

The James Webb Space Telescope Absolute Flux Calibration. II. Mid-Infrared Instrument Imaging and Coronagraphy

1 KARL D. GORDON ,^{1,2} G. C. SLOAN ,^{1,3} MACARENA GARCIA MARIN ,¹ MATTIA LIBRALATO ,^{4,5} GEORGE RIEKE ,⁶
2 JONATHAN A. AGUILAR ,¹ RALPH BOHLIN ,¹ MISTY CRACRAFT ,¹ MARJORIE DECLERI ,^{7,*} ANDRAS GASPAR ,⁶
3 DAVID R. LAW ,¹ ALBERTO NORIEGA-CRESPO ,¹ AND MICHAEL REGAN ,¹

4 ¹Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA

5 ²Sterrenkundig Observatorium, Universiteit Gent, Gent, Belgium

6 ³Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA

7 ⁴AURA for the European Space Agency (ESA), Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

8 ⁵INAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, Padova, I-35122, Italy

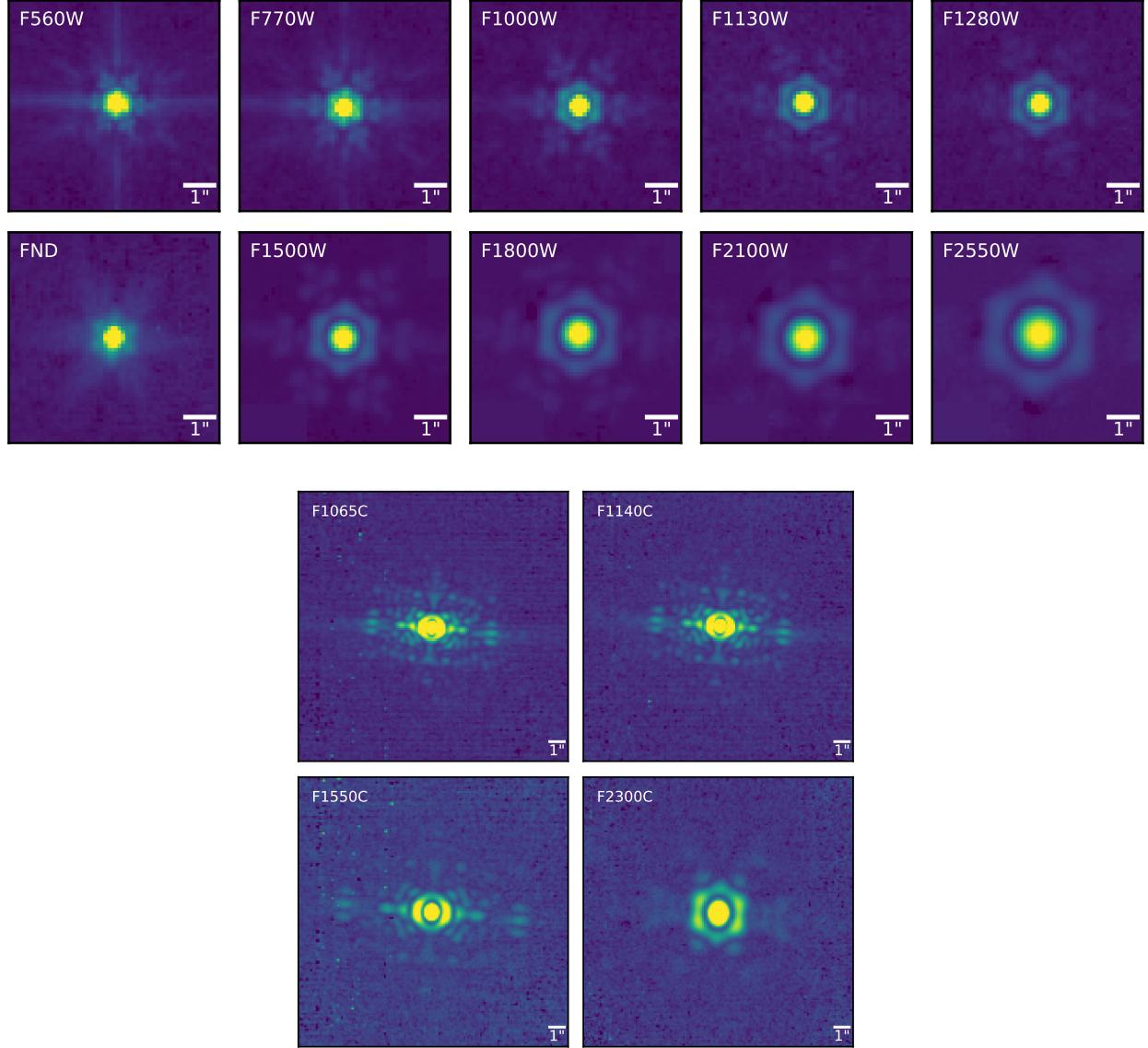
9 ⁶Steward Observatory, University of Arizona, Tucson, AZ 85721, USA

10 ⁷European Space Agency (ESA), ESA Office, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

ABSTRACT

12 The absolute flux calibration of the Mid-Infrared Instrument Imaging and Coronagraphy is based on obser-
13 vations of multiple stars taken during the first 2.5 years of JWST operations. The observations were designed
14 to ensure that the flux calibration is valid for a range of flux densities, different subarrays, and different types
15 of stars. The flux calibration was measured by combining observed aperture photometry corrected to infinite
16 aperture with predictions based on previous observations and models of stellar atmospheres. A subset of these
17 observations were combined with model point-spread-functions to measure the corrections to infinite aperture.
18 Variations in the calibration factor with time, flux density, background level, type of star, subarray, integration
19 time, rate, and well depth were investigated, and the only significant variations were with time and subarray.
20 Observations of the same star taken approximately every month revealed a modest time-dependent response loss
21 seen mainly at the longest wavelengths. This loss is well characterized by a decaying exponential with a time
22 constant of ~ 200 days. After correcting for the response loss, the band-dependent scatter around the corrected
23 average (aka repeatability) was found to range from 0.1 to 1.2%. Signals in observations taken with different
24 subarrays can be lower by up to 3.4% compared to FULL frame. After correcting for the time and subarray
25 dependencies, the scatter in the calibration factors measured for individual stars ranges from 1 to 4% depending
26 on the band. The formal uncertainties on the flux calibration averaged for all observations are 0.3 to 1.0%, with
27 longer-wavelength bands generally having larger uncertainties.

28 **Keywords:** calibration


1. INTRODUCTION

30 Absolute calibration of astronomical observations is essen-
31 tial to many astrophysical investigations. A holistic approach
32 is taken to calibrate all the James Webb Space Telescope
33 (JWST) (JWST, Gardner et al. 2023) instruments consist-
34 ently. At the same time, accurate calibration requires ex-
35 tending infrared calibration sequences to much fainter levels
36 than has been the case previously before JWST (Gordon et al.
37 2022). This paper describes the steps to calibrate the Mid-
38 Infrared Instrument (MIRI, Rieke et al. 2015; Wright et al.
39 2023); it is one of a series of papers covering all the JWST
40 instruments.

41 MIRI on the James Webb Space Telescope (JWST, Gard-
42 ner et al. 2023) provides imaging, coronagraphic, and spec-
43 troscopic observations in the mid-infrared from 5 to 28.8 μ m.

44 The absolute flux calibration of MIRI is based on observa-
45 tions of stars with well-modeled spectral energy distributions
46 that have been taken as part of the overall JWST absolute
47 flux-calibration program (Gordon et al. 2022). As for all
48 the JWST instruments, the MIRI observations target stars of
49 three different types and include multiple stars of each type.
50 This coverage allows for both random and systematic uncer-
51 tainties to be quantified. The combination of the cycle 1 and
52 2 JWST absolute flux-calibration program was constructed to
53 enable accuracies of at least 5% and 10% for MIRI imaging
54 and spectroscopy, respectively. Providing even higher accu-
55 racies is a goal of the program to enhance the JWST science.
56 An explicit goal is to support science investigations using
57 point and extended sources. See Gordon et al. (2022) for
58 the details of the integrated JWST absolute flux calibration
59 program for all JWST instruments.

* ESA Research Fellow

Figure 1. Example images for the imaging and coronagraphic filters to illustrate the data quality and general characteristics of MIRI point source observations. The targets include BD+60 1753 for the imaging bands from F560W to F1280W, δ UMi for the rest of the imaging bands, and HD 2811 for the coronagraphic bands. The image in the neutral density filter (FND) is smoother compared to the other imaging bands due to its wide bandpass. The coronagraphic observations were taken well away from the coronagraphic centers, and so these are the unocculted PSFs.

This paper presents the analysis of MIRI imaging and coronagraphic data taken over the first 2.5 years of JWST operations (i.e., Commissioning, cycle 1, and cycle 2). The overall goal of this analysis is to provide the flux calibration that converts the measured $\text{DN s}^{-1} \text{ pixel}^{-1}$ values to physical MJy sr^{-1} surface brightness units for all the imaging and coronagraphic filters. The sources for which flux densities can be predicted at the accuracies required are generally limited to stars which are straightforward to model. A number of hot stars, A dwarfs, and Solar analogs with a

range of flux densities were observed with all the MIRI imaging and coronagraphic filters. These observations were taken with different subarrays, different integration times, and were spread throughout the observing period. A critical part of this analysis is the derivation of aperture corrections to infinite apertures because the stellar model predictions are for the total flux densities. In addition, this correction explicitly allows the flux calibration to support both point and extended source science simultaneously by calibrating images to surface brightness units (Gordon et al. 2022).

Table 1. Hot Star Observations

Name	PID	Subarray	Bands
10 Lac	1524	FULL	FND
	4497	SUB64	F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
G 191-B2B	1537	FULL	F560W, F770W, F1000W, F1130W, F1280W, F1500W
	1537	FULL	F560W, F770W, F1000W
GD 153	1537	FULL	F560W, F770W, F1000W
	4497	FULL	F560W, F770W, F1000W
GD 71	1537	FULL	F560W, F770W, F1000W
	4497	FULL	F560W, F770W, F1000W
LAWD 87	1537	FULL	F560W, F770W, F1000W
	4497	FULL	F560W, F770W
WD 1057+719	1537	FULL	F560W, F770W
	4497	FULL	F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
λ Lep	4497	SUB64	F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
	4497	FULL	FND
μ Col	4497	FULL	F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
	4497	SUB64	

Table 2. Solar Analog Observations

Name	PID	Subarray	Bands
16 Cyg B	1538	FULL	FND
		SUB64	F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
C26202	4498	FULL	F560W, F770W, F1000W
		BRIGHTSKY	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W
GSPC P177-D	1538	BRIGHTSKY	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W
	4498	FULL	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W
GSPC P330-E	1538	MASK1065	F1065C
	4498	MASK1140	F1140C
HD 106252	1538	SUB64	F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
	4498	SUB64	F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
HD 1452331	1538	FULL	FND
		MASK1065	F1065C
HD 167060	1538	MASK1140	F1140C
		MASK1550	F1550C
HD 37962	1538	MASKLYOT	F2300C
		SUB64	F770W, F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
HR 6538	1538	FULL	FND
		SUB64	F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
SNAP-2	4498	SUB64	F1280W, F1500W, F1800W, F2100W, F2550W
	4498	FULL	FND
			F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
			F560W, F770W, F1000W

§2 provides the details of the observations, the derivation of the apertures and aperture corrections, how the aperture photometry was performed, the flux densities predicted from models, and the zero-magnitude flux densities in the Sirius-Vega system. The calculation of the calibration factors is given in §3 along with the measurement of the temporal and subarray dependence of these factors. In addition, §3 illustrates the lack of any significant dependencies on flux density, background, type of star, central-pixel rate, central-pixel well depth, and integration time. §4 summarizes the results, and the appendix provides plots of the calibration factors from each star plotted versus all the dependencies investigated.

92

2. DATA

The main observations used for this work are those taken specifically for the absolute flux calibration in cycle 1 and 2 (PIDs: 1523, 1524, 1536, 1537, 1538, 1539, 4488, 4496, 4497, 4498, 4499, and 4578). A small amount of data taken in cycle 3 that was available at the time of this work are included (PID: 6607). These data were supplemented with observations taken during Commissioning that provide the preliminary absolute flux calibration (PID: 1027 and 1045). All of the targets were from the overall JWST absolute flux calibration program and are highly vetted hot stars, A dwarfs, and Solar analog stars (Gordon et al. 2022). The exposure times were chosen to obtain data with signal-to-noise (S/N) ratios of 200 or better. Tables 1, 2, and 3, give the names of the stars, program identifications (PIDs), subarrays, and

Table 3. A Dwarf Observations

Name	PID	Subarray	Bands
2MASS J17430448+6655015	1027	FULL	F560W, F770W, F1000W, F1130W, F1280W, F1500W
	1536	FULL	F560W, F770W, F1000W, F1130W, F1280W, F1500W
2MASS J17571324+6703409	1533	BRIGHTSKY	F770W
		FULL	F770W
		SUB128	F770W
		SUB256	F770W
		SUB64	F770W
	1536	BRIGHTSKY	F560W
	4496	BRIGHTSKY	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W, F2100W
2MASS J18022716+6043356	1536	BRIGHTSKY	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W
	4488	BRIGHTSKY	F1280W
		FULL	F1280W
		SUB128	F1280W
		SUB256	F1280W
		SUB64	F1280W
BD+60 1753	1027	FULL	F1500W, F1800W, F2100W, F2550W
		SUB256	F560W, F770W, F1000W, F1500W
	1045	MASK1065	F1065C
		MASK1140	F1140C
		MASK1550	F1550C
		MASKLYOT	F2300C
	1536	SUB256	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W
	1539	SUB256	F770W
	4499	SUB256	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
	6607	SUB256	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
HD 101452	4496	BRIGHTSKY	F1500W, F1800W, F2100W, F2550W
HD 163466	1027	SUB64	F1000W, F1130W, F1280W, F1500W
	1536	FULL	FND
		SUB64	F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
	1539	FULL	FND
	6607	FULL	FND
HD 180609	1536	SUB128	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
HD 2811	1523	SUB64	F770W, F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
	1536	FULL	FND
		MASK1065	F1065C
		MASK1140	F1140C
		MASK1550	F1550C
		MASKLYOT	F2300C
		SUB64	F770W, F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
	4496	BRIGHTSKY	F1500W, F1800W, F2100W, F2550W
		FULL	FND
		MASK1550	F1550C
		MASKLYOT	F2300C
HD 55677	4496	SUB256	F560W, F770W, F1000W, F1130W, F1280W, F1500W, F1800W, F2100W, F2550W
HR 5467	4496	FULL	FND
		SUB256	F1500W, F1800W, F2100W, F2550W
del UMi	1524	FULL	FND
	1536	FULL	FND
		MASK1065	F1065C
		MASK1140	F1140C
		MASK1550	F1550C
		MASKLYOT	F2300C
		SUB64	F1130W, F1500W, F1800W, F2100W, F2550W
	4578	SUB64	F1500W, F1800W, F2100W, F2550W

107 filters for the observations. A small number of observations
 108 from these programs suffered from various issues (e.g., failed
 109 guide-star acquisition, lost tracking, etc.), and these observa-
 110 tions were not used in this work, nor are they listed in the
 111 tables.

112 The data were reduced using the JWST pipeline ver-
 113 sion 1.15.1 with the reference files specified by calibra-
 114 tion reference data system pmap 1256, specifically using
 115 the CALWEBB_DETECTOR1, CALWEBB_IMAGE2, and
 116 CALWEBB_IMAGE3 stages. The standard steps for imag-
 117 ing data were performed except as described below. For the
 118 CALWEBB_DETECTOR1, the electromagnetic interference
 119 correction (emicorr) was not applied, and for the jump detec-
 120 tion step (jump), the after-jump flagging and shower detec-
 121 tion were skipped. For CALWEBB_IMAGE3, the outlier de-
 122 tection (outlier_detection), refinement of the relative astrome-
 123 try (tweakreg), background matching (skymatch), and source
 124 catalog generation (source_catalog) steps were also skipped.
 125 In addition, the image combination step (resample) was run
 126 with a square kernel and the exposure time (exptime) weight-
 127 ing. These modifications to the standard reductions were
 128 made as well-exposed, high S/N observations with standard
 129 dithers do not benefit from some of the steps.

130 For the coronagraphic data, the data reduction was the
 131 same as imaging including the final mosaicking (e.g., CAL-
 132 WEBB_IMAGE3 instead of CALWEBB_CORON3). The
 133 motivation for using standard image mosaicking is that these
 134 observations were taken with the source placed well away
 135 from the center of the coronagraph and thus resemble imag-
 136 ing observations more than typical coronagraphic obser-
 137 vations. To obtain reasonable parameters for the CAL-
 138 WEBB_IMAGE3 pipeline steps for coronagraphic data, the
 139 filter in the calibration exposures (“cal” files) was changed to
 140 the closest-in-wavelength imaging filter.

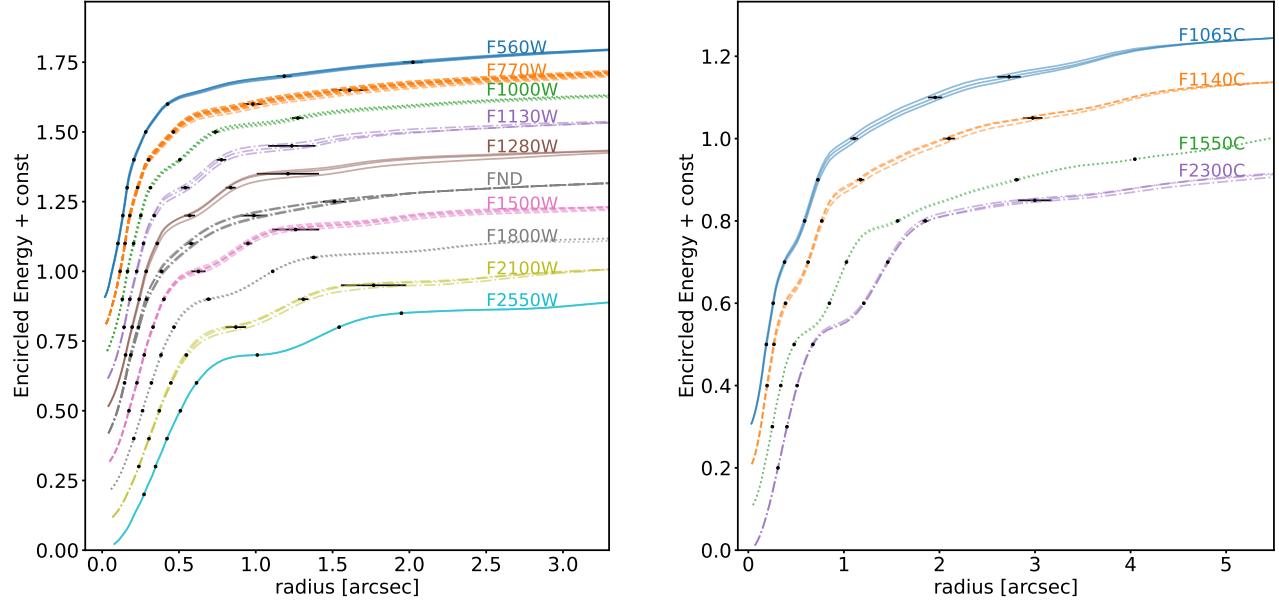
141 In addition to the standard processing to produce mosaics,
 142 we also generated mosaics with custom image-based back-
 143 ground subtraction for each exposure before mosaicking.
 144 The custom background for each band was created by averag-
 145 ing the stack of all the exposures in an observation aligned in
 146 detector coordinates. Before obtaining this mean, the region
 147 within the full width at half maximum (FWHM) of the source
 148 was masked to ensure the mean background did not include
 149 any of the source signal. These background-subtracted im-
 150 ages and mosaics are important in cases where the back-
 151 ground is strong and/or has significant structure, which hap-
 152 pens in all of the coronagraphic bands due to significant scat-
 153 tered light (Boccaletti et al. 2022). The F2550W imaging
 154 band is affected similarly.

155 Fig. 1 shows example mosaics created using the custom
 156 image-based background subtraction.

2.1. Apertures and Corrections

158 The photometric apertures and background annuli for mea-
 159 suring the flux of each star were set based on the point-
 160 spread-functions (PSFs) in each band. Specifically, radial
 161 profiles of encircled energy were used, with the aperture ra-
 162 dius (r_a) set to include 70% of the flux and the background

163 annulus set between the radii that include 80% and 85% of
 164 the flux (r_{b1} and r_{b2}). The background annulus includes con-
 165 tributions from the actual background and from the source
 166 itself due to the PSF. Thus, the aperture corrections necessar-
 167 ily depend on the background annulus parameters in addition
 168 to the object aperture radius. With these radii values, the
 169 aperture correction to infinite aperture can be computed as


$$170 \quad A_{\text{cor}} = \frac{1}{0.7 - S_{\text{bkg}} \pi r_a^2} \quad (1)$$

171 where the background surface brightness per pixel due to the
 172 PSF wings is

$$173 \quad S_{\text{bkg}} = \frac{0.85 - 0.8}{\pi(r_{b2}^2 - r_{b1}^2)}. \quad (2)$$

174 The radial encircled energy profiles were computed using
 175 a combination of observed and model PSFs. It is not pos-
 176 sible to create PSFs from observations alone as determining
 177 the background level far from the source is challenging given
 178 variations in the background due to residual detector and in-
 179 strument effects, other astronomical sources, and measure-
 180 ment noise. Using a model for the PSF based on the optics
 181 of the telescope and instrument is possible, but the structure
 182 at small radii in the observations does not match the model
 183 well, especially at the shorter MIRI wavelengths. One known
 184 detector issue that may affect the core is the “brighter-fatter
 185 effect” (BFE; Argyriou et al. 2023). This effect arises when
 186 large differences in accumulated charge between neighbor-
 187 ing pixels results in the diffusion of some charge to pixels
 188 with lower accumulated charge. §3.5 investigates the impact
 189 of BFE on the aperture photometry. The model PSF was cre-
 190 ated using WebbPSF v1.3.0 (Perrin et al. 2012, 2014) using
 191 the option that includes detector artifacts including the cruci-
 192 form (Gáspár et al. 2021; Dicken et al. 2024).

193 Hence, the MIRI PSFs are generated by using the observed
 194 radial PSFs inside a given radius and the model PSF out-
 195 side this radius. We did not use the existing effective PSFs
 196 (ePSFs) because they were not designed to measure the encir-
 197 cled energy due to smoothing and their normalization to unity
 198 area at a finite radius (Libralato et al. 2024). For the imag-
 199 ing filters, observations of BD+60 1753 were used for the
 200 observed PSF as it had multiple, high S/N observations with
 201 no visually obvious sources within 10''. For the FND filter,
 202 δ UMi was used. For the coronagraphic filters, observations
 203 of HD 2811, δ UMi, and 16 Cyg B were used. The observed
 204 radial PSFs are multiplicatively corrected to match the model
 205 PSF at a given radius. The radius where the PSFs transition
 206 between the observed and the model PSFs was determined
 207 based on visually inspecting the observed radial profiles and
 208 choosing the largest radius at each wavelength that did not
 209 show obvious extraneous structure (i.e., encircled energy de-
 210 creasing with increasing radius). The radii used for all bands
 211 were approximately 40 pixels, which corresponds to ∼4.5''.
 212 It was not possible to determine a high-quality observed
 213 PSF for F2550W due to large variations in the background.
 214 Hence, the model PSF is adopted for all radii for this filter.
 215 This solution for F2550W is reasonable given that the differ-
 216 ence between the model PSFs and observed PSFs decreases

Figure 2. The radial encircled energies for the imaging (left) and coronagraphic (right) bands. Subsequent bands are offset by a factor of 0.1. Multiple radial encircled energies are plotted for each band using repeated observations except F2550W, which is based on the WebbPSF model at all radii. The black points give the radii for 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.85 encircled energies with their uncertainties as horizontal lines. The radii uncertainties are based on the scatter of the radii computed from independent observations. The coronagraphic profiles are broader than the imaging profiles, and the Lyot F2300C profile is narrower than expected given an extrapolation of the behavior of the three 4QPM coronagraphic profiles (F1065C, F1140C, and F1550C). This is due to the difference in type of coronagraph.

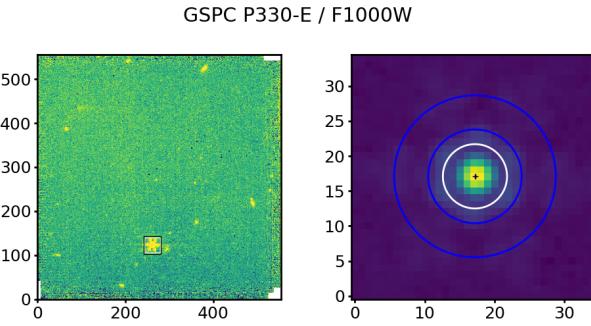
with wavelength and becomes quite small for F1800W and F2100W. Fig. 2 shows how the final encircled energies depend on wavelength for all of the bands. The increasing PSF width with wavelength is clearly seen along with the signature of the first and second Airy rings. The FND band shows smoother variation than other imaging bands because its wide bandpass washes out the Airy rings. The coronagraphic filters have larger widths than imaging bands with similar wavelengths due to the extra coronagraphic optical elements (Perrin et al. 2018; Boccaletti et al. 2015). The uncertainties are determined from the multiple observations in the same filter. The radii are larger than expected for the F560W and F770W filters compared to the behavior of the F1000W and longer filters due to the extra cruciform component that deflects light below 10 μm inside the detector material to larger radii.

To determine the absolute flux calibration, we use radii for 70% of the encircled energy with the sky annulus between the radii for 80 and 85% of the encircled energies. Table 4 gives the radii and aperture corrections for these choices for all of the bands. The uncertainties in radii are strongly influenced by the steepness of the encircled energy profile. For example, the r_{b2} uncertainties are often significantly larger than the r_{b1} as the 85% points on the encircled energy curves are much less steep than the 80% points. The reference file for the aperture correction in the JWST pipeline provides the aperture corrections for encircled energies between 0.1 and

Table 4. Apertures and Corrections

Band	r_a	r_{b1}	r_{b2}	A_{cor}
	(pix)	(pix)	(pix)	
F560W	3.87 ± 0.06	10.78 ± 0.44	18.39 ± 0.59	1.671 ± 0.0002
F770W	4.22 ± 0.10	8.92 ± 0.57	14.64 ± 1.07	1.675 ± 0.0008
F1000W	4.60 ± 0.08	6.70 ± 0.19	11.58 ± 0.34	1.679 ± 0.0004
F1130W	4.92 ± 0.26	7.06 ± 0.29	11.22 ± 1.40	1.686 ± 0.0079
F1280W	5.18 ± 0.32	7.61 ± 0.30	10.99 ± 1.84	1.696 ± 0.0130
FND	5.27 ± 0.26	8.98 ± 0.78	13.74 ± 0.69	1.683 ± 0.0007
F1500W	5.69 ± 0.43	8.63 ± 0.26	11.45 ± 1.39	1.706 ± 0.0146
F1800W	6.29 ± 0.17	10.09 ± 0.04	12.52 ± 0.20	1.714 ± 0.0030
F2100W	7.91 ± 0.61	11.90 ± 0.31	16.07 ± 1.93	1.702 ± 0.0120
F2550W*	9.18 ± 0.00	14.03 ± 0.00	17.71 ± 0.00	1.705 ± 0.0000
F1065C	10.07 ± 0.39	17.77 ± 0.68	24.80 ± 1.11	1.687 ± 0.0015
F1140C	10.68 ± 0.35	19.10 ± 0.58	27.06 ± 0.92	1.685 ± 0.0009
F1550C	14.21 ± 0.16	25.52 ± 0.25	36.77 ± 0.05	1.684 ± 0.0005
F2300C	13.27 ± 0.08	16.84 ± 0.29	27.25 ± 1.59	1.705 ± 0.0060

* F2550W does not have measured uncertainties as the model PSF was used for all radii.


0.8 using background annuli defined by 80 and 85 % of the encircled energies¹.

¹ <https://jwst-crds.stsci.edu/>

Table 5. Photometry

name	PID	src type	filter	subarray	time	pixrate	pixwelldepth	inttime	flux	ifluxunc	ibkg	flux	fluxunc	bkg	
					MJD	DN s ⁻¹	DN	s	DN s ⁻¹	DN s ⁻¹	DN s ⁻¹	mJy	mJy	MJy sr ⁻¹	
MIRI IMAGING															
16 Cyg B	1538	SolarAnalogs	F1130W	SUB64	59762.5	5.17e+04	4.40e+04	0.85	8.79e+05	1.07e+03	1.43e+02	4.14e+02	5.03e-01	1.61e+02	
16 Cyg B	1538	SolarAnalogs	F1280W	SUB64	59762.5	9.02e+04	4.61e+04	0.51	1.80e+06	2.45e+03	4.08e+02	3.26e+02	4.43e-01	1.74e+02	
16 Cyg B	1538	SolarAnalogs	F1500W	SUB64	59762.5	5.91e+04	4.02e+04	0.68	1.49e+06	4.31e+03	6.57e+02	2.39e+02	6.91e-01	2.46e+02	
16 Cyg B	1538	SolarAnalogs	F1800W	SUB64	59762.5	2.55e+04	2.17e+04	0.85	7.98e+05	2.34e+03	5.01e+02	1.69e+02	4.95e-01	2.46e+02	
16 Cyg B	1538	SolarAnalogs	F2100W	SUB64	59762.5	1.80e+04	1.54e+04	0.85	7.33e+05	1.11e+03	6.32e+02	1.28e+02	1.93e-01	2.59e+02	
16 Cyg B	1538	SolarAnalogs	F2550W	SUB64	59762.5	5.25e+03	1.34e+04	2.55	2.47e+05	6.08e+02	1.11e+03	8.12e+01	2.00e-01	8.51e+02	
2MASS J17430448+6655015	1027	Adwarfs	F560W	FULL	59737.6	6.68e+02	1.85e+04	27.75	4.76e+03	7.35e+00	3.19e+00	8.78e-01	1.36e-03	1.43e+00	
2MASS J17430448+6655015	1027	Adwarfs	F560W	FULL	59724.4	3.91e+02	1.09e+04	27.75	3.38e+03	7.09e+00	3.43e+00	6.24e-01	1.31e-03	1.54e+00	
2MASS J17430448+6655015	1536	Adwarfs	F560W	FULL	59763.0	5.92e+02	1.64e+04	27.75	4.71e+03	7.10e+00	3.28e+00	8.69e-01	1.31e-03	1.47e+00	
2MASS J17430448+6655015	1027	Adwarfs	F560W	FULL	59727.9	6.52e+02	1.81e+04	27.75	4.78e+03	5.33e+00	3.23e+00	8.83e-01	9.84e-04	1.45e+00	
2MASS J17430448+6655015	1027	Adwarfs	F770W	FULL	59727.9	5.64e+02	1.57e+04	27.75	4.69e+03	6.72e+00	1.86e+01	4.99e-01	7.15e-04	4.79e+00	
2MASS J17430448+6655015	1536	Adwarfs	F770W	FULL	59763.0	5.18e+02	1.44e+04	27.75	4.67e+03	6.37e+00	1.70e+01	4.97e-01	6.78e-04	4.38e+00	
2MASS J17430448+6655015	1027	Adwarfs	F770W	FULL	59737.6	5.18e+02	1.44e+04	27.75	4.66e+03	6.38e+00	1.75e+01	4.95e-01	6.78e-04	4.51e+00	
2MASS J17430448+6655015	1536	Adwarfs	F1000W	FULL	59763.1	1.99e+02	5.53e+03	27.75	2.03e+03	4.58e+00	3.46e+01	2.92e-01	6.58e-04	1.20e+01	
2MASS J17430448+6655015	1027	Adwarfs	F1000W	FULL	59737.6	2.01e+02	5.56e+03	27.75	2.05e+03	4.68e+00	3.56e+01	2.94e-01	6.72e-04	1.23e+01	
2MASS J17430448+6655015	1027	Adwarfs	F1000W	FULL	59727.9	2.10e+02	5.84e+03	27.75	2.04e+03	4.77e+00	3.75e+01	2.92e-01	6.85e-04	1.30e+01	
2MASS J17430448+6655015	1536	Adwarfs	F1130W	FULL	59763.1	4.84e+01	2.68e+03	55.50	5.03e+02	1.84e+00	1.56e+01	2.29e-01	8.39e-04	1.69e+01	
2MASS J17430448+6655015	1027	Adwarfs	F1130W	FULL	59737.6	5.07e+01	2.81e+03	55.50	5.02e+02	2.06e+00	1.60e+01	2.29e-01	9.39e-04	1.73e+01	
2MASS J17430448+6655015	1027	Adwarfs	F1130W	FULL	59727.9	5.13e+01	2.85e+03	55.50	5.06e+02	1.89e+00	1.67e+01	2.27e-01	8.61e-04	1.81e+01	
2MASS J17430448+6655015	1536	Adwarfs	F1280W	FULL	59763.1	1.11e+02	4.91e+03	44.40	1.01e+03	4.34e+00	5.36e+01	1.76e-01	7.59e-04	2.21e+01	
2MASS J17430448+6655015	1027	Adwarfs	F1280W	FULL	59727.9	1.14e+02	5.08e+03	44.40	1.02e+03	4.57e+00	5.68e+01	1.78e-01	7.95e-04	2.33e+01	
2MASS J17430448+6655015	1027	Adwarfs	F1280W	FULL	59737.6	1.11e+02	4.94e+03	44.40	1.02e+03	4.37e+00	5.49e+01	1.77e-01	7.61e-04	2.25e+01	
2MASS J17430448+6655015	1027	Adwarfs	F1500W	FULL	59737.6	1.44e+02	3.44e+04	238.90	8.47e+02	3.02e+00	1.09e+02	1.31e-01	4.67e-04	3.91e+01	
2MASS J17430448+6655015	1027	Adwarfs	F1500W	FULL	59727.9	1.47e+02	3.51e+04	238.90	8.66e+02	2.60e+00	1.11e+02	1.34e-01	4.01e-04	3.99e+01	
2MASS J17430448+6655015	1536	Adwarfs	F1500W	FULL	59763.1	1.44e+02	7.21e+03	49.95	8.44e+02	4.17e+00	1.08e+02	1.31e-01	6.46e-04	3.89e+01	
G 191-B2B	1537	HoStars	F560W	FULL	59830.4	6.85e+02	1.90e+04	27.75	4.39e+03	6.49e+00	4.81e+00	8.11e-01	1.20e-03	2.16e+00	
G 191-B2B	1537	HoStars	F770W	FULL	59830.4	5.33e+02	1.48e+04	27.75	4.30e+03	6.47e+00	3.10e+01	4.58e-01	6.88e-04	7.99e+00	
G 191-B2B	1537	HoStars	F1000W	FULL	59830.4	2.07e+02	5.74e+03	27.75	4.37e+03	5.37e+00	5.72e+01	2.75e-01	7.75e-04	1.98e+01	
G 191-B2B	1537	HoStars	F1130W	FULL	59830.4	5.73e+01	3.82e+03	66.60	4.72e+02	2.12e+00	2.59e+01	2.15e-01	9.65e-04	2.82e+01	
G 191-B2B	1537	HoStars	F1280W	FULL	59830.4	1.36e+02	6.06e+03	44.40	9.71e+02	5.08e+00	8.14e+01	1.71e-01	8.95e-04	3.38e+01	
G 191-B2B	1537	HoStars	F1500W	FULL	59830.4	1.77e+02	1.18e+04	66.60	8.29e+02	4.30e+00	1.42e+02	1.29e-01	6.70e-04	5.17e+01	

NOTE—Table 5 is published in its entirety in the machine-readable format. A portion is shown here for guidance regarding its form and content.

Figure 3. A visualization of the photometric method for GSPC P330-E observed with the F1000W imaging band with the BRIGHT-SKY subarray. The full mosaic is shown on the left with a white and black box surrounding the target. The right panel zooms in on the target region with the aperture in white, the sky annulus in blue, and the final centroid position marked with a cross. The x and y axis units are pixels, which are $0.11''$ across. The minima and maxima of the color scales differ between the two images.

2.2. Photometry

The photometry for each observation was measured using the photutils package (Bradley et al. 2022) from the mosaics using the apertures and aperture corrections from Table 4. The center of the aperture was determined by finding the initial position of the star based on the known coordinates and proper motion, followed by center-of-mass centroiding on the brightest source near this initial position. The photometry accounts for partial pixels in the circular aperture. The uncertainty in the photometry was calculated based on the pipeline propagated uncertainties and includes a second term that gives the uncertainty in the background subtraction based on the measured scatter in the background. A visual example of the photometry is shown in Fig. 3. The photometry in this fixed aperture was then corrected to infinite aperture using the appropriate aperture correction. Table 5 gives the resulting photometry along with additional observational details. This table includes the star name (name), program identification (PID), the source type (srctype), the filter, the subarray, the observation time (time), the central-pixel rate (pixrate), the central-pixel well depth (pixweldepth), the integration time (inttime), the instrumental flux (iflux), instrumental flux uncertainty (ifluxunc), the instrumental average background per pixel (ibkg), and the equivalent of the last three in physical units (flux, fluxunc, and bkg) using the calibration from section 3.6.

2.3. Model Predictions

The predicted flux densities for the hot stars and A dwarfs were determined using CALSPEC² models (Bohlin et al. 2014, 2022). For the Solar analogs, models by Rieke et al. (2024) were used. These models are the combination of stel-

Table 6. Zero-Magnitude Flux Densities in the Sirius-Vega System

Band	$F(\lambda)$ (ergs $\text{\AA}^{-1} \text{cm}^{-2} \text{s}^{-1}$)	$F(\nu)$ (Jy)
F560W	1.090e-12	115.439
F770W	3.340e-13	65.011
F1000W	1.162e-13	38.401
F1065C	8.963e-14	33.562
F1140C	6.929e-14	29.534
F1130W	6.924e-14	29.538
F1280W	4.269e-14	23.368
FND	5.175e-14	28.724
F1500W	2.249e-14	17.020
F1550C	1.976e-14	15.858
F1800W	1.103e-14	11.895
F2100W	6.227e-15	8.981
F2300C	4.383e-15	7.517
F2550W	2.802e-15	6.012

lar atmosphere models extinguished by dust. See Gordon et al. (2022) for the stellar and dust extinction properties of each star. The band flux densities were calculated using the MIRI band-response functions provided by Pandeia (Pontoppidan et al. 2016). The band flux densities were calculated in $F(\lambda)$ units using Equation 5 from Gordon et al. (2022) and converted to $F(\nu)$ flux densities using the pivot wavelength λ_{ref} with the standard conversion (e.g., Equation 11 of Bohlin et al. 2014). This step supports the two common photometric conventions (Gordon et al. 2022).

2.4. Zero-Magnitude Flux Densities in the Sirius-Vega System

Table 6 provides the flux densities for zero magnitude in the Sirius-Vega system computed in $F(\lambda)$ units as defined for the JWST band fluxes (Gordon et al. 2022) and the $F(\nu)$ values computed as discussed by Bohlin et al. (2014). Magnitudes are not required for the absolute flux calibration, but are used extensively in many studies. They are provided here as a convenience and are based on the known filter bandpasses and the model for Sirius shifted to the brightness of Vega. This approach uses Sirius as the color standard and preserves the historical zero magnitude definition based on Vega (Rieke et al. 2022). The definition of the JWST band fluxes supports both photometric conventions (see Gordon et al. 2022). For the photometric convention that uses color corrections see

² <https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/astrophysical-catalogs/calspec>

302 the appropriate JDox page³ for corrections for a selection of
 303 spectral shapes.

3. RESULTS

305 Following Gordon et al. (2022), the flux calibration factor
 306 that converts instrumental $\text{DN s}^{-1} \text{ pixel}^{-1}$ to physical sur-
 307 face brightnesses in MJy sr^{-1} is

$$308 \quad C = \frac{F}{N_{\text{ap}} A_{\text{cor}} \Omega_{\text{pix}}}. \quad (3)$$

309 where F is the model flux density in MJy (§2.3), N is the
 310 measured flux density in $\text{DN s}^{-1} \text{ pixel}^{-1}$ in a finite aperture
 311 (iflux in Table 5), A_{cor} is the aperture correction to an infinite
 312 aperture (§2.1), and Ω_{pix} is the average solid angle per pixel
 313 (in sr).

314 Ideally, the flux calibration factor for each band would be
 315 a single constant converting instrumental to physical units.
 316 As part of this analysis, we have found that the flux calibra-
 317 tion depends on both the time of observation and the sub-
 318 array used. Section 3.1 and 3.3 discuss the dependence on
 319 time and subarray, respectively. We did not find that the flux
 320 calibration depends significantly on other properties of the
 321 detectors or calibration stars. The source parameters inves-
 322 tigated include the predicted flux densities, the type of star
 323 (hot stars, A dwarfs, and Solar analogs), and measured back-
 324 grounds (§3.4). The detector parameters investigated include
 325 the central-pixel well depth in DN, the instrumental central-
 326 pixel rate in DN s^{-1} , and integration time (§3.5). Section 3.6
 327 quantifies the time- and subarray-dependent flux calibration
 328 and accuracy.

3.1. Temporal Dependence

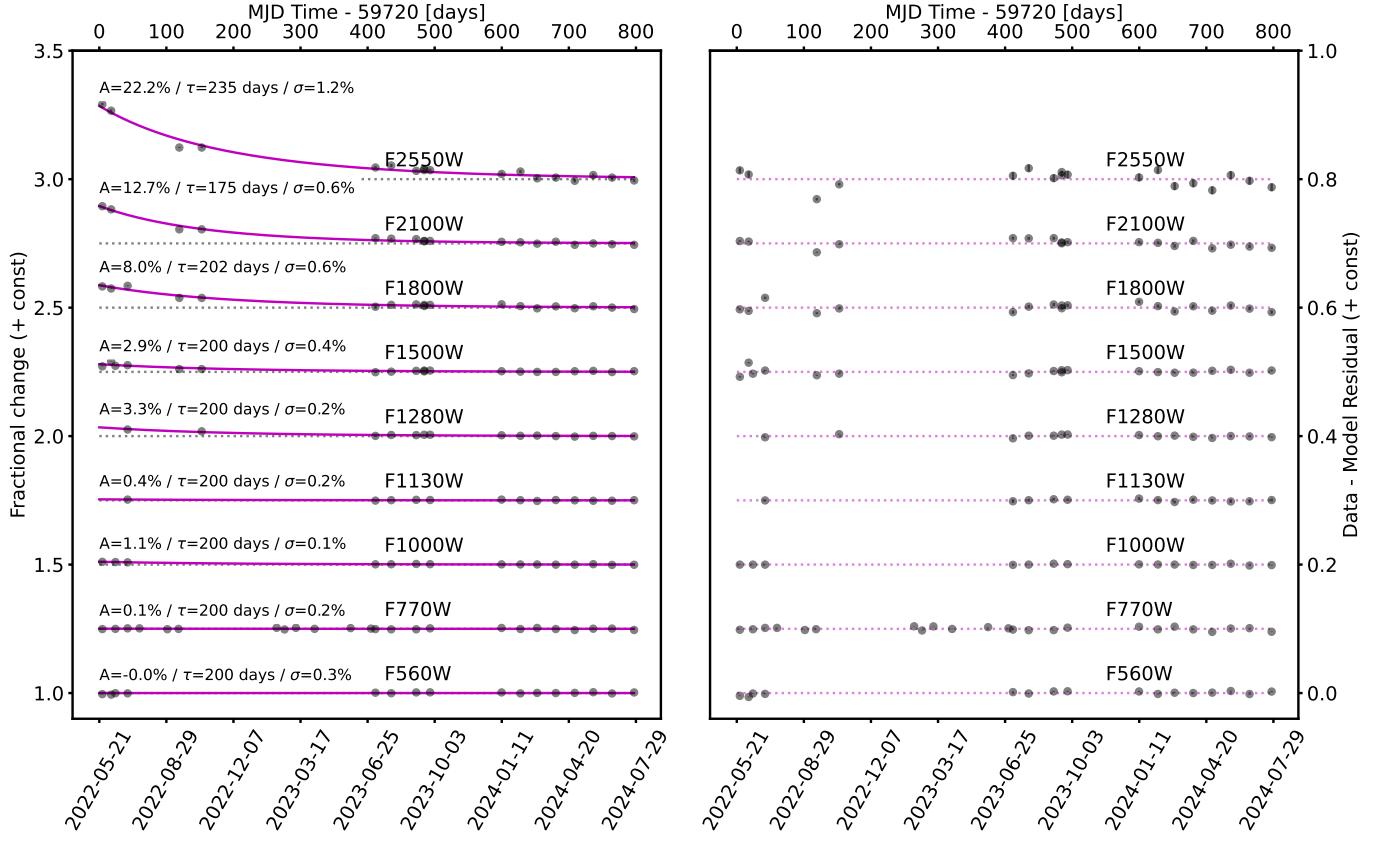
330 The repeatability of a source was monitored through
 331 monthly observations of BD+60 1753, an A dwarf that is
 332 relatively bright and is known to have very low short-term
 333 intrinsic variability (<0.03%, Gordon et al. 2022). The ob-
 334 jective is to measure the intrinsic scatter of observations due
 335 to variability of the telescope (e.g., PSF) and instrument (e.g.,
 336 detectors). Focusing on the F770W observations (Fig. 4), the
 337 repeatability is measured to be 0.2%, comparable to that mea-
 338 sured for the Spitzer/MIPS 24 μm band (Engelbracht et al.
 339 2007) and lower than the 1–2% measured for the IRAC bands
 340 (Reach et al. 2005; Bohlin et al. 2011; Krick et al. 2021).

341 After the detection of the significant response change at
 342 long wavelengths for the MIRI Medium Resolution Spec-
 343 trometer (MRS) (Law et al. 2024), these observations were
 344 expanded to include all imaging filters every month⁴. With
 345 this change, the goal of the monitoring of BD+60 1753 ex-
 346 panded to include detecting and measuring any temporal
 347 changes in total system response. Combining these expanded
 348 observations with observations of the same star taken dur-

349 ing JWST Commissioning led to the discovery that the long-
 350 wavelength imaging filters also suffer from a temporal degra-
 351 dation in transmission. Fig. 4 shows the relative change in
 352 the flux of BD+60 1753 for all 9 imaging bands. In addition,
 353 pairs of measurements of δ UMi and HD 37962 are included
 354 to add critical measurements in the gap between the end of
 355 Commissioning and the start in cycle 2 of the expanded, all-
 356 filter observations of BD+60 1753. Both of these additional
 357 stars had been observed in multiple long-wavelength filters
 358 between days 100 and 200. Repeated observations between
 359 days 475 and 500 were taken of both stars to provide a rela-
 360 tive measurement. This allowed the earlier measurements to
 361 be included in the repeatability measurement by normalizing
 362 the latter observations to observations of BD+60 1753 close
 363 in time.

364 The F2550W filter shows a clear degradation in total sys-
 365 tem responsivity of $\sim 22\%$. The degradation can be seen
 366 in other filters, with the amplitude decreasing monotonically
 367 with wavelength to 3% in F1280W. For the shorter-
 368 wavelength filters, the degradation is small and generally
 369 consistent with very small or no degradation. The imaging
 370 response degradation at F2550W of $\sim 22\%$ is significantly
 371 smaller than the MRS degradation seen at the equivalent
 372 wavelengths (Law et al. 2024). The impact on the S/N of
 373 an observation with F2550W is $\sim 11\%$.

374 The expanded monitoring of BD+60 1753 measures the
 375 repeatability of observations in all imaging filters. As Fig. 4
 376 shows, discrepancies in the repeatability amplitude are low-
 377 est for the short-wavelength bands with values of 0.1–0.4%
 378 and grow to 1.2% for the F2550W band. These uncertain-
 379 ties set the maximum S/N possible from a single, dithered
 380 observation.


3.2. Anomalous Stars/Observations

381 One of the motivations for observing a sample of stars is
 382 to identify stars that are not suitable for absolute flux cali-
 383 bration. We found one star that fell into this category. In
 384 addition, a few observations in specific filters were found to
 385 be significantly deviant from the average.

386 The A dwarf HD 180609 shows a clear signature of a de-
 387 bris disk, with an observed excess above the model prediction
 388 for long-wavelength bands that increases with wavelength.
 389 The signature of such an excess is a decreasing calibration
 390 factor as a function of wavelength, and this is clearly seen for
 391 this star. This makes this star unsuitable for flux calibration
 393 measurements and it was removed from all analyses except
 394 for the subarray dependence as it is the only star observed in
 395 all filters with SUB128 (see below). Debris disks have ap-
 396 peared in samples of presumably well-vetted standard stars
 397 before. In the Spitzer (Werner et al. 2004) Infrared Spec-
 398 trometer (Houck et al. 2004) absolute flux program, four of
 399 the 20 A dwarf standards had a clear debris disk, plus three
 400 suspects, along with one of the 30 K giant standards (Sloan
 401 et al. 2004, 2015). In the Spitzer Mid-Infrared Instrument
 402 (Rieke et al. 2004) absolute flux program, one A dwarf and
 403 one K giant were found to have the signature of a debris disk
 404 (Gordon et al. 2007). The difficulty of avoiding these occa-

³ To be added to JDox very soon

⁴ <https://www.stsci.edu/contents/news/jwst/2023/temporal-behavior-of-the-miri-reduced-count-rate>

Figure 4. Left: The time-dependent behavior of the repeated observations of BD+60 1753 plus two other stars for all the imaging filters. An exponential model fit to the observations in each band is plotted in this panel as the solid purple line. The dotted line gives the value after the modeled exponential has fully decayed. The amplitude A , the time constant τ , and standard deviation σ around the exponential fit are given on the left. Right: The residuals after subtraction of the exponential model.

405 sional anomalies drives the need for observing a sample of
406 stars of each stellar type.

407 As part of computing the calibration factors, some obser-
408 vations were found to be significantly different than average.
409 Often these deviant observations were seen for a single ob-
410 servation for a star, with all the other observations for the
411 same star being consistent with the average. The deviant ob-
412 servations are indicated in the calibration factor plots in the
413 rest of this paper. There was one star where all its obser-
414 vations were flagged as deviant. This was C26202 that was
415 observed in F560W, F770W, and F1000W and the deviations
416 seen were both above and below the average. The reason for
417 all the observations being deviant is under investigation.

418 3.3. Subarray Dependence

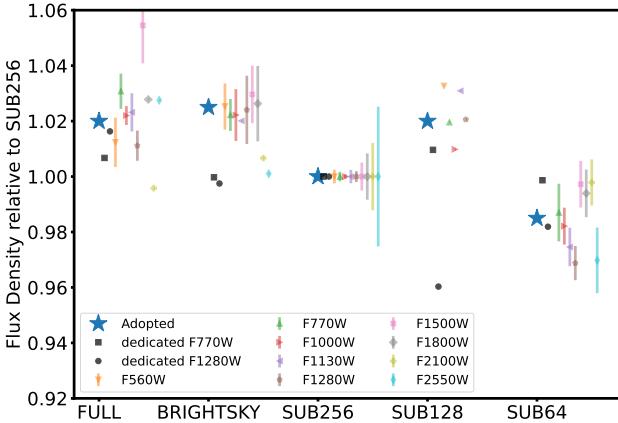

419 Observations for absolute flux calibration are taken with
420 different subarrays so that both faint and bright targets can
421 be observed. The MIRI Imager has five subarrays including
422 FULL using all the detector pixels and four smaller subarrays
423 (BRIGHTSKY, SUB256, SUB128, SUB64) with each suc-
424 ccessively reducing the area read by a factor of four (Ressler
425 et al. 2015). Measuring potential differences in the observed

Table 7. Subarray Dependence

Subarray	D_{SA}
FULL	1.000
BRIGHTSKY	1.005
SUB256	0.980
SUB128	1.000
SUB64	0.966

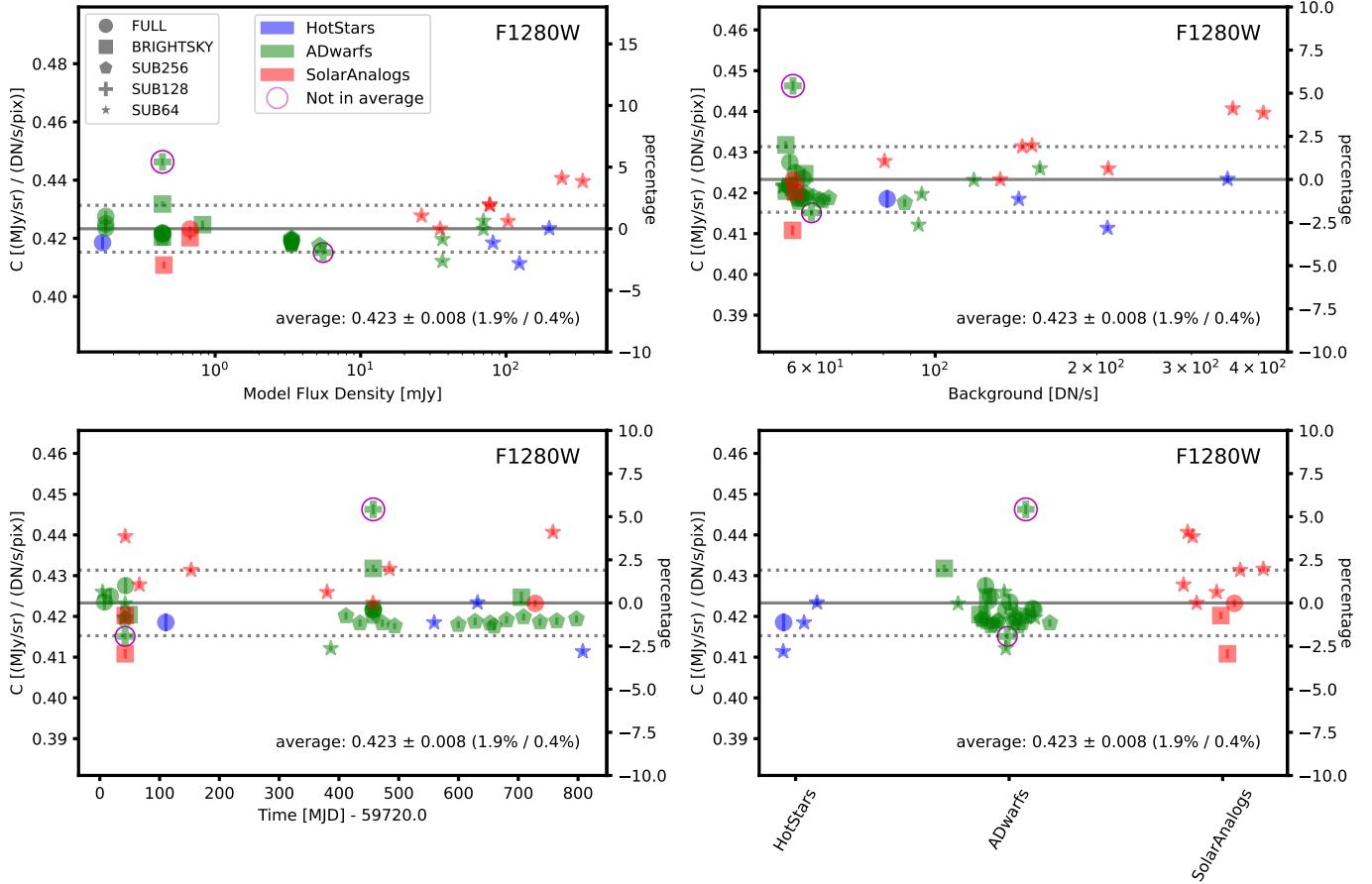
426 flux densities in different subarrays is important to ensuring a
427 consistent calibration. Possible causes of variations between
428 subarrays include different readout patterns, transients asso-
429 ciated with switching subarrays, and flatfield spatial errors as
430 the subarrays are in different detector locations (Wright et al.
431 2023; Dicken et al. 2024).

432 Dedicated observations to measure variations in the flux
433 calibration with subarray were taken in two filters with
434 two different stars. 2MASS J17571324+6703409 was ob-

Figure 5. The fractional change in flux density relative to SUB256 for each subarray using a variety of observations. The dedicated subarray transfer observations taken in F770W and F1280W are simple ratios of the measured flux densities where multiple measurements in the same subarray were averaged if available. All of the flux-calibration observations were used to measure equivalent ratios using the weighted average calibration factors for each subarray and band. The uncertainties for these ratios are the weighted standard deviation of the mean. No error bars are shown for three or fewer observations. The blue stars are the adopted relative subarray throughputs.

served back-to-back in the F770W band for all five subarrays. 2MASS J18022716+6043356 was observed back-to-back in the F1280W band for all five subarrays, with the FULL and SUB64 subarrays observed multiple times. For the F1280W measurements, the FULL frame observations were taken at the beginning and end of the observation sequence to check that any changes seen did not depend on the order of the observations. Fig. 5 shows the flux density in each subarray relative to that observed in the SUB256 subarray. For all but the SUB128 subarray, these two sets of measurements agree well. For the SUB128 subarray, they differ by $\sim 4\%$, but the cause is not yet known, and additional dedicated observations will be needed to determine it.

The rest of the observations can be used to probe the subarray dependence as well. First, the weighted average calibration factor and uncertainty for each subarray in each band is calculated after correcting for the known temporal dependence. The weighting was such that each star had equal weight in the average (e.g., a star with n observations has its observations each given a weight of n^{-1}). The equivalent measurement can then be computed by taking the ratio of the SUB256 subarray calibration factor to that measured in the other subarrays. This ratio has the SUB256 calibration factor in the numerator as the measured flux densities are in the denominator of the calibration factor calculation. The SUB256 subarray was used as the reference as it was the subarray with the most observations with flux calibration data in all bands.


Fig. 5 shows the resulting ratios. For FULL and SUB64, these ratios agree well with those measured from the dedicated observations. For BRIGHTSKY, the ratios disagree for both the F770W and F1280W dedicated measurements when considering the averages based on >3 observations. For SUB128, the ratios agree well with the dedicated F770W observations, but not those taken with F1280W. The SUB128 ratio values are dominated by HD 180609, a star with a clear signature of a debris disk in F1500W and longer bands (see Section 3.2). We have included the F1280W and shorter bands for this star in the analysis only for the subarray dependence because it is the only star observed in SUB128 for all bands. In the end, the SUB128 dependence is the same as the FULL subarray, resulting in no SUB128 correction compared to FULL.

In summary, the dedicated subarray observations for the SUB128 subarray do not agree and these dedicated observations do not agree with the ratios based on calibration factors for the BRIGHTSKY subarray. The two sets of observations are consistent enough that we can conclude that the subarrays differ significantly. Visually examining Fig. 5, we have adopted subarray dependencies mainly influenced by the calibration factor ratios, but also taking into account the dedicated observations. The calibration factor ratios are preferred because (1) they are based on many more observations than the dedicated subarray observations, and (2) the dedicated subarray observations could be impacted by subarray switching transients. The subarray was measured relative to SUB256, because SUB256 was well measured in all bands. It is preferable to have the subarray dependence relative to the FULL subarray that is used for most MIRI imaging observations. Hence, the D_{SA} dependence as given in Table 7 is given relative to FULL frame by dividing the adopted values shown in Fig. 5 by the adopted FULL value. Thus, D_{SA} gives the throughput for each subarray relative to the FULL frame.

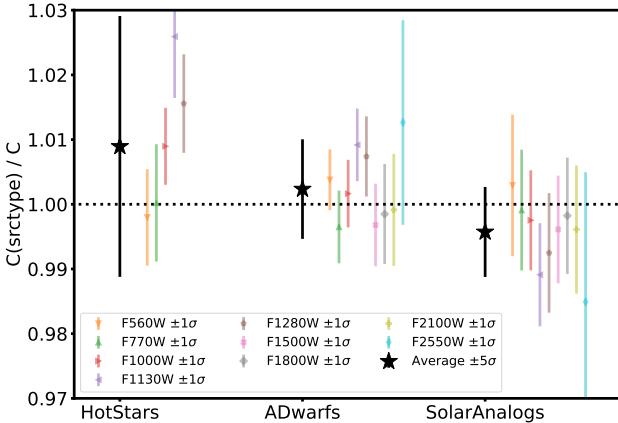
3.4. Source Dependencies

Fig. 6 shows how the F1280W calibration factors for each observation depend on multiple source parameters. Investigating if the calibration factor depends on properties of the source is important to test that the calibration factor is applicable to as wide a range of observations as can be tested. The weighted averages and uncertainties were computed as described in §3.3.

The plot versus model flux density shows that the calibration is constant for sources from 0.2 to 200 mJy. The lack of a dependence on flux density in all but one of the bands (see appendix Fig. 10) leads to two conclusions. First, the MIRI detectors do not suffer from significant non-linearities due to a dependence on flux density (Bohlin et al. 2006; de Jong et al. 2006). Second, the known brighter-fatter effect (Argyriou et al. 2023) is not affecting the photometry in the aperture used. The one possible exception to this result is the FND band, which shows a small trend with predicted flux density (as discussed further in the next subsection).

Figure 6. The F1280W calibration factors plotted as a function of the source predicted flux density, measured background, observation time, and source type. The calibration factors are corrected for the time and subarray dependencies. Each point represents one observation for one star. The colors and symbols to distinguish different types of stars and subarrays are the same in all panels. While the observation of HD 180609 is within the scatter for this band, it is flagged and not used (§3.2). In addition, one observation is flagged as $> 3.5\sigma$ from the weighted average and not used (§3.2). The solid horizontal gray line gives the weighted average in each panel, with the $\pm 1\sigma$ standard deviations as dotted gray lines. The average calibration factors and uncertainties are given in the lower right of each plot. The percentage standard deviation and standard deviation of the mean are given in parentheses as well.

Another possible dependence could be on the measured background. The background affects all pixels similarly unlike a point source with its strong gradients in the illumination between pixels. The plot versus background for F1280W and for all the bands (see appendix Fig. 11) shows no dependence on such uniform illumination.


The temporal dependence determined from repeated observations of mainly one star discussed in §3.1 is tested using all the observations in the lower left plot of this figure. The plot shows that the temporal correction is working well for all observations for F1280W and, in fact, all bands (see appendix Fig. 12).

The lower right panel in Fig. 6 probes the dependence on the type of calibration star. No obvious dependence on type of star is found for F1280W or for the other bands (see appendix Fig. 13). To quantify the difference between source types, the average calibration factors for each band were computed by source type. Fig. 7 plots the ratios between

these values and the average calibration factors per band for all source types (in colors), along with the weighted averages of all bands per source type (in black) and error bars that represent the 5σ standard deviation. The averages for all the types of stars are within 5σ of unity, indicating no significant difference in the calibration factors between types. These results indicate that the calibration does not depend systematically on source type.

3.5. Detector Dependencies

The calibration factor can depend on detector parameters as has already been shown for subarrays. Fig. 8 plots the F1280W calibration factors after correction for the time and subarray dependence as a function of the detector parameters central-pixel rate, central-pixel well depth, integration time, and subarray. The weighted averages and uncertainties were computed as described in §3.3.

Figure 7. The ratio of the average calibration factor for each band for each source type versus the average calibration factor per band for all source types. Only bands with > 3 individual measurements are shown as this is required to measure an uncertainty. The error bars for the individual bands are one σ standard deviations. Black stars and vertical lines depict the weighted average of all bands and five times the standard deviation of the mean (5σ).

The dependence on the rate of arriving photons is investigated in the upper left of Fig. 8. This panel closely resembles the plot in the previous section versus model flux, except that the central-pixel rate is used given in instrumental DN s^{-1} . As in Fig. 6, no clear dependence is seen for F1280W or any of the other filters except for the FND filter (see appendix Fig. 14).

The central-pixel well depth probes the accuracy of the applied non-linearity correction. The lower left panel in Fig. 8 shows no clear dependence on central-pixel well depth, indicating that the non-linearity correction is quite accurate for F1280W and all bands except the FND (see appendix Fig. 15).

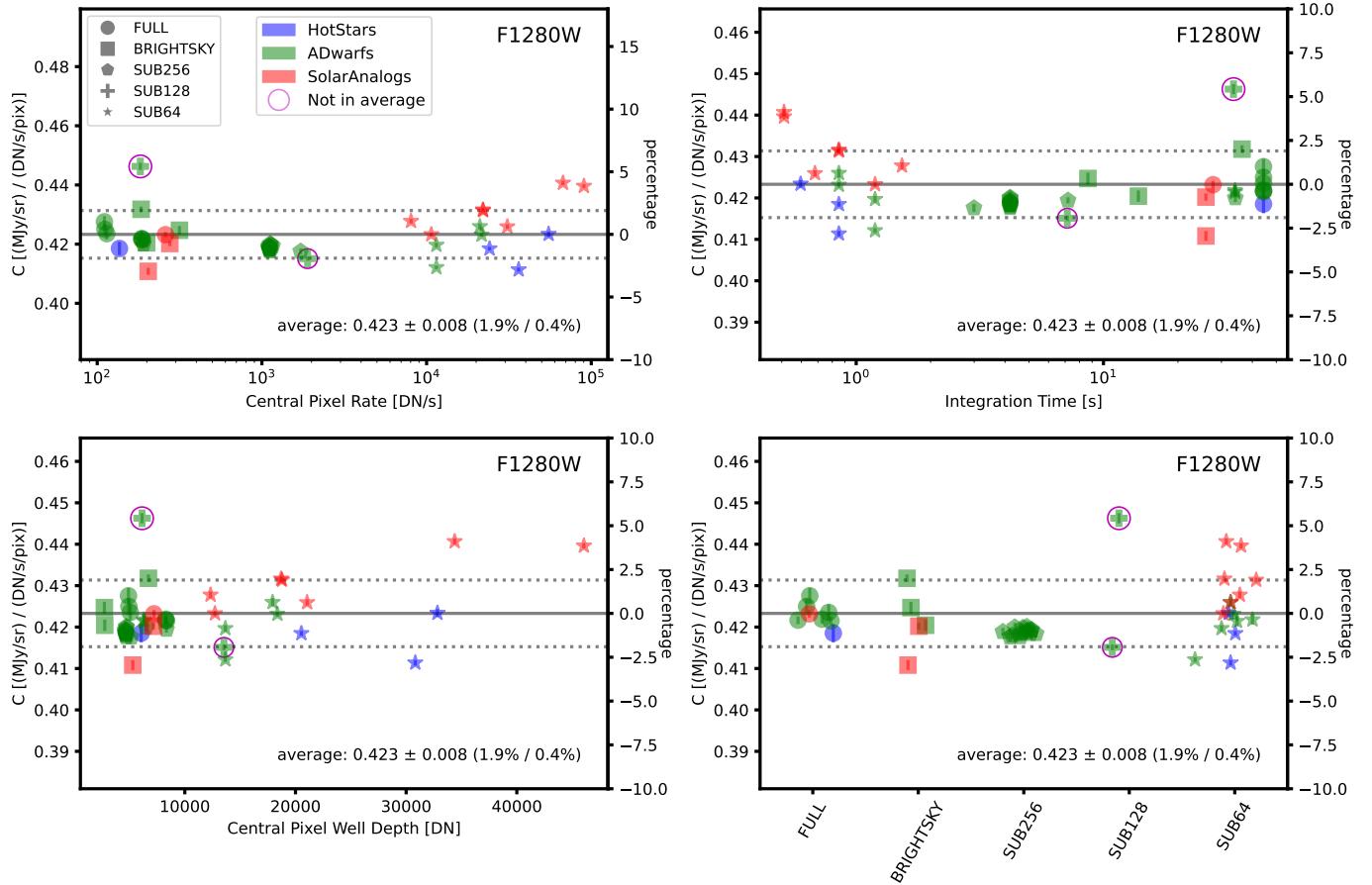
The FND band shows a trend with predicted flux density, central-pixel rate, and central-pixel well depth. This result is surprising, because all of the wavelengths covered by the FND band are covered with other filters that do not show such trends. A possible origin of the FND behavior may be the result of its very wide bandpass, with a width of 6.7 μm centered on 12.9 μm . The MIRI non-linearity correction is known to depend on wavelength (Morrison et al. 2023), with longer-wavelength bands having a different non-linearity than shorter-wavelength bands. The FND observations were processed using the non-linearity correction for bands F1280W and shorter, but they may possibly have a different non-linearity as the red end of the band extends well beyond the F1280W band. Future non-linearity work will investigate this possible explanation.

The upper right panel in Fig. 8 probes the dependence of calibration factor on the integration time, which could be caused by reset-induced transients that occur near the beginning of a ramp and could impact shorter ramps more than longer ramps. No clear dependence on integration times from

0.5 to 40 s for F1280W is found. When including all the bands (see appendix Fig. 16), no significant dependence is seen for integration times from 0.5 to near 300 s. This lack of dependencies indicates that the reset transients are not significantly affecting the calibration factors.

Finally, the accuracy of the subarray dependence derived in §3.3 is tested for F1280W in the lower right panel of Fig. 8. This plot clearly shows that the subarray correction is accurate, which is not surprising as it was derived partially with these observations. This result is also true for all of the other bands, as can be seen in the appendix Fig. 17. The lack of a sufficient number of observations prevented a similar check for the SUB128 subarray. The only star observed in all bands with SUB128 has a debris disk (§3.2).

3.6. Calibration Factors


The average calibration factors are computed after correcting for the dependencies on time and subarray so that all measurements could be used. Averaging measurements of calibration factors made for different stars results in a more accurate flux calibration. A single star has been found empirically to be modeled to an accuracy of $\sim 2\%$ (Bohlin et al. 2014) and, hence, to improve on this accuracy, multiple stars need to be averaged. In addition, any single star can have properties that make it systematically challenging to model. The debris disk found as part of this work is one example. The most famous case of such confounding issues is for Vega that is so rapidly rotating that it has a large gradient in its stellar temperature from pole to equator and it has a debris disk clearly seen in the near- and mid-IR (Aumann et al. 1984; Su et al. 2005; Aufdenberg et al. 2006). Hence, observing multiple stars allows for (1) the removal of such confounding sources and (2) averaging the remainder to improve the flux-calibration accuracy.

Combining the time and subarray dependencies with the average factors, the calibration factor as a function of time and subarray is then

$$C(t) = \frac{A + B \exp[-(t - t_o)/\tau]}{D_{\text{SA}}} \quad (4)$$

where t is the time in MJD, A gives the calibration factor at infinite time after the exponential has fully decayed, B is the amplitude of the time dependent term, $t_o = 59720$ d, τ is the time constant in days, and D_{SA} is the relative change with subarray. Tables 8 and 7 give the coefficients for each band and subarray, respectively. For the coronagraphic and FND filters, the temporal dependence was calculated by interpolating between the two imaging filters to either side in wavelength and weighting by the distance in wavelength. The number of stars contributing to the calibration factors n_{stars} can be non-integral if some of the observations for a star are not used in the average. The final column gives the percentage repeatability $\sigma(\text{repeat})$ as measured in §3.1.

Fig. 9 shows the refinement of the calibration factor measurements over time. The first delivery in 2022 was based

Figure 8. The calibration factor versus the detector parameters central-pixel rate, integration time, central-pixel well depth, and subarray. The calibration factors plotted have been corrected for the temporal and subarray dependencies. Different colors and symbols indicate different types of stars and subarrays. While the observation of HD 180609 is within the scatter for this band, it is flagged and not used (§3.2). In addition, one observation is flagged as $> 3.5\sigma$ from the weighted average and not used (§3.2). The horizontal gray solid line shows weighted average, with dotted lines for the $\pm 1\sigma$ standard deviation. The calibration factors and uncertainties are given in the lower right of each plot. The percentage standard deviation and standard deviation of the mean are in parentheses as well.

on Commissioning observations of 1–2 stars and the instrument knowledge at that time. The second delivery in 2023 reflected observations of a significantly larger sample of stars and, critically, a better understanding of the instrument, especially how to model the PSF. For this second delivery, the PSFs were modeled with a combination of observed PSFs for the cores and model PSFs for the wings (like §2.1). In particular, the changes seen in the F560W and F770W bands were due to the inclusion of a model for the cruciform artifact that significantly affects these two bands. In addition, the large change for all the coronagraphic bands resulted from correcting an error in the normalization of the model PSFs. The third delivery is based on the results reported in this work and includes more observations and the addition of the subarray correction.

The standard deviation of the calibration factor $\sigma(CF)$ ranges from 0.32 to 0.98% for the imaging bands and 0.42 to 0.90% for the coronagraphic bands. The $\sigma(CF)$ expressed as a percentage gives the contribution that the absolute flux

calibration makes to the uncertainty on any measurement expressed in physical units. The repeatability uncertainty, $\sigma(\text{repeat})$, gives the uncertainty for any single measurement taken with a similar four-point dither measurement of a point source. In other words, these two uncertainties should be combined in quadrature with the uncertainties based on read, photon, and flatfield uncertainties reported by the JWST pipeline.

The uncertainties quoted are correct for measurements of a well-exposed point source, in other words observations like those taken for the flux-calibration stars. In particular, the uncertainties for resolved sources that focus on surface brightness are larger, because the surface brightness uncertainties include the uncertainties in the aperture corrections to infinite aperture. The uncertainties quoted in §2.1 for the aperture corrections are small and are based mainly on scatter between similar measurements. These uncertainties do not probe the systematic uncertainties related to effects not present in the PSF models. In particular, the modeling of the cruciform for

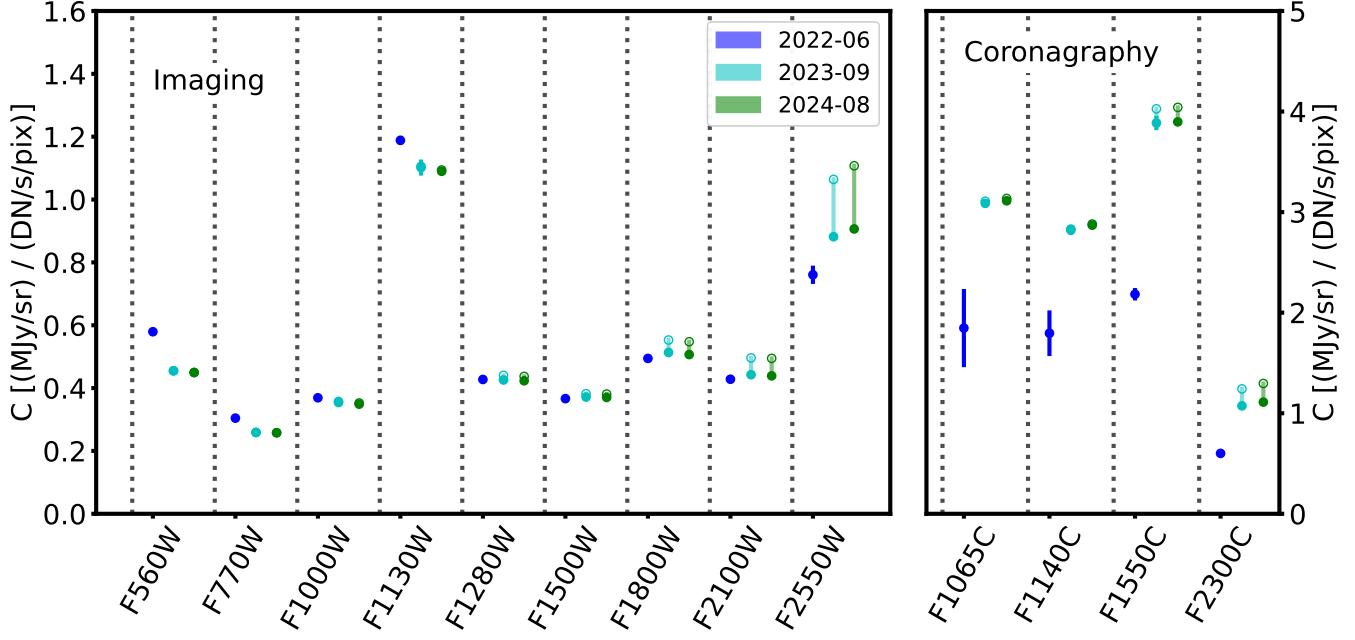
Table 8. Calibration Factor Info

Band	A^*	B^*	B	τ	$\sigma(CF)^*$	$\sigma(CF)$	n_{stars}	$\sigma(\text{repeat})$
			(%)	(days)		(%)		(%)
Imaging								
F560W	0.4496	0.0000	0.0	200.0	0.00166	0.37	11.75	0.27
F770W	0.2579	-0.0001	0.1	200.0	0.00096	0.37	15.00	0.25
F1000W	0.3488	-0.0038	1.1	200.0	0.00111	0.32	20.00	0.08
F1130W	1.0898	-0.0042	0.4	200.0	0.00520	0.48	19.00	0.16
F1280W	0.4233	-0.0140	3.3	200.0	0.00185	0.44	18.89	0.20
FND	41.5591	-1.3650	3.3	200.0	0.39411	0.95	10.00	...
F1500W	0.3703	-0.0107	2.9	200.0	0.00176	0.48	21.00	0.45
F1800W	0.5067	-0.0407	8.0	201.7	0.00300	0.59	20.00	0.60
F2100W	0.4389	-0.0557	12.7	175.0	0.00290	0.66	17.00	0.59
F2550W	0.9064	-0.2011	22.2	235.4	0.00888	0.98	16.00	1.20
Coronagraphy								
F1065C	3.1125	-0.0234	0.8	200.0	0.01313	0.42	5.00	...
F1140C	2.8703	-0.0112	0.4	200.0	0.02100	0.73	5.00	...
F1550C	3.8974	-0.1441	3.7	200.3	0.02841	0.73	4.00	...
F2300C	1.1106	-0.1852	16.7	200.4	0.00996	0.90	4.00	...

*Units of $(\text{MJy sr}^{-1}) / (\text{DN s}^{-1} \text{ pixel}^{-1})$.

the F560W and F770W bands is known to be incomplete, which contributes an additional uncertainty estimated to be on the order of 3% based on an independent analysis using highly saturated PSFs.

4. SUMMARY


The absolute flux calibration for MIRI Imaging and Coronagraphy is based on over two years of dedicated observations. These observations include stars of three different types: eight hot stars, eleven A dwarfs, and nine Solar analogs.

The main components of the calculated calibration factors are the predicted fluxes for each star, aperture photometry for each observation in instrumental units, and aperture corrections to provide the correction to infinite aperture. Well-exposed, isolated stars observed as part of the absolute flux calibration were combined with model PSFs and used to measure the enclosed energy curves, determine the radii, sky annuli, and aperture corrections for aperture photometry. Automated routines⁵ produced all of the aperture photometry, allowing for straightforward updating of the photometry with new JWST pipeline versions and calibration reference files. The predicted fluxes for each star were determined by integrating the predicted fluxes from models with the appropriate band response functions.

Calibration factors for each observation were computed and examined for any dependencies. Dedicated repeat measurements of one star supplemented by observations of two other stars revealed that the longer-wavelength imaging filters suffer from a time-dependent loss in total system response. This loss is fit well with an exponential model with a time constant around 200 days with scatter less than 1% for all but the F2550W band. F1280W and longer-wavelength bands were seen to have a significant loss, starting at 3% and rising to 22% at F2550W. After correcting for the temporal response loss, a subarray dependence was found by combining dedicated observations of two stars observed in all of the subarrays with all the average calibration factor measurements for each subarray. The dependence relative to FULL frame ranges from no change to 3.4% for the SUB64 subarray.

A search for dependencies with other source and detector parameters reveals no significant dependencies after correction for the known temporal and subarray dependencies. Source dependencies checked were versus predicted model flux, measured background, and type of star. In addition, the accuracy of the time-dependent correction was confirmed to work well for all the observations. The detector dependencies were checked versus the central-pixel rate, central-pixel well depth, and the integration time. In addition, the accuracy of the subarray correction was tested and found to work well.

⁵ <https://github.com/STScI-MIRI/ImagingFluxCal>

Figure 9. The delivered calibration factors used by the pipeline are plotted versus time for all bands except FND. The FND calibration has been determined for the first time with this work and so is not plotted. For the two most recent deliveries, the time-dependent variation is shown as a solid symbol (start of observations) connected to an open symbol (asymptotic value after all expected change). The changes reflect the improved calibration factor measurements with more observations and a better understanding of the telescope and instrument.

725 The time- and subarray-dependent calibration factors for
 726 each imaging and coronagraphic band are reported and have
 727 been delivered for use in the JWST pipeline. For the first
 728 time, this work provides the calibration factor for the wide
 729 neutral-density FND band that is used for target acquisition.
 730 The scatter in the calibration factors from individual stars
 731 ranges from 1 to 4% depending on the band. The uncer-
 732 tainty in the average calibration factors ranges from 0.3 to
 733 1.0% depending on the band. The uncertainties on the cali-
 734 bration factors are lower than pre-launch expectations (e.g.,
 735 “requirements”) and support a wide range of astrophysical
 736 investigations including those needing percent-level or better
 737 absolute-flux calibration.

738 The imaging and coronagraphic flux calibration will con-
 739 tinue to improve as additional observations of absolute flux
 740 calibration targets are taken and the knowledge of the MIRI
 741 instrument improves.

742 This work is based [in part] on observations made with
 743 the NASA/ESA/CSA James Webb Space Telescope. The
 744 data were obtained from the Mikulski Archive for Space
 745 Telescopes at the Space Telescope Science Institute, which
 746 is operated by the Association of Universities for Research
 747 in Astronomy, Inc., under NASA contract NAS 5-03127
 748 for JWST. These observations are associated with programs
 749 #1027, 1045, 1523, 1524, 1536, 1537, 1538, 1539, 4488,
 750 4496, 4497, 96 4498, 4499, 4578, and 6607. The follow-
 751 ing National and International Funding Agencies funded and
 752 supported the MIRI development: NASA; ESA; Belgian Sci-
 753 ence Policy Office (BELSPO); Centre Nationale d’Etudes
 754 Spatiales (CNES); Danish National Space Centre; Deutsches
 755 Zentrum fur Luft und Raumfahrt (DLR); Enterprise Ireland;
 756 Ministerio De Economía y Competitividad; Netherlands Re-
 757 search School for Astronomy (NOVA); Netherlands Orga-
 758 nisation for Scientific Research (NWO); Science and Tech-
 759 nology Facilities Council; Swiss Space Office; Swedish Na-
 760 tional Space Agency; and UK Space Agency. MD acknowl-
 761 edges support from the Research Fellowship Program of the
 762 European Space Agency (ESA).

763 *Software:* Astropy (Astropy Collaboration et al. 2013,
 764 2018, 2022), Photutils (Bradley et al. 2022)

REFERENCES

765 Argyriou, I., Lage, C., Rieke, G. H., et al. 2023, A&A, 680, A96,
 766 doi: [10.1051/0004-6361/202346490](https://doi.org/10.1051/0004-6361/202346490)

767 Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013,
 768 A&A, 558, A33, doi: [10.1051/0004-6361/201322068](https://doi.org/10.1051/0004-6361/201322068)

769 Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al.
770 2018, AJ, 156, 123, doi: [10.3847/1538-3881/aabc4f](https://doi.org/10.3847/1538-3881/aabc4f)

771 Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al.
772 2022, apj, 935, 167, doi: [10.3847/1538-4357/ac7c74](https://doi.org/10.3847/1538-4357/ac7c74)

773 Aufdenberg, J. P., Mérand, A., Coudé du Foresto, V., et al. 2006,
774 ApJ, 645, 664, doi: [10.1086/504149](https://doi.org/10.1086/504149)

775 Aumann, H. H., Gillett, F. C., Beichman, C. A., et al. 1984, ApJL,
776 278, L23, doi: [10.1086/184214](https://doi.org/10.1086/184214)

777 Boccaletti, A., Lagage, P. O., Baudoz, P., et al. 2015, PASP, 127,
778 633, doi: [10.1086/682256](https://doi.org/10.1086/682256)

779 Boccaletti, A., Cossou, C., Baudoz, P., et al. 2022, A&A, 667,
780 A165, doi: [10.1051/0004-6361/202244578](https://doi.org/10.1051/0004-6361/202244578)

781 Bohlin, R. C., Gordon, K. D., & Tremblay, P. E. 2014, PASP, 126,
782 711, doi: [10.1086/677655](https://doi.org/10.1086/677655)

783 Bohlin, R. C., Krick, J. E., Gordon, K. D., & Hubeny, I. 2022, AJ,
784 164, 10, doi: [10.3847/1538-3881/ac6fe1](https://doi.org/10.3847/1538-3881/ac6fe1)

785 Bohlin, R. C., Riess, A., & de Jong, R. 2006, NICMOS Count Rate
786 Dependent Non-Linearity in G096 and G141, Instrument
787 Science Report NICMOS 2006-002, 21 pages

788 Bohlin, R. C., Gordon, K. D., Rieke, G. H., et al. 2011, AJ, 141,
789 173, doi: [10.1088/0004-6256/141/5/173](https://doi.org/10.1088/0004-6256/141/5/173)

790 Bradley, L., Sipőcz, B., Robitaille, T., et al. 2022, astropy/photutils:
791 1.5.0, 1.5.0, Zenodo, doi: [10.5281/zenodo.6825092](https://doi.org/10.5281/zenodo.6825092)

792 de Jong, R. S., Bergeron, E., Riess, A., & Bohlin, R. 2006,
793 NICMOS count-rate dependent nonlinearity tests using flatfield
794 lamps, Instrument Science Report NICMOS 2006-001, 14 pages

795 Dicken, D., Marín, M. G., Shavaei, I., et al. 2024, A&A, 689, A5,
796 doi: [10.1051/0004-6361/202449451](https://doi.org/10.1051/0004-6361/202449451)

797 Engelbracht, C. W., Blaylock, M., Su, K. Y. L., et al. 2007, PASP,
798 119, 994, doi: [10.1086/521881](https://doi.org/10.1086/521881)

799 Gardner, J. P., Mather, J. C., Abbott, R., et al. 2023, PASP, 135,
800 068001, doi: [10.1088/1538-3873/acd1b5](https://doi.org/10.1088/1538-3873/acd1b5)

801 Gáspár, A., Rieke, G. H., Guillard, P., et al. 2021, PASP, 133,
802 014504, doi: [10.1088/1538-3873/abcd04](https://doi.org/10.1088/1538-3873/abcd04)

803 Gordon, K. D., Engelbracht, C. W., Fadda, D., et al. 2007, PASP,
804 119, 1019, doi: [10.1086/522675](https://doi.org/10.1086/522675)

805 Gordon, K. D., Bohlin, R., Sloan, G. C., et al. 2022, AJ, 163, 267,
806 doi: [10.3847/1538-3881/ac66dc](https://doi.org/10.3847/1538-3881/ac66dc)

807 Houck, J. R., Roellig, T. L., van Cleve, J., et al. 2004, ApJS, 154,
808 18, doi: [10.1086/423134](https://doi.org/10.1086/423134)

809 Krick, J. E., Lowrance, P., Carey, S., et al. 2021, AJ, 161, 177,
810 doi: [10.3847/1538-3881/abe390](https://doi.org/10.3847/1538-3881/abe390)

811 Law, D. R., Argyriou, I., Gordon, K. D., et al. 2024, AJ, in prep

812 Libralato, M., Argyriou, I., Dicken, D., et al. 2024, PASP, 136,
813 034502, doi: [10.1088/1538-3873/ad2551](https://doi.org/10.1088/1538-3873/ad2551)

814 Morrison, J. E., Dicken, D., Argyriou, I., et al. 2023, PASP, 135,
815 075004, doi: [10.1088/1538-3873/acdea6](https://doi.org/10.1088/1538-3873/acdea6)

816 Perrin, M. D., Pueyo, L., Gorkom, K. V., et al. 2018, in Space
817 Telescopes and Instrumentation 2018: Optical, Infrared, and
818 Millimeter Wave, ed. M. Lystrup, H. A. MacEwen, G. G. Fazio,
819 N. Batalha, N. Siegler, & E. C. Tong, Vol. 10698, International
820 Society for Optics and Photonics (SPIE), 1069809,
821 doi: [10.1117/12.2313552](https://doi.org/10.1117/12.2313552)

822 Perrin, M. D., Sivaramakrishnan, A., Lajoie, C.-P., et al. 2014, in
823 Society of Photo-Optical Instrumentation Engineers (SPIE)
824 Conference Series, Vol. 9143, Space Telescopes and
825 Instrumentation 2014: Optical, Infrared, and Millimeter Wave,
826 ed. J. Oschmann, Jacobus M., M. Clampin, G. G. Fazio, & H. A.
827 MacEwen, 91433X, doi: [10.1117/12.2056689](https://doi.org/10.1117/12.2056689)

828 Perrin, M. D., Soummer, R., Elliott, E. M., Lallo, M. D., &
829 Sivaramakrishnan, A. 2012, in Society of Photo-Optical
830 Instrumentation Engineers (SPIE) Conference Series, Vol. 8442,
831 Space Telescopes and Instrumentation 2012: Optical, Infrared,
832 and Millimeter Wave, ed. M. C. Clampin, G. G. Fazio, H. A.
833 MacEwen, & J. Oschmann, Jacobus M., 84423D,
834 doi: [10.1117/12.925230](https://doi.org/10.1117/12.925230)

835 Pontoppidan, K. M., Pickering, T. E., Laidler, V. G., et al. 2016, in
836 Society of Photo-Optical Instrumentation Engineers (SPIE)
837 Conference Series, Vol. 9910, Observatory Operations:
838 Strategies, Processes, and Systems VI, ed. A. B. Peck, R. L.
839 Seaman, & C. R. Benn, 991016, doi: [10.1117/12.2231768](https://doi.org/10.1117/12.2231768)

840 Reach, W. T., Megeath, S. T., Cohen, M., et al. 2005, PASP, 117,
841 978, doi: [10.1086/432670](https://doi.org/10.1086/432670)

842 Ressler, M. E., Sukhatme, K. G., Franklin, B. R., et al. 2015,
843 PASP, 127, 675, doi: [10.1086/682258](https://doi.org/10.1086/682258)

844 Rieke, G. H., Schlawin, E., Proffitt, C. R., & Willmer, C. 2024, AJ,
845 167, 213, doi: [10.3847/1538-3881/ad24f7](https://doi.org/10.3847/1538-3881/ad24f7)

846 Rieke, G. H., Su, K., Sloan, G. C., & Schlawin, E. 2022, AJ, 163,
847 45, doi: [10.3847/1538-3881/ac3b5d](https://doi.org/10.3847/1538-3881/ac3b5d)

848 Rieke, G. H., Young, E. T., Engelbracht, C. W., et al. 2004, ApJS,
849 154, 25, doi: [10.1086/422717](https://doi.org/10.1086/422717)

850 Rieke, G. H., Wright, G. S., Böker, T., et al. 2015, PASP, 127, 584,
851 doi: [10.1086/682252](https://doi.org/10.1086/682252)

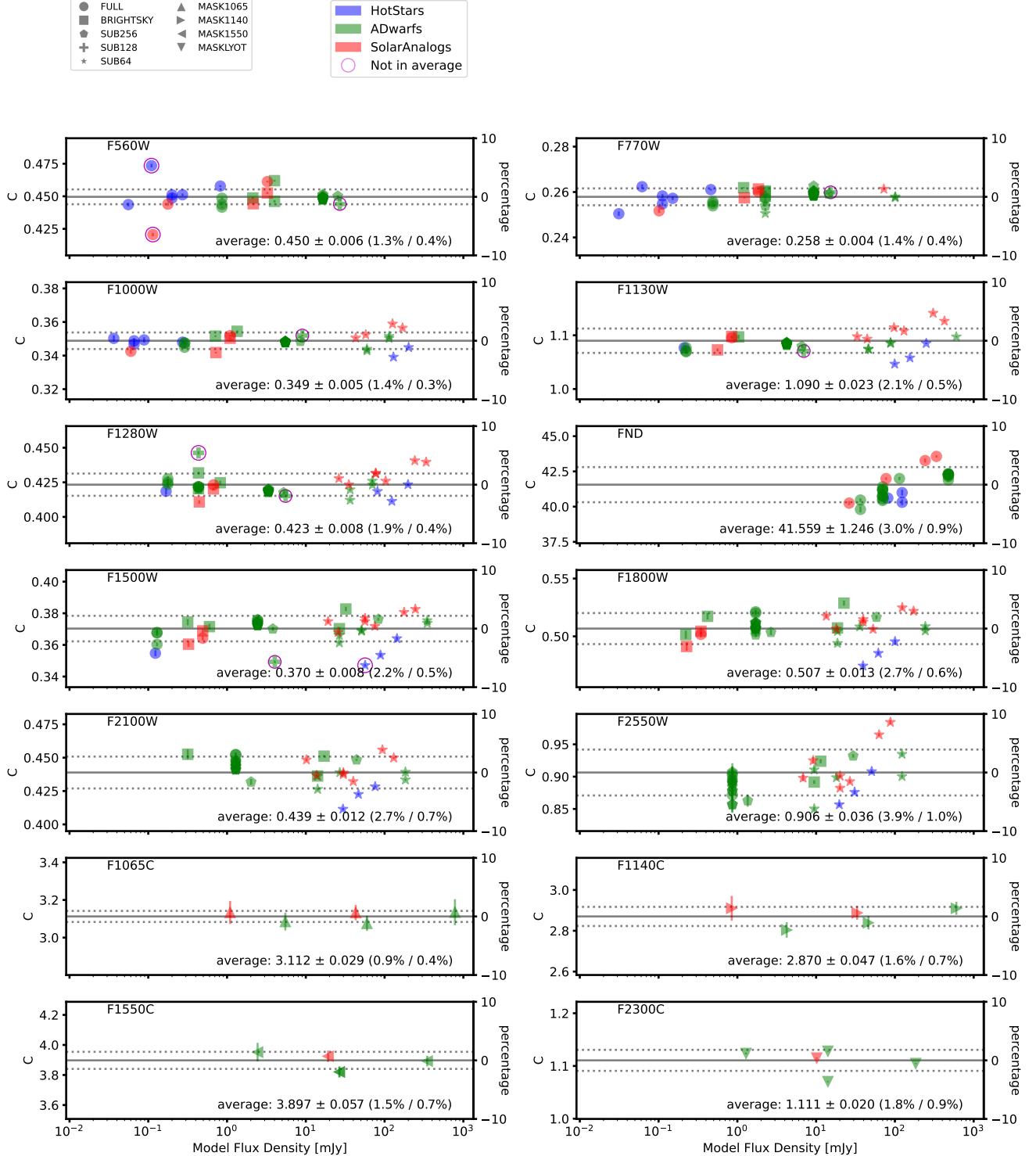
852 Sloan, G. C., Herter, T. L., Charmandaris, V., et al. 2015, AJ, 149,
853 11, doi: [10.1088/0004-6256/149/1/11](https://doi.org/10.1088/0004-6256/149/1/11)

854 Sloan, G. C., Charmandaris, V., Fajardo-Acosta, S. B., et al. 2004,
855 ApJL, 614, L77, doi: [10.1086/425324](https://doi.org/10.1086/425324)

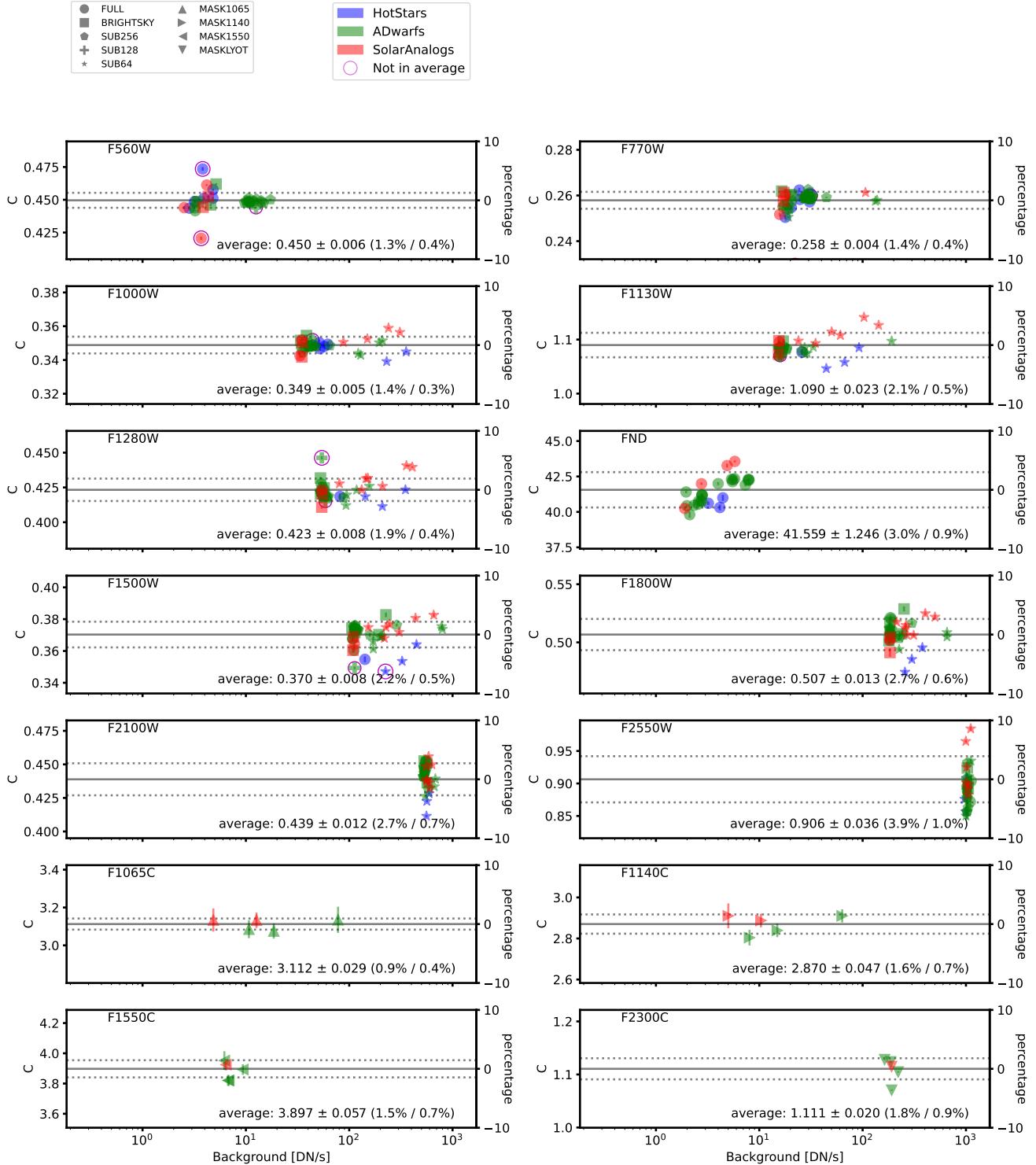
856 Su, K. Y. L., Rieke, G. H., Misselt, K. A., et al. 2005, ApJ, 628,
857 487, doi: [10.1086/430819](https://doi.org/10.1086/430819)

858 Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, ApJS, 154, 1,
859 doi: [10.1086/422992](https://doi.org/10.1086/422992)

860 Wright, G. S., Rieke, G. H., Glasse, A., et al. 2023, PASP, 135,
861 048003, doi: [10.1088/1538-3873/acbe66](https://doi.org/10.1088/1538-3873/acbe66)


862

APPENDIX


863

A. ALL CALIBRATION FACTOR PLOTS

864 Figs. 10–17 show the calibration factor plots for all the imaging and coronagraphic bands for all the source and detector param-
865 eters discussed in Sections 3.4 and 3.5. These allow the behaviors discussed in the above referenced sections to be investigated
866 for all bands as well as a straightforward comparison of behaviors between bands.

Figure 10. The calibration factors as a function of model flux densities for every observation for the imaging and coronagraphic filters. The temporal response loss and subarray variations have been corrected. While the observations of HD 180609 are within the scatter for some bands, it is flagged in all bands and not used (§3.2). In addition, some observations are flagged as $> 3.5\sigma$ from the weighted average and not used (§3.2). A horizontal solid gray line and the parallel dotted lines give the weighted average $\pm 1\sigma$ standard deviation. The calibration factors and uncertainties are given in the lower right of each plot, and the percentage standard deviation and standard deviation of the mean are given in parentheses as well.

Figure 11. Same as Fig. 10 except plotted versus measured background.

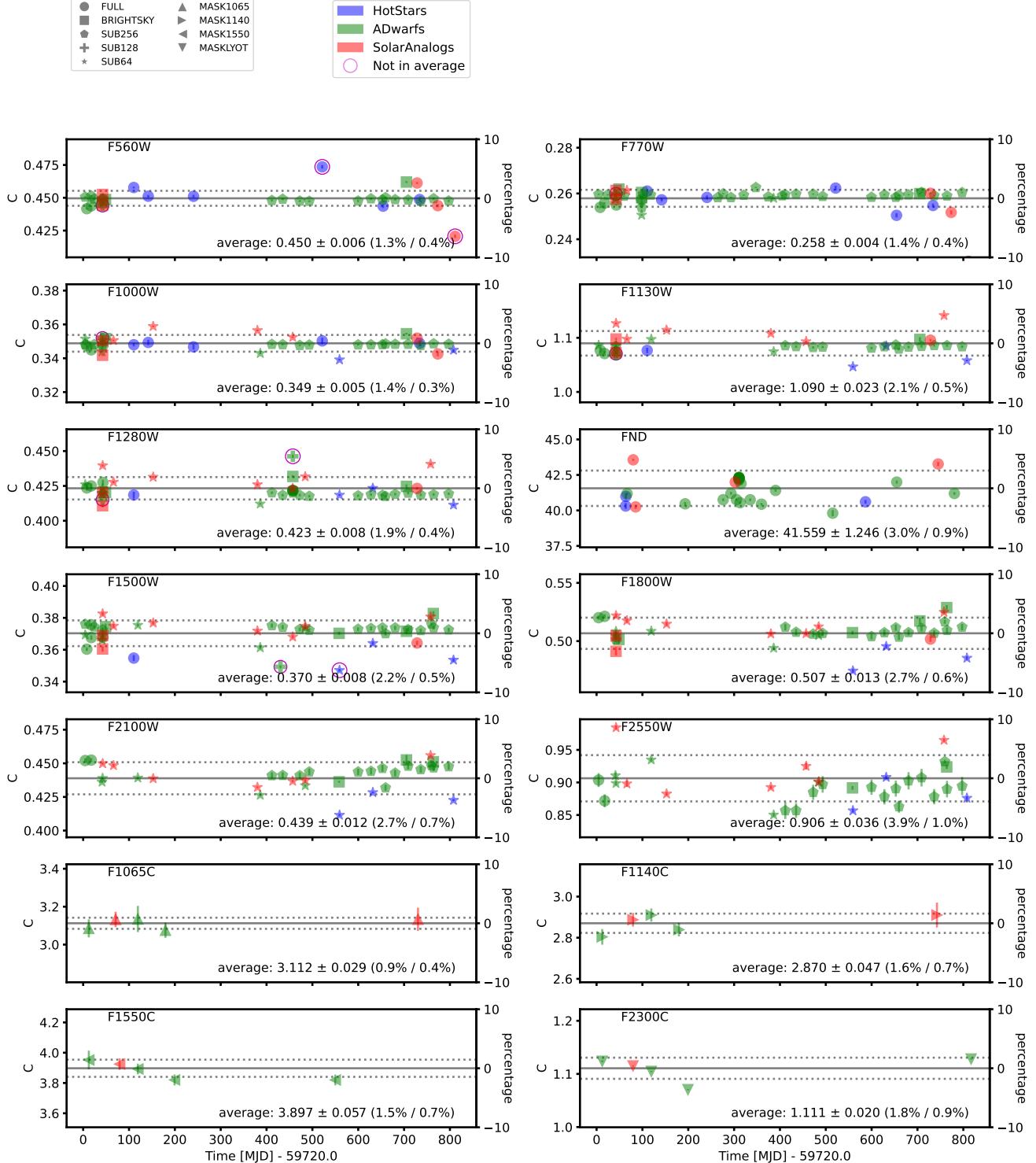


Figure 12. Same as Fig. 10 except plotted versus observation time.

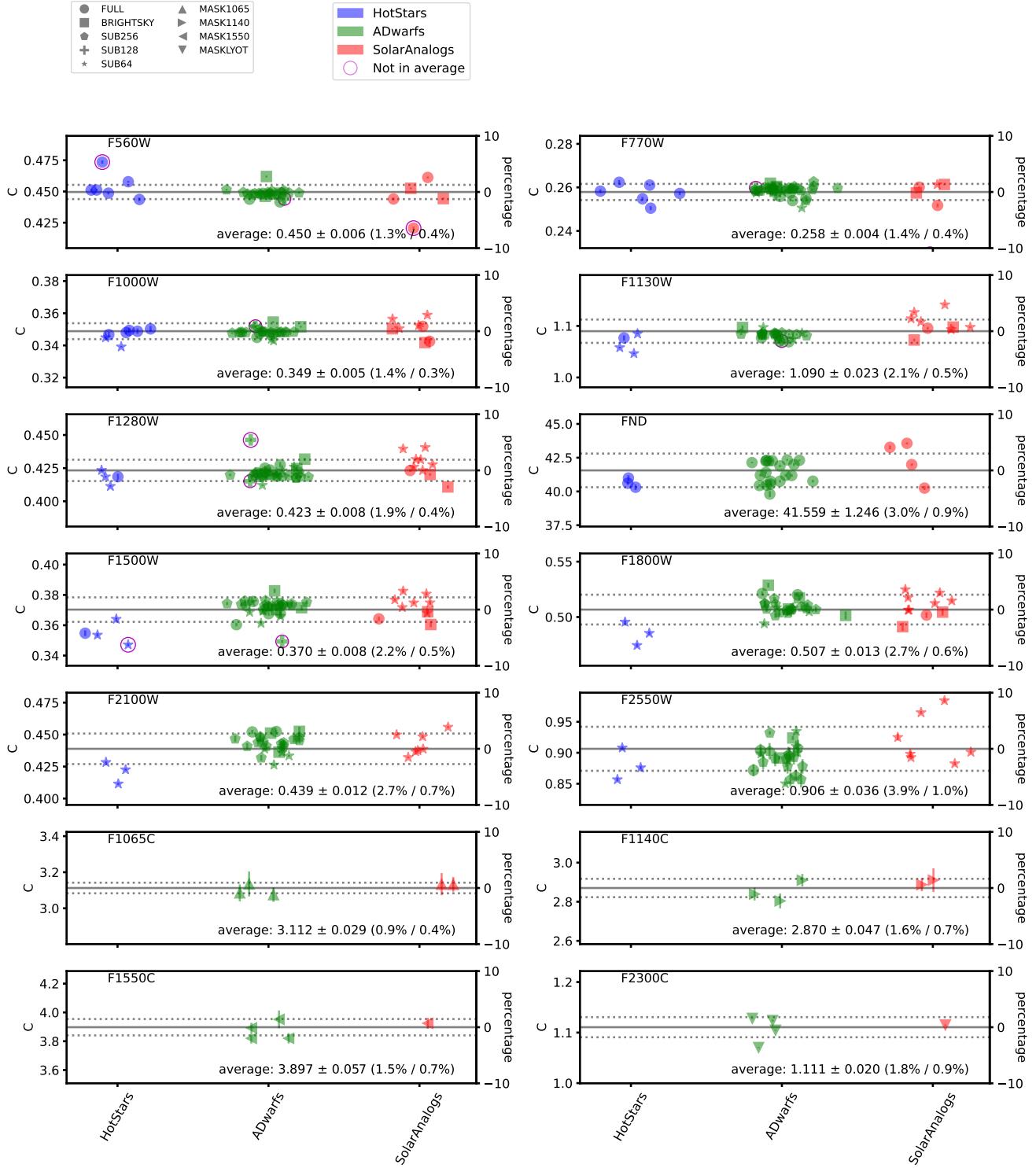
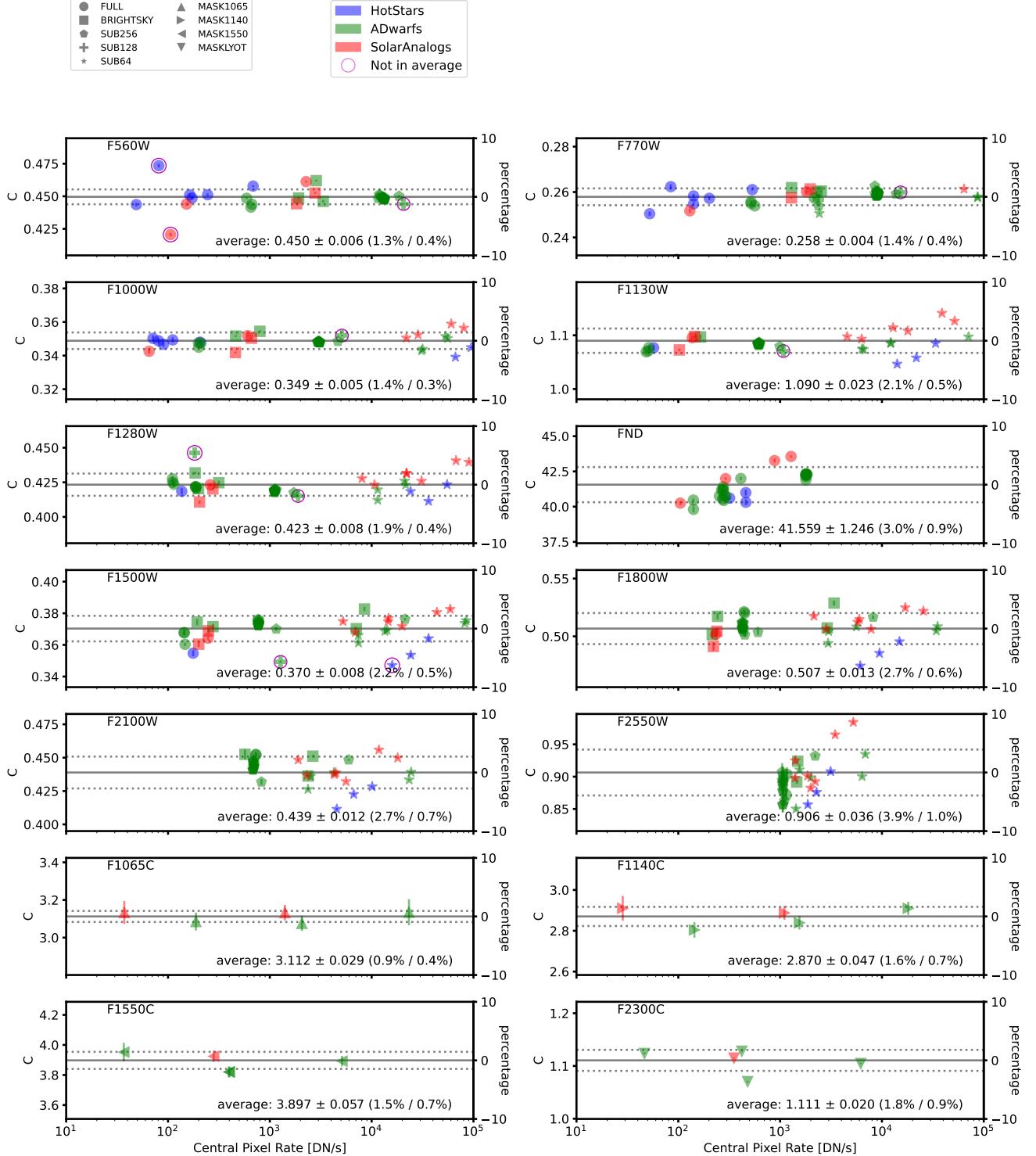
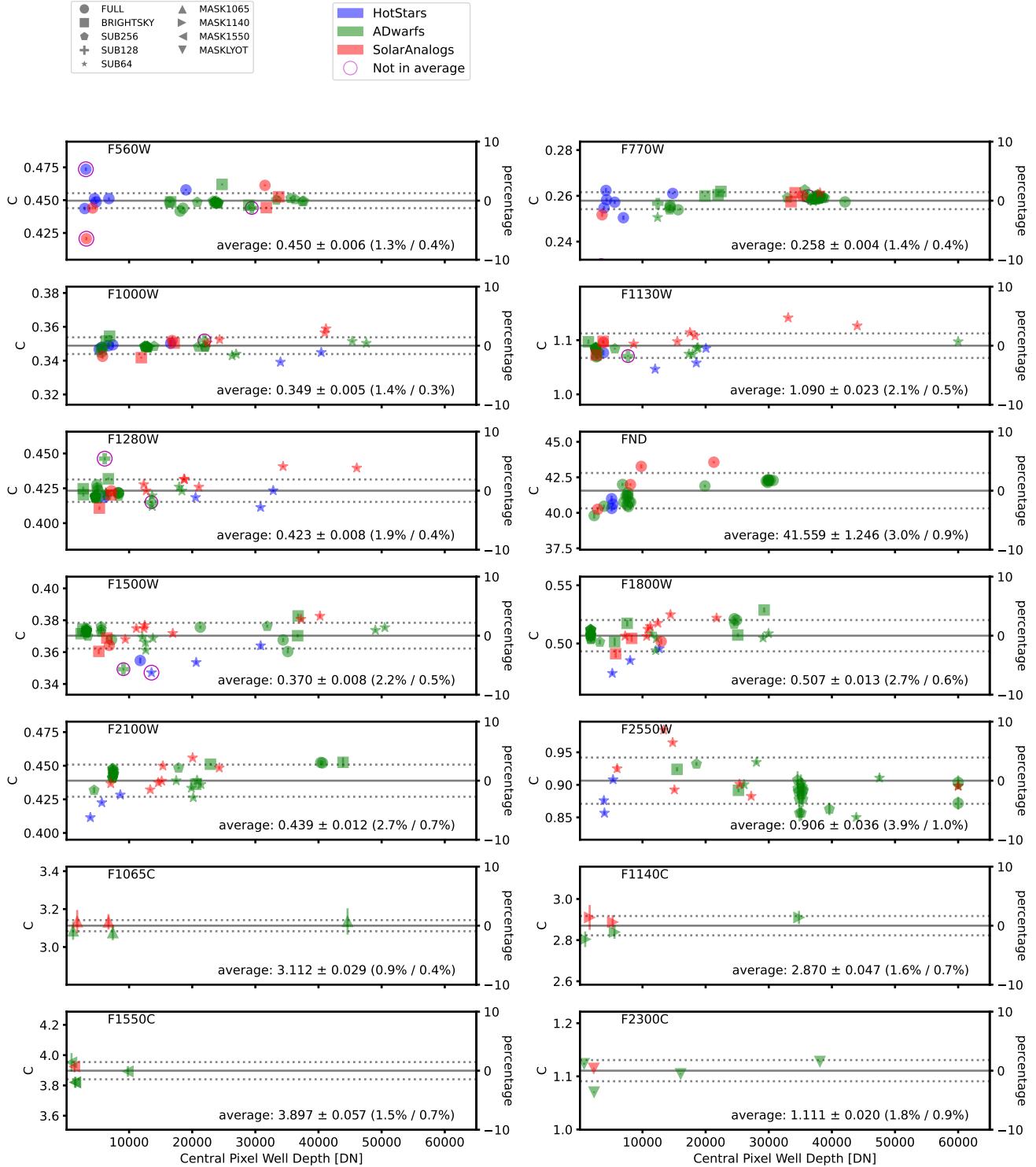




Figure 13. Same as Fig. 10 except plotted versus source type.

Figure 14. Same as Fig. 10 except plotted versus central pixel rate.

Figure 15. Same as Fig. 10 except plotted versus central pixel well depth.

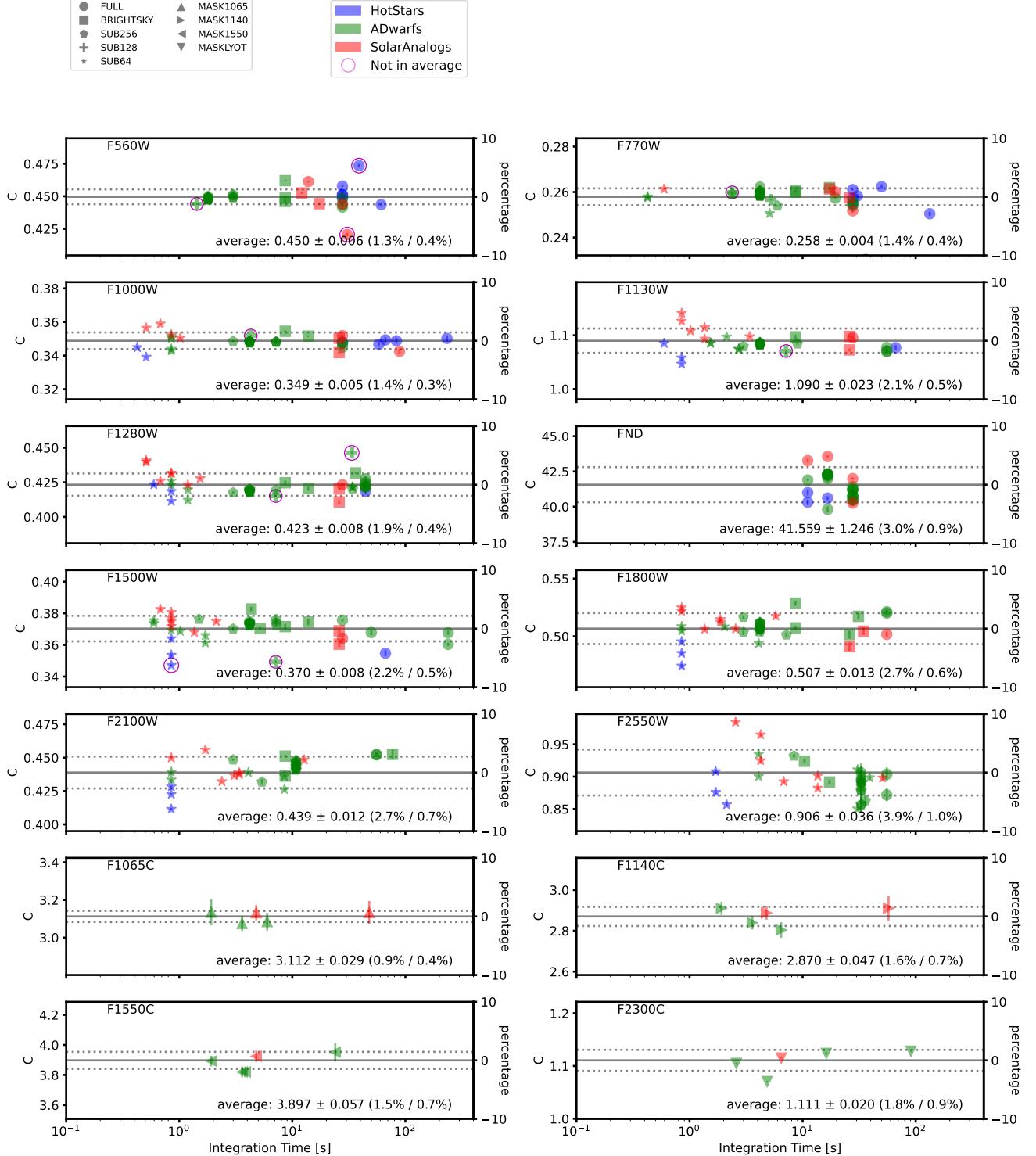
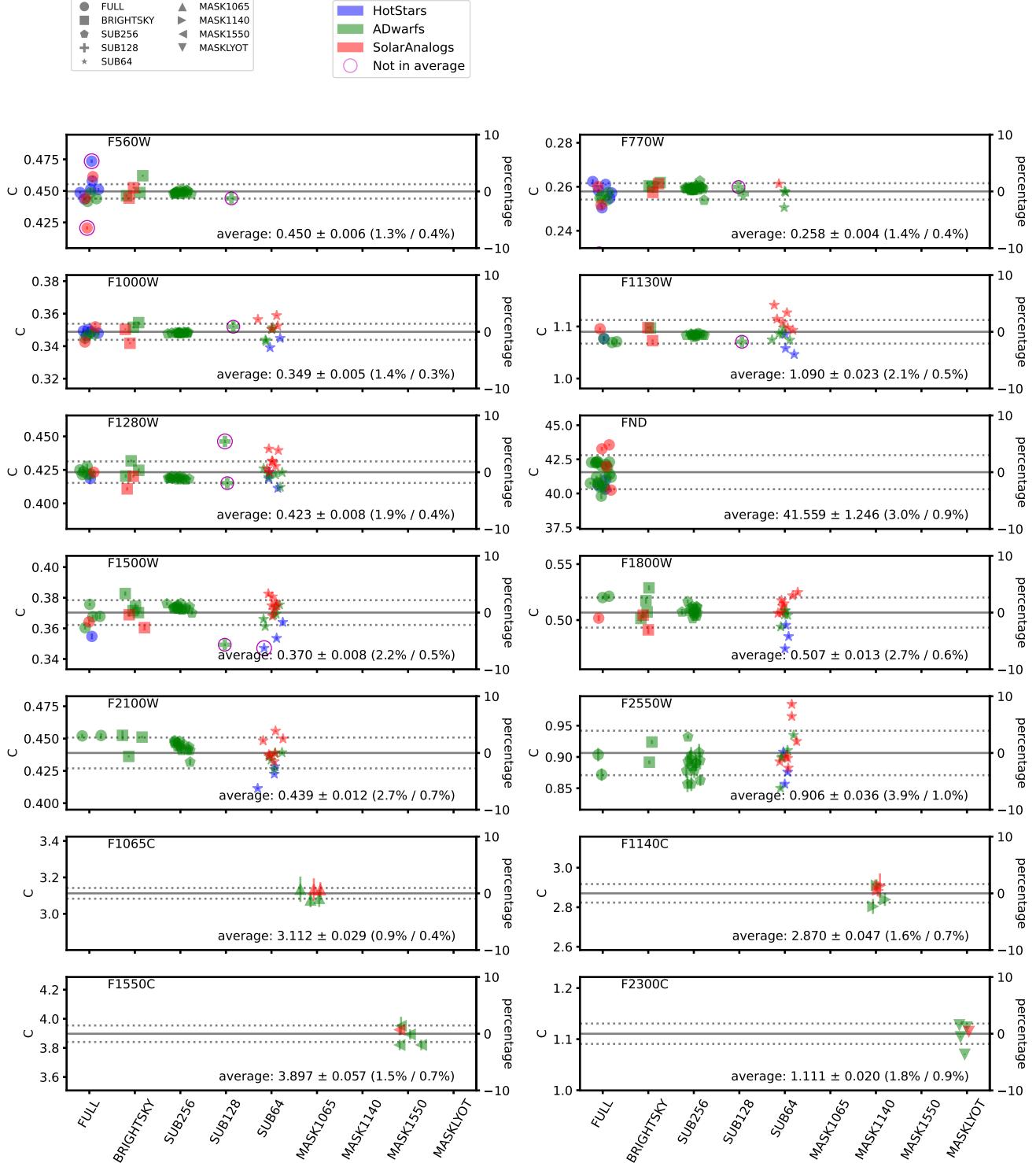



Figure 16. Same as Fig. 10 except plotted versus integration time.

Figure 17. Same as Fig. 10 except plotted versus subarray.