipeline during the flux calibration step in the CALWEBB_SPEC2 pipeline. The corresponding flux-calibrated spectrum of 10 Lac is shown in Figure 10, and the continuum-normalized spectrum in Figure 11 (see the Appendix for flux-calibrated spectra of the other nine stars in our sample). As was known from prior Spitzer Infrared Spectrograph (IRS) observations (W. L. F. Marcolino et al. 2017), the hydrogen emission lines present in 10 Lac are relatively weak and the spectrum is otherwise smooth and regular (with the exception of some broad emission-line features that we discuss in Section 5.2) with no obvious red excess longward of $18\ \mu\text{m}$ indicating an unresolved dust disk.

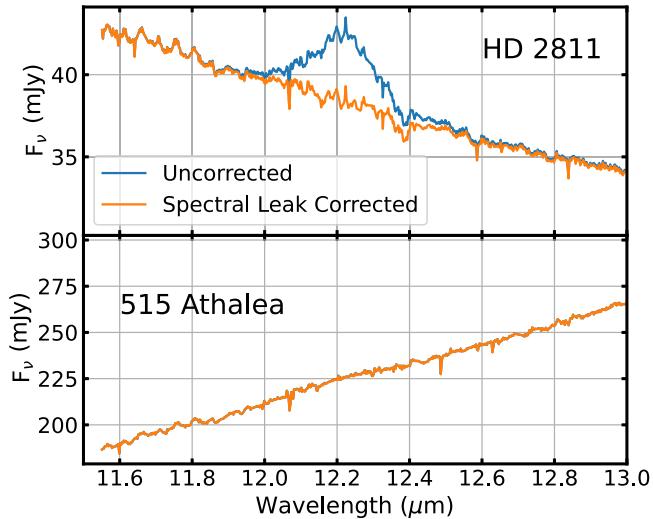
5.2. Broad High-ionization Emission Lines

While the 10 Lac CALSPEC model is generally an excellent match to the observed spectrum, one notable exception is an unusual broad, flat-topped emission feature between 14.27 and $14.37\ \mu\text{m}$ (Channel 3B). We tentatively identify this feature as due to [Ne V] $14.3217\ \mu\text{m}$ emission, with corresponding [Ne VI] $7.6524\ \mu\text{m}$, [Ne VI] $24.3175\ \mu\text{m}$, and [O IV] $25.89\ \mu\text{m}$ as well. These features are discussed further by D. R. Law et al.

Figure 11. Continuum-normalized spectrum of 10 Lac (solid blue line) and the corresponding CALSPEC model (solid orange line, vertically offset for clarity). Note that many wavelengths show sinusoidal artifacts at the $\sim 0.5\%$ level due to fringing that has not been completely corrected by the JWST calibration pipeline. Dashed gray lines indicate major H transition lines (labeled by quantum level), while dashed orange lines indicate He transitions. Note that the bottom panel has a larger vertical scale.


(2024); for our present calibration purposes we simply patch the calibration vector in these wavelength ranges with an appropriately scaled version of the calibration factor derived from O9.5 V star μ Col instead, which does not exhibit this feature (see, e.g., Figure 12).

5.3. 12 μ m Spectral Leak


Calibration of Channel 3A also required special handling during the calibration process and in the JWST pipeline due to a small spectral leak in the MRS dichroic chain known from ground testing. Ordinarily, the combination of dichroics and

blocking filters on the two DGA wheels ensures that only first-order dispersed light is recorded on the MRS detectors. As discussed by I. Argyriou et al. (2023a), however, roughly 2.5% of the light from 6.1 μ m (Channel 1B) is present in second order at 12.2 μ m (Channel 3A), contaminating the observed spectra.

We illustrate this effect in Figure 13; while it is negligible for red sources with little 6 μ m signal, it is pronounced for blue sources and can result in an anomalous broad emission feature around 12.2 μ m. We have calibrated the response function of this second-order leak, and removed it from the observational

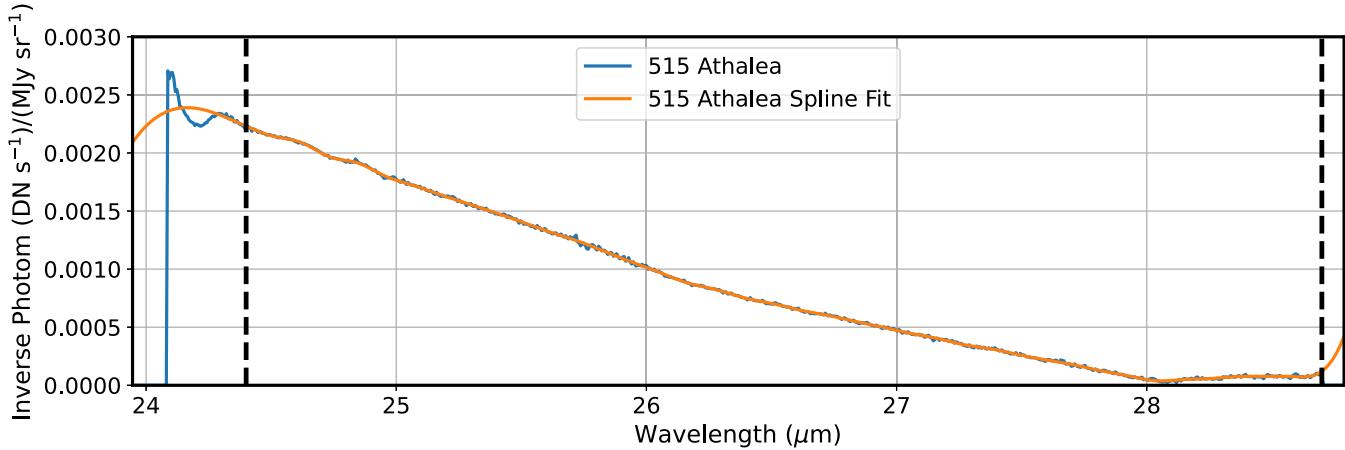
Figure 12. Calibrated spectra and CALSPEC models for 10 Lac (O9 V; blue and orange lines, respectively) and μ Col (O9.5 V; green and red lines, respectively, scaled by a factor of 1.5) illustrating a broad emission feature in the 10 Lac spectrum that we identify as due to [Ne v] $14.3217\text{ }\mu\text{m}$. This feature is not observed in μ Col, which has a similar spectral class.

Figure 13. 1D spectra of the A3 V standard star HD 2811 (top panel) and main-belt asteroid 515 Athalia (bottom panel) illustrating the impact of the $12\text{ }\mu\text{m}$ spectral leak, which manifests as a fraction of the signal at $6.1\text{ }\mu\text{m}$ being added to the $12.2\text{ }\mu\text{m}$ flux. An automated correction for this leak is available in the JWST calibration pipeline; while no correction is necessary for red sources such as 515 Athalia with minimal $6.1\text{ }\mu\text{m}$ flux, correction is essential for blue sources such as HD 2811.

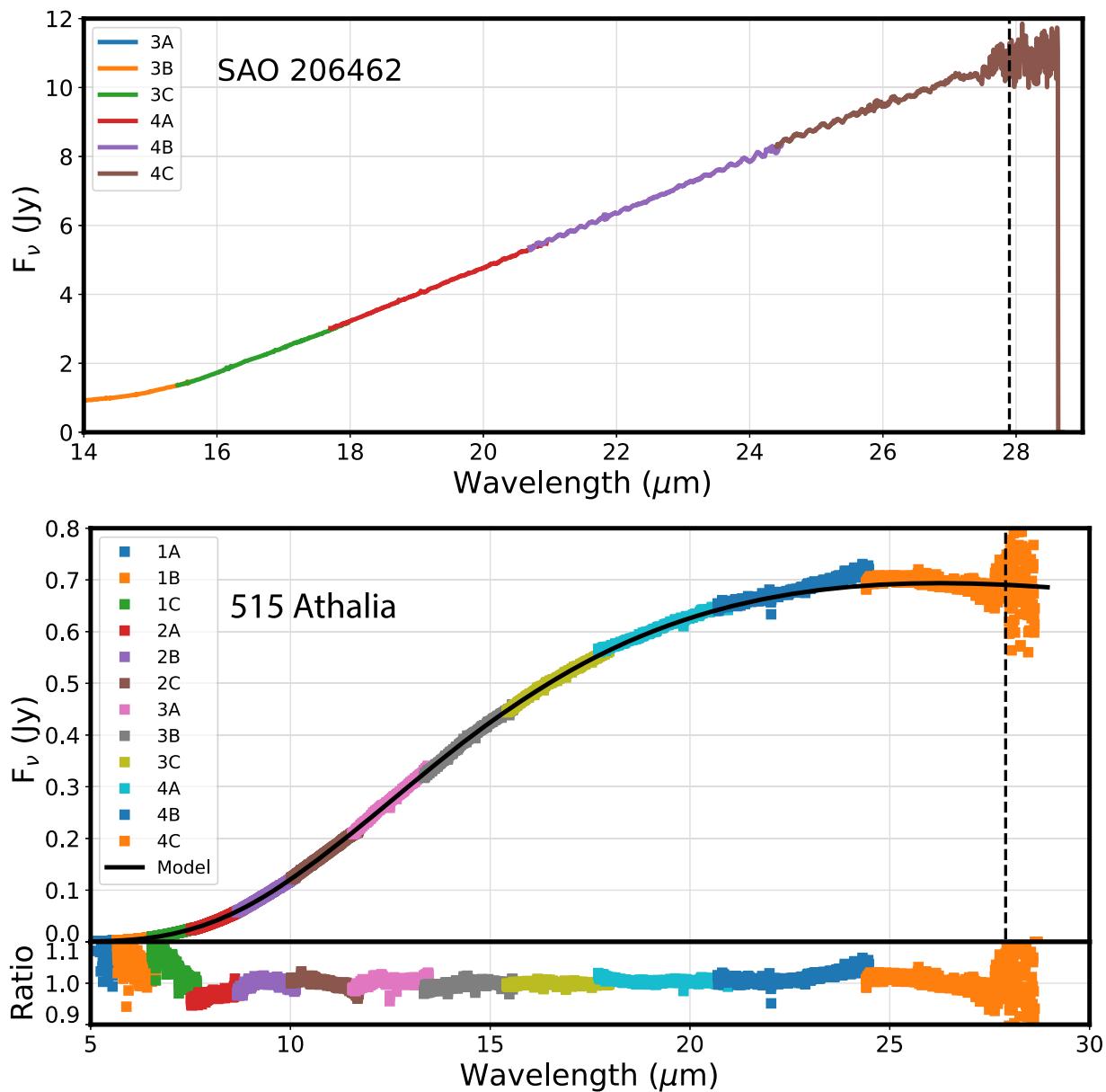
data prior to deriving the photometric calibration vectors described here. This response function has been incorporated into the JWST calibration pipeline,²⁰ which includes a step to estimate the strength of this signal in Channel 3A based on Channel 1B observations (if present) and subtract it from the corresponding 1D extracted spectra. No such general correction is available for the 3D data cubes or spectra of extended sources, however, since Channel 1B observations have a smaller field of view than Channel 3A.

6. Photometric Calibration: Channel 4

While current JWST standard stars sufficed to flux calibrate Channels 1–3, they are inadequate for reliable calibration of


Channel 4 at $\lambda > 18\text{ }\mu\text{m}$. At such wavelengths the time-dependent throughput loss is large and changing most rapidly (see Section 3), the telescope thermal background is rising rapidly, and even fifth-magnitude standard stars become extremely faint. The stellar-derived photometric response functions illustrated in Figure 9 longward of $18\text{ }\mu\text{m}$ thus show significant variations (likely due to uncertainties in the background subtraction) and create correspondingly large unphysical artifacts in the spectra of bright red sources. The ongoing JWST calibration program is therefore investigating the suitability of brighter stars for calibration of Channel 4 in observing Cycle 4 and beyond. At present, however, we instead derive the Channel 4 flux calibration from observations of asteroid 515 Athalia (PID 1549 Observation 6; observed as a calibrator for the JDISCS program by K. M. Pontoppidan et al. 2024) and the young stellar debris disk SAO 206462 (PID 1282 Observation 55; PI: T. Henning).

Starting with the flux calibrations derived in Section 5, we produce a calibrated spectrum of main-belt Themistian asteroid 515 Athalia. Since 515 Athalia is itself variable with a 10.6 hr period (F. Pilcher 2015), the individual band 1A–3C spectral segments are offset from each other by $\sim 10\%$. Assuming that the temperature of the asteroid is roughly constant and that the variations are due to differences in the effective albedo as it tumbles, we derive a series of empirical scaling factors necessary to align the spectra of bands 1A–3C. We fit a smooth blackbody curve to the resulting spectrum, finding a best-fit blackbody temperature of 193.9 K (Figure 15, lower panel). This gives us a nominal spectral model of 515 Athalia throughout the $18\text{--}28\text{ }\mu\text{m}$ range; combining this with the observed uncalibrated asteroid spectra we derive the relative photometric response function of bands 4A–4C (see Figure 14).


Since 515 Athalia is a variable source, it can be used to calibrate the relative response within a given band but not the absolute response compared to the adjacent spectral bands. We therefore use the extremely bright red debris disk SAO 206462 to bootstrap the appropriate band-to-band normalization using the spectral overlap between adjacent bands. Channel 4A, for instance, overlaps with Channel 3C in the wavelength range $17.7\text{--}17.95\text{ }\mu\text{m}$; we scale the photometric response of Channel 4A such that the spectrum of SAO 206462 agrees with the Channel 3C calibration. Likewise, having thus calibrated Channel 4A we use the $20.7\text{--}20.95\text{ }\mu\text{m}$ overlap region to normalize the calibration for Channel 4B, and the $24.4\text{--}24.5\text{ }\mu\text{m}$ overlap to normalize the calibration for Channel 4C.

During this process, we also apply a low-order polynomial correction to the 515 Athalia-based photometric correction in Channel 4B to remove an abnormal downturn longward of $23\text{ }\mu\text{m}$ that may be due to background subtraction systematics and are not seen in other sources. Likewise, in Channel 4C at wavelengths longer than $27.5\text{ }\mu\text{m}$ even the 515 Athalia spectrum becomes unreliable faint as the system throughput falls to near zero. We therefore assume on the basis of its $18\text{--}27\text{ }\mu\text{m}$ spectrum that SAO 206462 continues to rise smoothly to the Channel 4C wavelength cutoff at $28.8\text{ }\mu\text{m}$ and adjust the photometric calibration vector accordingly. Figure 15 plots the resulting flux-calibrated spectra of SAO 206462 and 515 Athalia and demonstrates that both appear to be well-behaved.

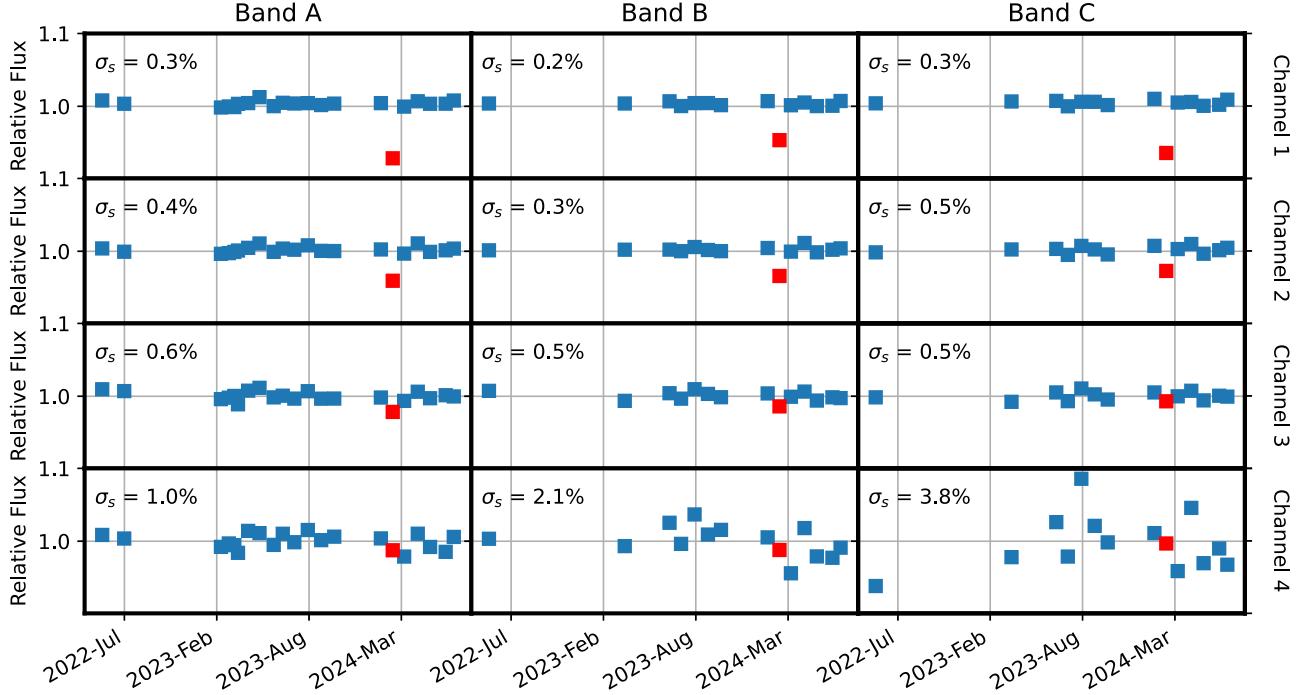

²⁰ Note that early versions of the pipeline and calibration reference files during the first year of the mission did not account for this artifact, and could correspondingly produce either positive or negative artifacts in the resulting spectra depending on the shape of the input spectrum.

Figure 14. As Figure 8, but for Channel 4C using observations of main-belt asteroid 515 Athalia. In this case, however, the spline fit was performed in inverse-photon units to reduce artifacts that can occur when the effective response dips to near zero.

Figure 15. Top panel: calibrated spectrum of the circumstellar disk SAO 206462 in Channels 3 and 4. Bottom panel: arbitrarily renormalized spectrum of the asteroid 515 Athalia (see text), overplotted with a best-fit $T = 193.9$ K blackbody model. In both plots the vertical dashed black line indicates the nominal Channel 4C wavelength cutoff of $27.9 \mu\text{m}$, above which calibration quality decreases rapidly. The lower inset shows the ratio between the renormalized 515 Athalia spectrum and the best-fit model.

Figure 16. Systematic repeatability for all 12 MRS spectral bands based on regular observations of HD 163466 (A7 Vm). Filled blue squares show the median flux ratio between repeated spectra in each band from 2022 June to 2024 July. Inset text values indicate the repeatability (defined as the rms scatter σ_s) between the individual measurements. The repeatability is below 1% in Channels 1A–3C, while the greater scatter in Channel 4 is driven by partly by increasing uncertainty in the background subtraction. The point highlighted in red was observed on 2024 February 28 during a major primary mirror tilt event in which the wave front error degraded to 327 nm; we exclude this point from our statistics.

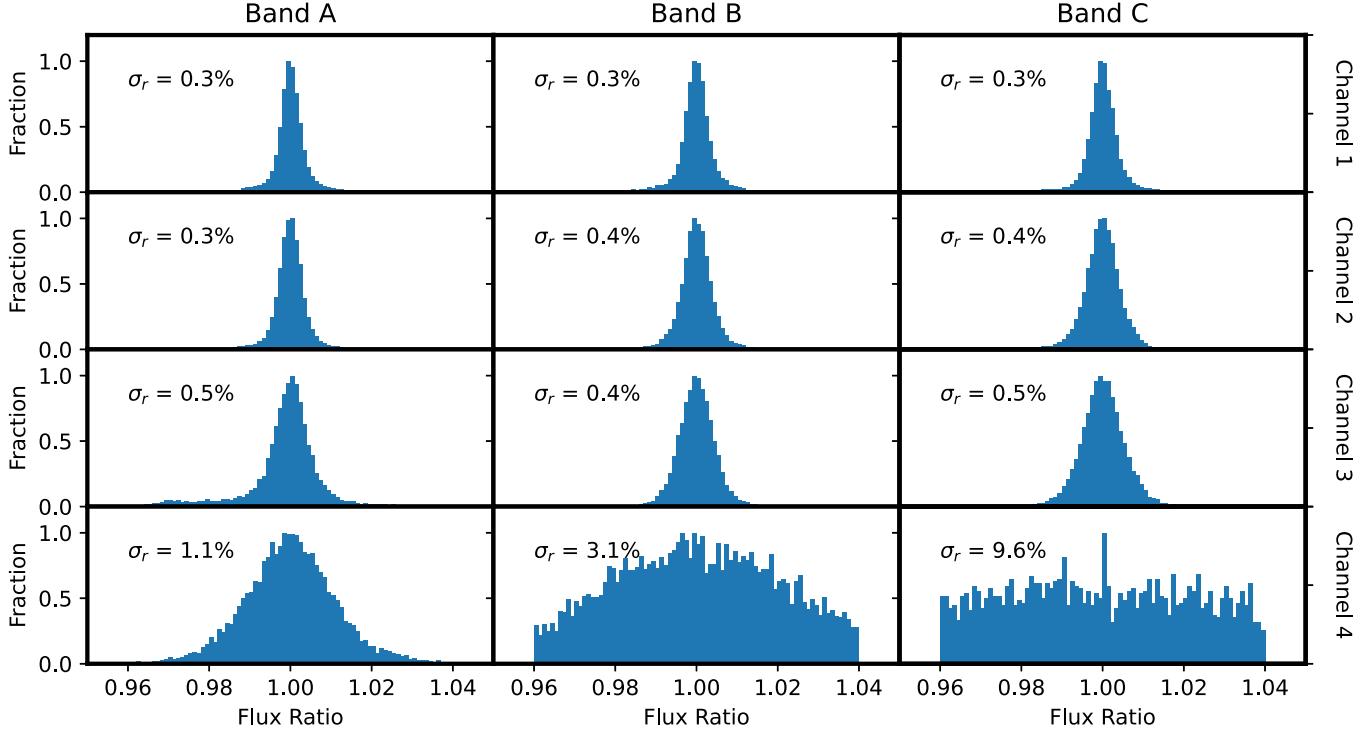
7. Repeatability and Uncertainty

We assess the repeatability of the MRS photometric calibration using observations of the late A dwarf HD 163466 (A7 Vm). As noted by D. Gasman et al. (2023) and I. Argyriou et al. (2023a), this star was one of the first observed during on-orbit commissioning (PID 1050; PI: B. Vandenbussche) and was used to define the MRS flux calibration for the first year of the mission. Since that time, HD 163466 has been reobserved regularly as part of a dedicated cross-instrument calibration monitoring program (PIDs 1536, 1539, 4499, and 6607). Initially these monitoring observations focused on band A; with the discovery of the time-dependent throughput loss described in Section 3 the observations were expanded to include bands B and C as well. In total, there have been 21 unique observations of this source between 2022 June and 2024 July.

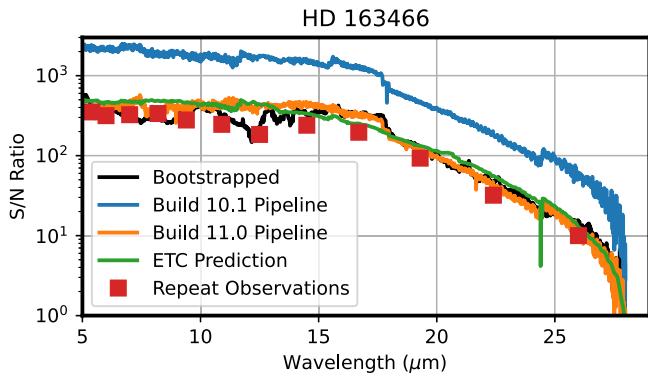
We process the data from all of these observations through the standard JWST pipeline, using the time-dependent correction models and photometric calibration vectors derived above. In this processing we create individual per-band spectra for each of the observations, applying the “ifu_autocen” aperture centroiding and the “ifu_rfcorr” 1d residual defringing routine.

In each of these bands we average the individual spectra to construct a high-S/N mean spectrum for the source, and compute the median of the ratio between the individual spectra and the mean spectrum. This allows us to assess any evolution in the overall normalization of the flux calibration over time; we plot the results in Figure 16. Despite the large evolution in the effective system throughput over the last 2 yr (Section 3), the pipeline-processed spectra are consistent to better than 1% in Channels 1–3 and to within a few percent in Channel 4 (likely due to increasing errors in the background subtraction). This scatter may represent the limitations of our smooth time-dependent correction models (i.e., if the throughput loss is

discrete on small timescales), but the residuals show no evidence of a temporal trend at any wavelength.


If we correct for the systematic variations in the flux calibration in each band (on the order of a fraction of a percent), the repeated observations can also be used to calculate an empirical S/N ratio from the remaining stochastic noise. We divide each spectrum by the median spectrum constructed above, normalize by the known systematic flux calibration offset shown in Figure 16, and calculate the resulting distribution of values at each wavelength. Figure 17 shows these distributions; the characteristic width of the distributions indicates that the “true” S/N of any given observation ranges from about 330 per spectral element in Channel 1 to about 10 per spectral elements in Channel 4C.

This S/N estimate from repeated observations agrees well with other estimates of the S/N. Figure 18 shows the S/N as a function of wavelength for individual observations of HD 163466, including estimates from observations (solid red squares), bootstrapped from measurements of the rms of the spectrum about a best-fit spline model (black line), and provided by the ERR array for the data by the JWST calibration pipeline (orange line). All three estimates agree well over 2 dex in S/N, and also agree with predictions from the JWST Exposure Time Calculator (ETC; green line). For a variety of reasons, older versions of the pipeline and associated reference files did not achieve such good agreement in the pipeline-estimated errors (blue line).


8. Discussion

8.1. Spectral Discontinuities

As illustrated in Figure 9, the MRS spectra often show percent-level discontinuities at overlapping wavelengths in

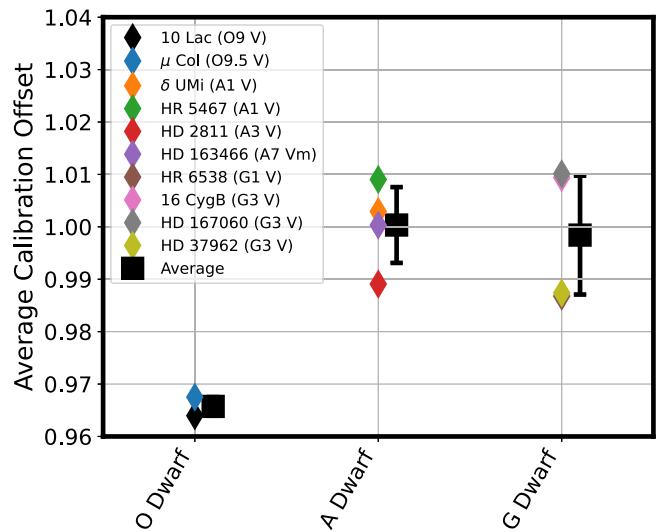


Figure 17. Stochastic noise for all 12 MRS spectral bands based on regular observations of HD 163466 (A7 Vm). Blue histograms represent the range of values about the median for each wavelength element in the extracted spectra, after correction for systematic per-band offsets. The rms of these histograms (σ_r) describes the effective noise in the spectra at a given wavelength across repeated observations.

Figure 18. S/N ratio of the MIRI MRS spectrum of HD 163466 (A7 Vm) obtained by PID 1536. The solid blue and orange lines represent estimates provided by the JWST calibration pipeline corresponding to Builds 10.1 and 11.0 respectively, while the expected S/N based on the Cycle 3 ETC (v3.0) is shown as a green solid line. The solid black line represents an empirical estimate bootstrapped from rms variations with wavelength in the extracted spectrum, while the red filled squares represent empirical estimates based on repeated observations throughout the first 2 yr of the mission.

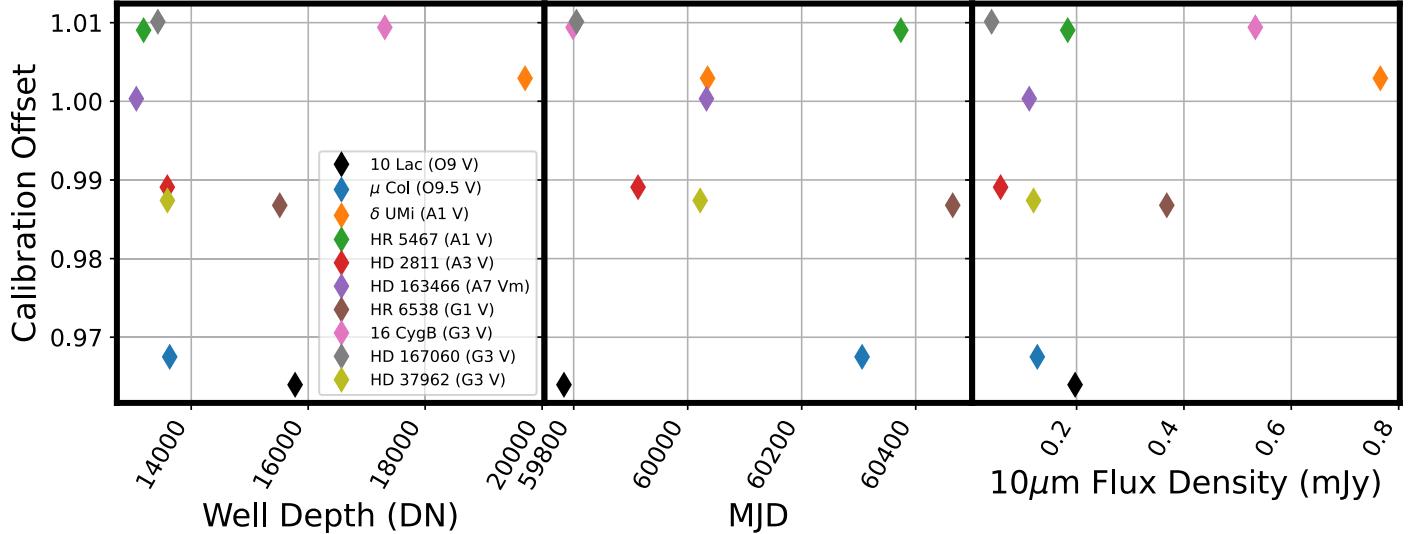
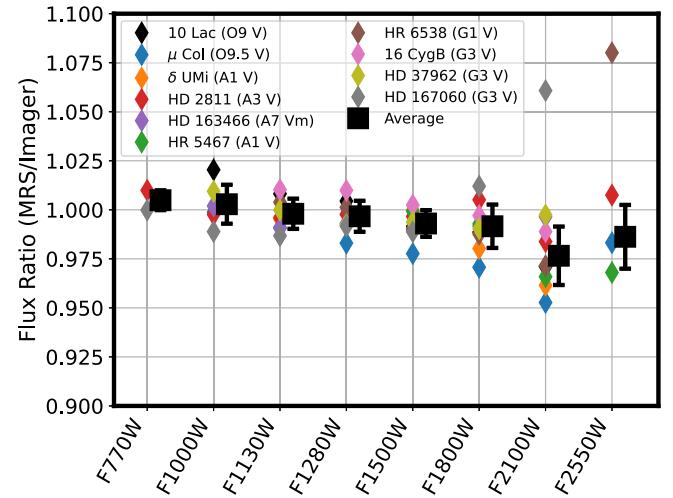

adjacent spectral bands. In the bright-source regime these jumps are likely multiplicative and may be due to charge migration, uncertainties in the flat field (as the DGA wheel does not repeat its position perfectly for each target; see P. Patapis et al. 2024, their Figure 10), or to uncertainties in our model of the time-dependent loss correction factor. Such jumps can also occur when using nonstandard aperture radii due to imperfections in the aperture correction. At low flux levels the offsets are likely additive and due to variations in the detector dark current and the challenges of reliably background-subtracting such data.

Figure 19. Relative calibration factor (averaged across 5–18 μm) derived from each spectrophotometric calibration star as a function of spectral class (colored diamonds). The average and rms distribution widths within each class are shown as filled squares (offset horizontally for clarity).

8.2. Calibration Trends

Figure 9 shows that there are systematic differences in the flux calibration vectors derived from different stars. We average over the wavelength range 5–18 μm and plot the average offset relative to our final adopted calibration as a function of spectral class in Figure 19. While the A and G dwarfs match the adopted calibration to within an rms of 1%, both O stars are consistent with a calibration that is 3% fainter. While no such offset was observed for the MIRI imager

Figure 20. Relative calibration factor derived from each spectrophotometric calibration star (colored diamonds) as a function of the maximum detector well depth, MJD of observation, and $10\mu\text{m}$ flux density. The calibration factor does not have a trend with any of these variables, indicating both that the time-dependent count-rate loss model is working well and that there are no obvious detector-dependent systematics.

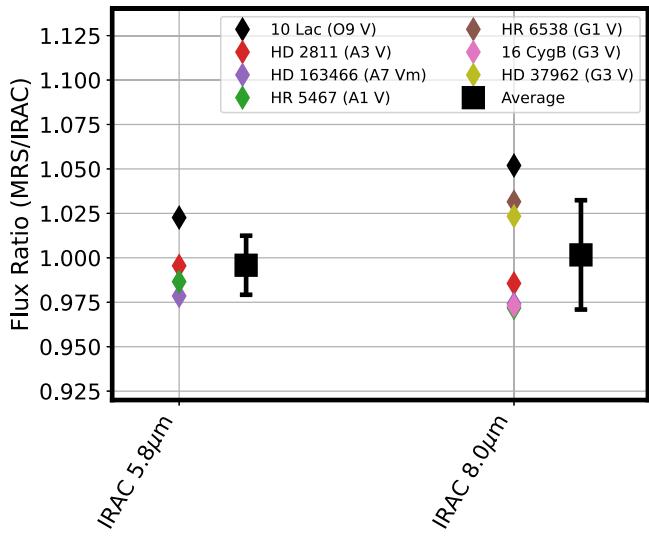

(K. D. Gordon et al. 2025), with just two such stars observed so far we cannot state with certainty whether this represents a genuine systematic in the CALSPEC models. Replacing the CALSPEC models with G-star models from G. H. Rieke et al. (2024) results in broadly similar conclusions, although the average G dwarf calibration is then low by a marginally significant $2.4\% \pm 0.8\%$ compared to the A stars.

As illustrated by Figure 20, these systematic offsets are unlikely to be caused by instrumental systematics. As discussed by I. Argyriou et al. (2023b) and D. Gasman et al. (2024), the MRS experiences significant charge spilling as the total number of recorded counts in a given detector pixel increases, affecting the nonlinearity of both itself and surrounding pixels long before reaching formal saturation. However, this effect makes little difference for our observed calibration stars (Figure 20, left-hand panel), in part because all reach a similar maximum well depth compared to the saturation level of the detector ($\sim 55,000$ DN). Indeed, even in cases where the well depth differs significantly, the total extracted flux only changes slightly. Comparing the calibrated spectra of 10 Lac from PIDs 1524 and 3779, we find that the Channel 1A flux agrees to within 0.5% despite reaching well depths of 26,000 and 55,000 + DN, respectively, and agrees to within 0.2% in Channel 2A for well depths of 16,000 and 46,000 DN, respectively. Likewise, there is no significant trend of the calibration offsets with the date of observation (Figure 20, middle panel) or the $10\mu\text{m}$ flux density of the target star (Figure 20, right panel).

8.3. Comparison with the MIRI Imager

The most direct comparison of our calibration that we can make is against that of the MIRI imager (see D. Dicken et al. 2024; K. D. Gordon et al. 2025), which observed many of the same standard stars. We therefore compute the photon-weighted average flux density in units of Jy as

$$\langle f_\nu \rangle = \frac{\int f_\lambda R_\lambda \lambda d\lambda}{c \int R_\lambda \lambda^{-1} d\lambda}, \quad (2)$$


Figure 21. Ratio between the flux density observed by the MIRI MRS and the MIRI Imager in eight of the nine imaging band passes. Colored diamonds show values from individual stars, while filled squares (offset for clarity) represent the average and rms distribution within each band pass.

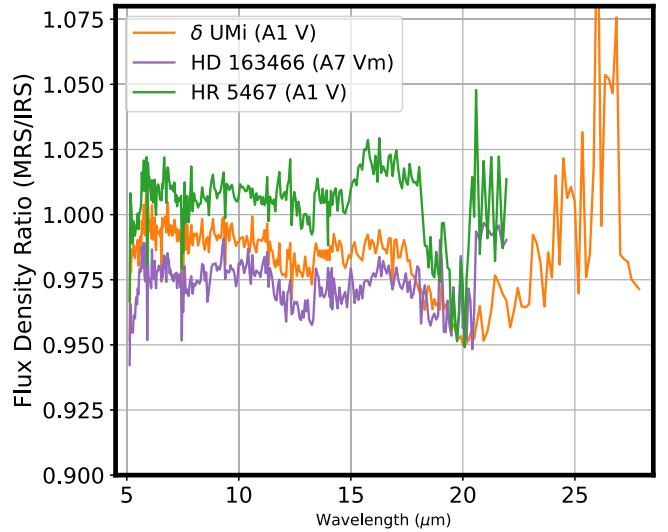
where f_λ is the MRS flux density (in wavelength^{-1} units), R_λ is the net photo-conversion efficiency ($e - \text{photon}^{-1}$) drawn from the JWST ETC,²¹ and the pivot wavelength is given by

$$\lambda_{\text{pivot}} = \sqrt{\frac{\int R_\lambda \lambda d\lambda}{\int R_\lambda \lambda^{-1} d\lambda}}. \quad (3)$$

We divide these results by the values obtained from MIRI imaging observations using the calibration described by K. D. Gordon et al. (2025) and plot the results in Figure 21. No comparisons are available in F560W as the MRS calibration targets were too bright to be observed by the imager at this wavelength, while for F2550W we restrict our sample to only those stars with dedicated backgrounds whose readout configuration matches the science data. This latter step can be important in order to permit pixel-by-pixel subtraction

²¹ <https://jwst.etc.stsci.edu/>

Figure 22. Ratio between the flux density observed by the MIRI MRS and Spitzer IRAC in the IRAC $5.8 \mu\text{m}$ and $8.0 \mu\text{m}$ band passes. Colored diamonds show values from individual stars, while filled squares (offset for clarity) represent the average and rms distribution within each band pass.

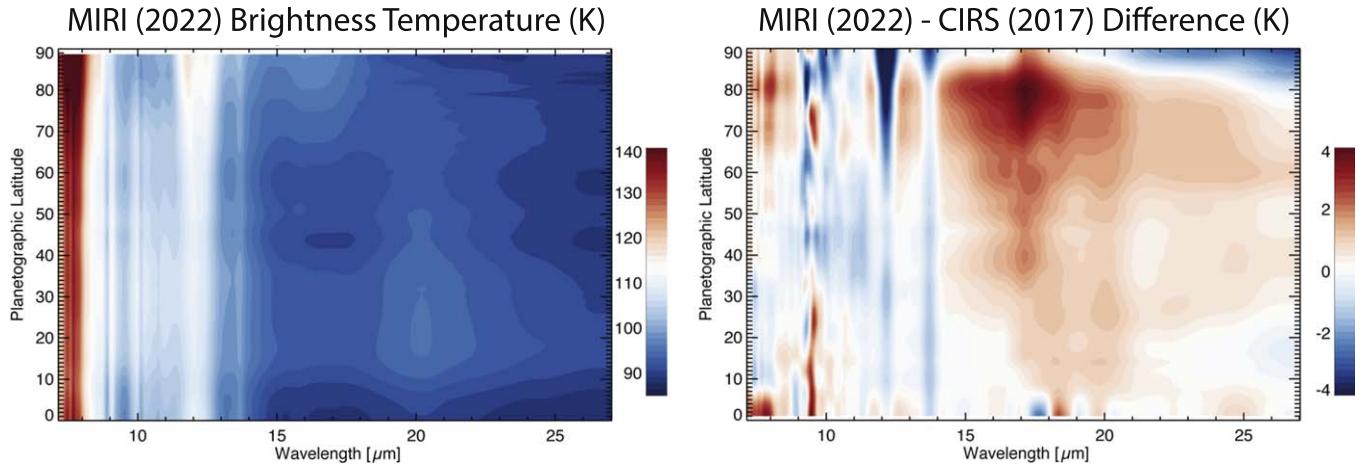

of the dedicated background, minimizing biases that can arise in the annular background subtraction step due to uncertainties in the flat-field correction when sources are extremely faint compared to the thermal background.

In each filter we compute the average calibration offset from the sigma-clipped mean of all individual stars, thereby rejecting two highly discrepant points corresponding to HD 167060 and HR 6538 in F2100W and F2550W, respectively. The MIRI imager and MRS calibrations are consistent with each other to within 1% from F770W to F1800W, although there is marginal evidence for an offset at the 2.3% level in F2100W and 1.4% level in F2550W. The cause of this offset is uncertain, and may be related to our use of a time-variable source to model the relative response in the Channel 4 band pass. Additional observations of extremely bright, zeroth magnitude stars in future calibration programs may help to further characterize this difference.

8.4. Comparison to Spitzer

It is also possible to compare our spectrophotometric calibration of the MIRI MRS against those of the Spitzer Space Telescope Infrared Array Camera (IRAC) and IRS, which have been characterized by W. T. Reach et al. (2005) and G. C. Sloan et al. (2015), respectively. Seven of our calibration stars have been observed with a combination of the IRAC $5.8 \mu\text{m}$ and $8.0 \mu\text{m}$ filters; these filters overlap sufficiently closely with the wavelength range of the MRS that we can compute synthetic photometry following Equation (2) using the filter response functions provided in the IRAC instrument handbook.²² We compare our synthetic magnitudes with the observed IRAC magnitudes tabulated by R. C. Bohlin et al. (2022, their Table 5) and note that the average ratio between MRS and IRAC magnitudes is consistent with unity (Figure 22), although individual stars can have offsets of up to 5%. This average agreement is in large part unsurprising, since the IRAC data have been used to derive the CALSPEC models to which we have tied the MRS calibration.

²² <https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/>


Figure 23. Ratio between the stellar spectra observed by MIRI MRS and Spitzer IRS (colored lines). Note that both HD 163466 and HR 5467 have been trimmed at about $20 \mu\text{m}$ due to their low S/N at longer wavelengths.

Three A dwarfs were also observed in common by the MIRI MRS and the Spitzer IRS. Rebinning the MRS spectra to the coarser IRS wavelength scale, Figure 23 plots the ratio of the MRS spectra to the aperture-corrected IRS spectra produced by G. C. Sloan et al. (2015). As for the IRAC data, the MRS and IRS data agree to within about 1% on average below $18 \mu\text{m}$, although individual stars can each be offset by as much as 3%. The calibration for all three stars appear to be systematically offset by a few percent however around $20 \mu\text{m}$. The origin of this offset is uncertain, as it is complicated by background subtraction uncertainties and occurs around the transition wavelength between both MRS Channels 3 to 4 and IRS modules Short-High to Long-High. The offset is in the same direction as noted in Section 8.3 for comparisons against the MIRI imager though, suggesting that it may be related to our use of an asteroid calibrator for Channel 4. These results are broadly consistent with recently obtained observations of K giants that had previously been used as IRS calibration sources, the comparison with which will be provided in a forthcoming publication (G. Sloan, private communication).

8.5. Comparison with Giant Planet Observations

An orthogonal means of evaluating the MRS photometric calibration can be provided using MRS observations of the giant solar system planets Saturn and Uranus. While our previous absolute flux comparisons have focused on blue point sources (i.e., stars), the giant planets are extended sources (filling the field of view in the case of Saturn), are extremely bright at red wavelengths, and have been studied in detail by the Cassini and Voyager missions.

In Figure 24 we show a brightness temperature map of Saturn constructed using our adopted flux calibration and following the methodology of L. N. Fletcher et al. (2023). Spectra from three MIRI/MRS footprints spanned the equator to Saturn’s north pole, and were zonally (i.e., east–west) averaged to display as a function of latitude and wavelength. These data were acquired in 2022 November (program ID 1247) during midnorthern summer on Saturn, 5 yr after the end of the Cassini spacecraft exploration of Saturn (2017, northern summer solstice). To provide a fair comparison to Cassini data,

Figure 24. Left panel: observed MIRI MRS brightness temperatures of Saturn in 2022 November. Data were zonally (i.e., east–west) averaged along Saturn’s central meridian from the equator to the north pole, and then convolved with the spectral response function of Cassini/CIRS (15 cm^{-1}) to display as a function of wavelength. Right panel: difference in zonally averaged brightness temperature between 2022 MIRI MRS observations and 2017 Cassini CIRS observations.

we convolved the MRS data with the 15 cm^{-1} spectral response function of the Composite Infrared Spectrometer (CIRS). CIRS maps acquired during Cassini’s final year were also averaged, and the difference is shown in Figure 24.

Despite the 5 yr of elapsed time between the measurements (i.e., one-sixth of a Saturnian year), the differences shown in Figure 24 are entirely within expectations for this seasonal giant planet. This region of the spectrum is dominated by collision-induced opacity of hydrogen and helium, so can be used as a reliable thermometer for tropospheric temperatures. The MIRI spectra are about 1 K warmer on average in the $22\text{--}28\text{ }\mu\text{m}$ range (sounding the troposphere down to 1 bar, cf contribution functions calculated in Figure 13 of L. N. Fletcher et al. 2023), and about 3–4 K warmer in the $17\text{ }\mu\text{m}$ range (sounding the upper troposphere and lower stratosphere). As seasonal influences are more extreme at higher altitudes and lower pressures, this demonstrates that Saturn’s summertime warming has been faster at the tropopause than at deeper atmospheric levels.

Converting from brightness temperature to flux density, these differences correspond to about 6% and 30% increases in flux density, respectively. The largest differences occur at Saturn’s high latitudes, where a polar vortex is known to exhibit large seasonal changes in atmospheric temperature. These differences are entirely within expectations for natural seasonal variations in Saturn’s atmosphere (e.g., L. N. Fletcher et al. 2020), but the variability of the giant planet prevents a more quantitative assessment of the MRS flux uncertainty. Finally, although ground-based observations of Saturn are available during the same period, these suffer from significant calibration uncertainties and cannot aid this comparison.

However, a similar exercise can be performed for a giant planet where expected seasonal variability is even smaller. Uranus was explored in detail by Voyager 2 in 1986, when the planet’s southern pole faced toward Earth (southern summer solstice). The Infrared Interferometer Spectrometer and Radiometer (IRIS) mapped tropospheric temperatures using far-infrared wavelengths from 25 to $50\text{ }\mu\text{m}$. As discussed by M. Roman et al. (2024, in preparation), MIRI/MRS observed Uranus during midnorthern spring in 2023, and the full $5\text{--}28\text{ }\mu\text{m}$ range was used to derive temperatures as a function of latitude and pressure. Using our adopted flux calibration, tropospheric temperatures inferred from both spacecraft—

despite covering different spectral ranges, with different instrumentation, and nearly four decades apart—match one another within $\sim 0.4\text{ K}$. At a typical temperature of 55 K (appropriate for the 250 mbar level), and assuming no unexpected evolution in the atmosphere of Uranus, this match thus implies that the MIRI Channel 4 flux calibration is accurate to within 5%.

9. Summary

We have presented the default JWST pipeline spectrophotometric calibration of the MIRI MRS. As key preliminary steps we derived detector pixel flat fields using self-calibration techniques applied to observations of the planetary nebula NGC 7027 and aperture corrections from a combination of PSF models and observations of bright stellar targets. We discussed evidence for a strong time-dependent decrease in the effective count rate that grows in strength with wavelength, and constructed a model of this loss that corrects all MRS observations back to a nominal zeroth day count rate.

Using these time-corrected count rates, we used deep observations of the O9 V standard star 10 Lac in combination with CALSPEC spectral models to derive an initial set of photometric response vectors for Channels 1A–3C (i.e., shortward of $18\text{ }\mu\text{m}$). We then adjusted the normalization of this model by $\sim 4\%$ to match the overall average of 10 different calibration stars including O, A, and G dwarfs. In Channel 4 (longward of $18\text{ }\mu\text{m}$) we used observations of the main-belt asteroid 515 Athalia and young stellar object SAO 206462 to derive the photometric response based on their smooth, predictable spectra.

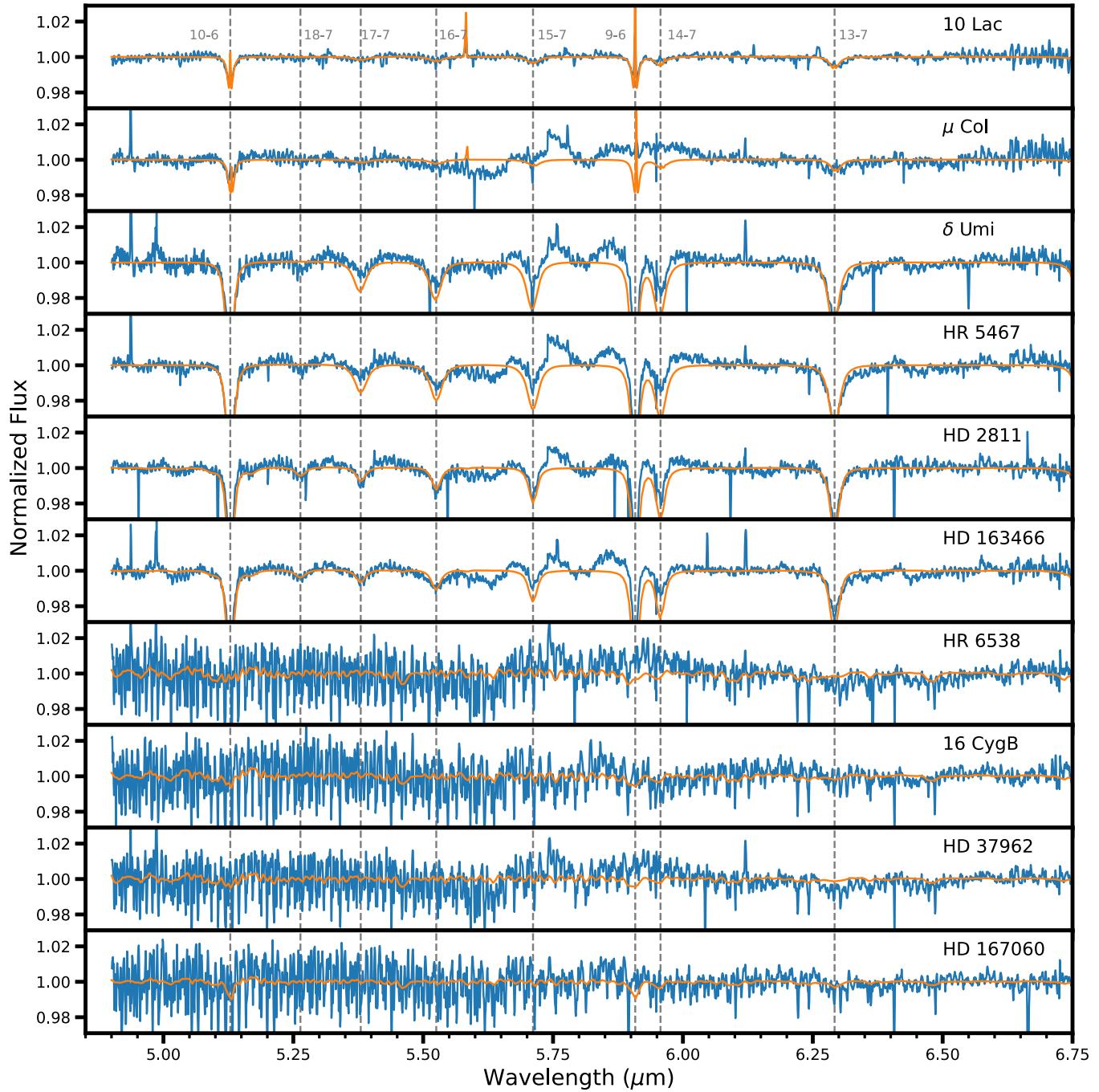
This calibration is repeatable over time to subpercent accuracy in Channels 1–3, with no evidence for systematic offsets with detector well depth or stellar flux density. Likewise, the point-source calibration matches that of the MIRI imager to within 1% and prior Spitzer IRS observations to within 1%–3%. The MRS extended-source flux calibration depends upon the accuracy of the PSF model and aperture corrections, but comparisons against both Voyager and Cassini observations of giant planets suggests that it is accurate to within $\sim 5\text{--}6\%$.

The calibrations described in this paper are available in CRDS context 1276. The best calibrations used by the JWST

pipeline will, however, continue to evolve over time as additional data are obtained and the characterization of the MRS instrumental performance improves.

Acknowledgments

This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programs #1050, 1282, 1518, 1523, 1524, 1536, 1538, 1539, 1549, 3779, 4484, 4489, 4496, 4497, 4498, 4499, 6607, and 6612.


The following National and International Funding Agencies funded and supported the MIRI development: NASA; ESA; Belgian Science Policy Office (BELSPO); Centre Nationale d'Etudes Spatiales (CNES); Danish National Space Centre; Deutsches Zentrum für Luft und Raumfahrt (DLR); Enterprise Ireland; Ministerio De Economia y Competitividad; Netherlands Research School for Astronomy (NOVA); Netherlands

Organisation for Scientific Research (NWO); Science and Technology Facilities Council; Swiss Space Office; Swedish National Space Agency; and UK Space Agency.

D.L. appreciates productive discussions and input from Michael Roman and Oliver King. L.F. was supported by STFC Consolidated Grant reference ST/W00089X/1

Appendix Standard Star Spectra

In Figures 25–28 we plot the continuum-normalized spectra of each of the 10 standard stars used in our flux calibration analysis, along with the corresponding normalized CALSPEC model. Any large-scale multiplicative offsets between observations and the models have been removed by this continuum normalization, and these plots are thus most useful for identifying unexpected spectral features. We note in particular broad high-ionization features in 10 Lac (see Section 5.2 and D. R. Law et al. 2024) and high-frequency structure below 6 μm in the spectra of the four G dwarf stars that may be due to CO band features.

Figure 25. Continuum-normalized spectra (solid blue lines) and normalized CALSPEC models (solid orange lines) for each of the 10 observed standard stars in the wavelength range $\lambda = 4.9\text{--}6.7 \mu\text{m}$. Dashed vertical lines in all panels represent the wavelengths of major atomic hydrogen transitions.

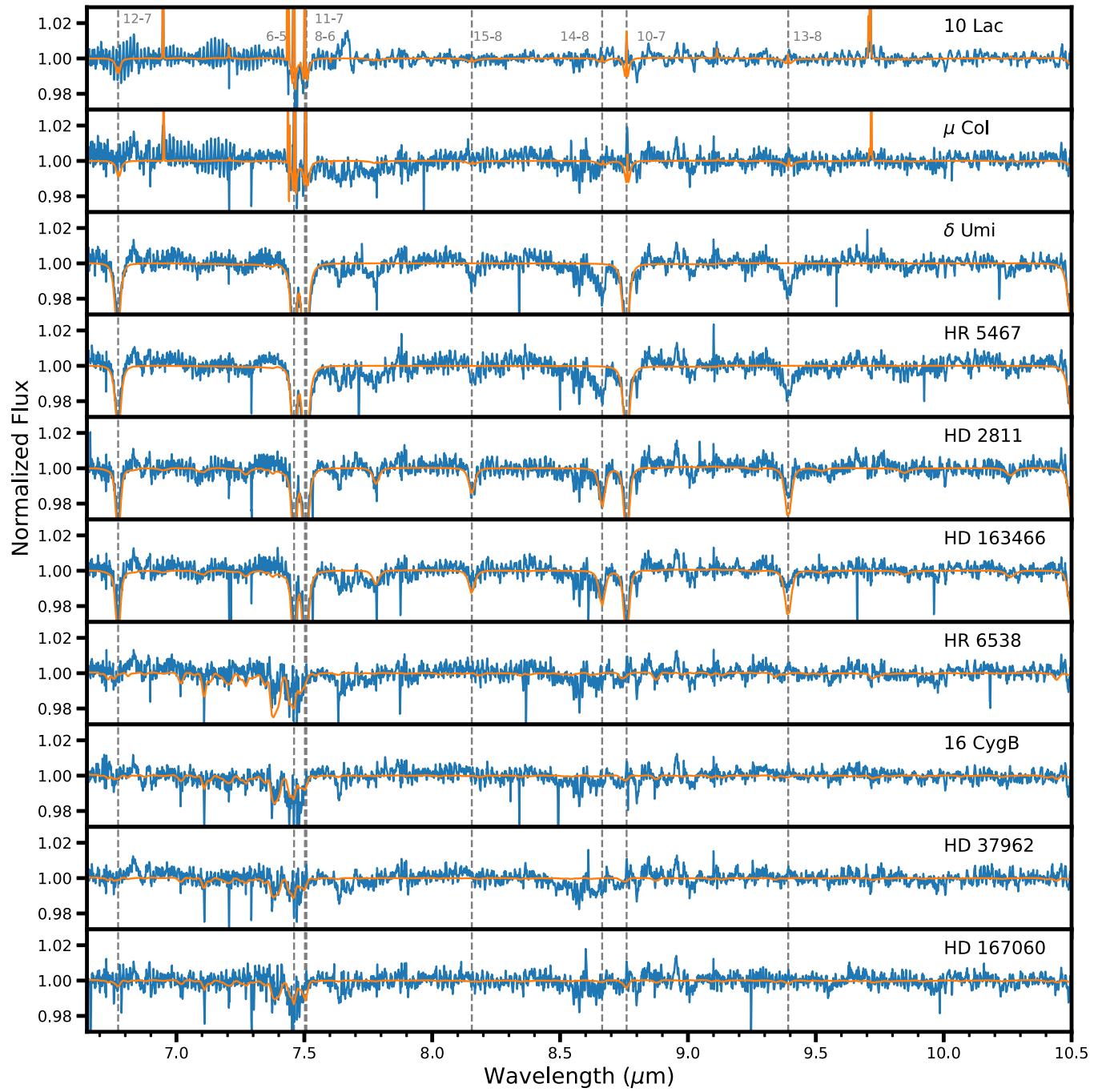


Figure 26. As Figure 25 but for the wavelength range $\lambda = 6.7\text{--}10.5 \mu\text{m}$.

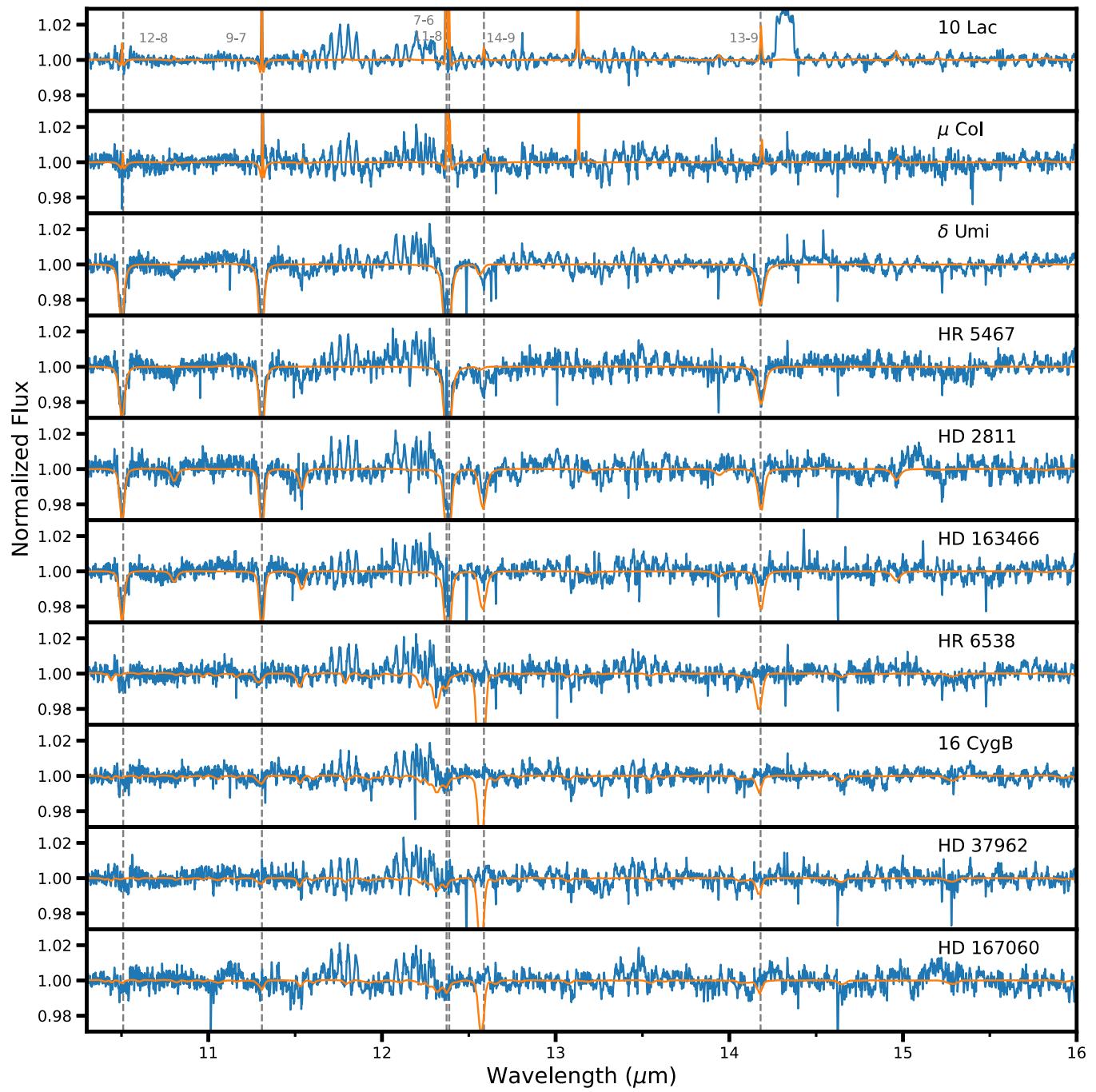
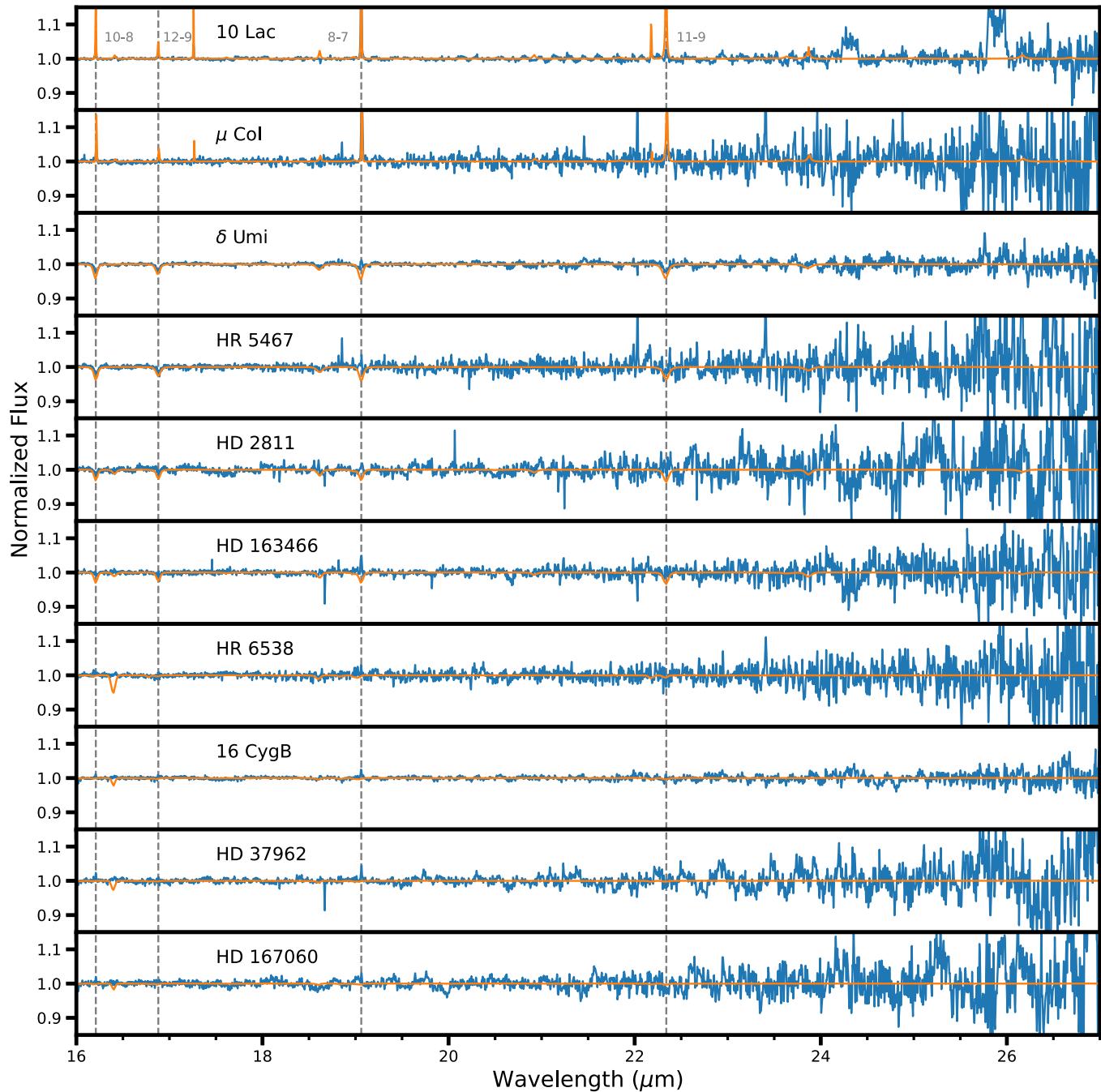



Figure 27. As Figure 25 but for the wavelength range $\lambda = 10.5\text{--}16.0 \mu\text{m}$.

Figure 28. As Figure 25 but for the wavelength range $\lambda = 16.0\text{--}27.0\ \mu\text{m}$. Note that the vertical scale is much larger than in Figures 25–27 to accommodate the lower S/N at long wavelengths.

ORCID iDs

David R. Law <https://orcid.org/0000-0002-9402-186X>
 Ioannis Argyriou <https://orcid.org/0000-0003-2820-1077>
 Karl D. Gordon <https://orcid.org/0000-0001-5340-6774>
 G. C. Sloan <https://orcid.org/0000-0003-4520-1044>
 Danny Gasman <https://orcid.org/0000-0002-1257-7742>
 Alistair Glasse <https://orcid.org/0000-0002-2041-2462>
 Kirsten Larson <https://orcid.org/0000-0003-3917-6460>
 Leigh N. Fletcher <https://orcid.org/0000-0001-5834-9588>
 Alvaro Labiano <https://orcid.org/0000-0002-0690-8824>
 Alberto Noriega-Crespo <https://orcid.org/0000-0002-6296-8960>

References

Argyriou, I., Glasse, A., Law, D. R., et al. 2023a, *A&A*, 675, A111
 Argyriou, I., Lage, C., Rieke, G. H., et al. 2023b, *A&A*, 680, A96
 Argyriou, I., Rieke, G. H., Ressler, M. E., et al. 2020a, *Proc. SPIE*, 11454, 114541P
 Argyriou, I., Wells, M., Glasse, A., et al. 2020b, *A&A*, 641, A150
 Bernard Salas, J., Pottasch, S. R., Beintema, D. A., et al. 2001, *A&A*, 367, 949
 Bohlin, R. C., Gordon, K. D., & Tremblay, P.-E. 2014, *PASP*, 126, 711
 Bohlin, R. C., Krick, J. E., Gordon, K. D., et al. 2022, *AJ*, 164, 10
 Bolton, A. S., & Burles, S. 2007, *NJPh*, 9, 443
 Bushouse, H., Eisenhamer, J., Dencheva, N., et al. 2022, JWST Calibration Pipeline, Zenodo, doi:10.5281/zenodo.7041998
 Crouzet, N., Mueller, M., Sargent, B., et al. 2024, *A&A*, in press
 de Boor, C. 1977, *SINA*, 14, 44

Dicken, D., Marín, M. G., Shivaei, I., et al. 2024, *A&A*, **689**, A5

Fletcher, L. N., Kaspi, Y., Guillot, T., et al. 2020, *SSRv*, **216**, 30

Fletcher, L. N., King, O. R. T., Harkett, J., et al. 2023, *JGRE*, **128**, e2023JE007924

Gardner, J. P., Mather, J. C., Abbott, R., et al. 2023, *PASP*, **135**, 068001

Gasman, D., Argyriou, I., Morrison, J. E., et al. 2024, *A&A*, **688**, A226

Gasman, D., Argyriou, I., Sloan, G. C., et al. 2023, *A&A*, **673**, A102

Gordon, K. D., Bohlin, R., Sloan, G. C., et al. 2022, *AJ*, **163**, 267

Gordon, K. D., Sloan, G. C., García Marín, M., et al. 2025, *AJ*, **169**, 6

Law, D. R., Cherinka, B., Yan, R., et al. 2016, *AJ*, **152**, 83

Law, D. R., Hawcroft, C., Smith, L. J., et al. 2024, *ApJL*, **976**, L25

Law, D. R. E., Morrison, J., Argyriou, I., et al. 2023, *AJ*, **166**, 45

Marcolino, W. L. F., Bouret, J.-C., Lanz, T., Maia, D. S., & Audard, M. 2017, *MNRAS*, **470**, 2710

Morrison, J. E., Dicken, D., Argyriou, I., et al. 2023, *PASP*, **135**, 075004

Patapis, P., Argyriou, I., Law, D. R., et al. 2024, *A&A*, **682**, A53

Pilcher, F. 2015, *MPBu*, **42**, 91

Pontoppidan, K. M., Salyk, C., Banzatti, A., et al. 2024, *ApJ*, **963**, 158

Reach, W. T., Megeath, S. T., Cohen, M., et al. 2005, *PASP*, **117**, 978

Ressler, M. E., Sukhatme, K. G., Franklin, B. R., et al. 2015, *PASP*, **127**, 675

Rieke, G. H., Schlafin, E., Proffitt, C. R., et al. 2024, *AJ*, **167**, 213

Rieke, G. H., Wright, G. S., Böker, T., et al. 2015, *PASP*, **127**, 584

Rigby, J. R., Lightsey, P. A., García Marín, M., et al. 2023, *PASP*, **135**, 048002

Sloan, G. C., Herter, T. L., Charmandaris, V., et al. 2015, *AJ*, **149**, 11

Weaver, B. A., Robitaille, T. P., Tollerud, E., et al. 2024, *weaverba137/pydl*: Production release with updated package infrastructure, Zenodo, doi: [10.5281/zenodo.10452785](https://doi.org/10.5281/zenodo.10452785)

Wells, M., Pel, J.-W., Glasse, A., et al. 2015, *PASP*, **127**, 646

Wright, G. S., Rieke, G. H., Glasse, A., et al. 2023, *PASP*, **135**, 048003