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Abstract.

The Optical Gravitational Lensing Experiment identified over 1,800 carbon-rich
Mira and semi-regular variables in the Small Magellanic Cloud. Multi-epoch infrared
photometry reveals that the semi-regulars and Miras follow different sequences in color-
color space when using colors sensitive to molecular absorption bands. The dustiest
Miras have the strongest pulsation amplitudes and longest periods. Efforts to determine
bolometric magnitudes reveal possible systematic errors with published bolometric cor-
rections.

The Optical Gravitional Lensing Experiment (OGLE) has surveyed the Small
Magellanic Cloud (SMC) for variables and transients. The OGLE-III experiment dis-
covered over 4,500 Mira and semi-regular variables (SRVs). Carbon stars account for
315 of the Miras and 1,488 of the semi-regular variables (Soszynski et al. 2011).

To investigate the infrared (IR) photometric properties of the carbon-rich long-
period variables (LPVs), we have searched multiple archival databases to generate a
time-averaged spectral energy distribution for each source. The OGLE survey provides
mean V and [ data. The Two-Micron All-Sky Survey (2MASS), the deeper 2MASS
6x survey, and the Deep Near-Infrared Survey of the Southern Sky (DENIS) provide
three or more epochs at J and K and two at H (Skrutskie et al. 2006; Cioni et al. 2000).
The SAGE-SMC survey (Surveying the Agents of Galactic Evolution), in combination
with the S?MC survey (Spitzer Survey of the SMC), provides three epochs at 3.6, 4.5,
5.8, 8.0, and 24 um in the core of the SMC and two throughout the galaxy (Gordon et
al. 2011; Bolatto et al. 2007). We have also turned to the Wide-field Infrared Survey
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Experiment (WISE) for additional temporal coverage at 3.4 and 4.6 um (Wright et al.
2010), which we use in conjunction with the Spitzer data at 3.6 and 4.5 ym.

Our presentation in Vienna considered both the Large and Small Magellanic Clouds,
but here, due to space restrictions, we focus on just the SMC. The results for the two
galaxies are generally very similar.
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Figure 1.  The period-luminosity diagram for carbon-rich Miras and SRVs, color-
coded by pulsational sequence (following the nomenclature of Fraser et al. 2008).
Fundamental-mode pulsators on the Sequence 1 are coded red and orange depending
on whether the OGLE survey identified them as Miras or SRVs.
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Figure 2.  In the [5.8]—[8] vs. J—K; plane, nearly all semi-regulars follow a blue
sequence with J—K; < 2, while Miras dominate the redder sequence.

The OGLE-III survey provides three periods and amplitudes. We chose the first
period and amplitude corresponding to Sequence 1-4 (adopting the nomenclature of
Fraser et al. 2008). Figure 1 shows how most of the Miras and SRVs fall along Se-
quences 1 and 2, which are the fundamental pulsation mode and the first overtone,
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Figure 3. The 5.8 and 8 um bandpasses on the Infrared Array Camera (IRAC)
on Spitzer plotted over spectra from the spectral atlas from the Short-Wavelength
Spectrometer (SWS) on the Infrared Space Observatory (Sloan et al. 2003). T Lyr
has a redder [5.8]—[8] color than TX Psc because of the deep absorption from C3 at
~5 um. I Lup is red because of its thick dust shell.

respectively (Wood & Sebo 1996). These sequences are the basis for the color-coding
in Figures 1 and 2, with different colors to distinguish the Miras and SRVs on Se-
quence 1. The OGLE-III survey separates these two variability classes at an /-band
amplitude of 0.8 mag (peak-to-peak). Figure 2 shows how [5.8]—[8] and J—K colors
separate the Miras and SRVs relatively cleanly. Most of the SRVs fall on a sequence
where [5.8]—[8] increases quickly as J—K; increases, while most of the Miras fall on a
sequence which is much redder in J—K; and has a much shallower slope.

Figure 3 shows how the infrared spectra lead to two sequences, which we will
refer to as the SRV and Mira sequences. Redder [5.8]—[8] colors on the SRV sequence,
represented by TX Psc and T Lyr, result from increasing absorption from Cj at 4.5—
6.0 um, which affects the 5.8 um bandpass. On the Mira sequence, represented by II
Lup, redder colors result from increasing dust opacity.

For the remaining figures in this contribution, we have adopted the color-coding
defined in Figure 4, with blue to green depicting the SRV sequence in order of increas-
ing [5.8]—[8] color and yellow to red tracking increasing J—Kj color along the Mira
sequence. Figure 5 shows how these different groups map into pulsation amplitude at /
and pulsation period. These groups improve on the boundary between Miras and SRVs
adopted by the OGLE-III survey (at Al = 0.8 mag). The Mira sequence is associated
with the larger amplitudes, and within this group, the dustier sources have the longest
periods. This figure clearly links pulsation and dust production.

Comparing the bolometric magnitude and pulsation to theoretical evolutionary
tracks allows one to estimate initial masses, but determining the bolometric magnitude
from the available photometry is non-trivial. In Figure 6, the bolometric magnitudes are
determined with bolometric corrections (BCs) based on J—K; (Whitelock et al. 2006).
Two problems are apparent. The reddest and bluest sources on the SRV sequence have
separated from each other, on both the overtone and fundamental modes. We call this
problem the blue slip. It should be noted that we have applied the BC below the rec-
ommended limit of /—Kj > 1.5. On the fundamental mode, another problem which we
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Figure4.  Carbon-rich Miras and SRVs in the SMC, color-coded by position along
the SRV and Mira sequences in [5.8]—[8] vs. J—Kj space. Both sequences are di-
vided into three strips to define the six groups.
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Figure 5.  Pulsational amplitude at / vs. period, color-coded as in Fig. 3. The
sources on the Mira sequence have larger amplitudes, and for these amplitudes, the
reddest Miras have the longest periods. The horizontal dashed line shows the ampli-
tude boundary of 0.80 mag between Miras and SRVs in the OGLE-III survey.

describe as the red droop has shifted the apparent bolometric magnitudes of the reddest
sources well below the expected P-L relation. Using BCs from other authors produces
results similar to those illustrated here.

Figure 7 shows that BCs based on K—L reduce both the blue slip and red droop, but
not entirely in either case. (We have treated L, [3.4], and [3.6] as equivalent here.) These
problems probably arise from the BCs and are not intrinsic to the stars themselves. The
need for improved means of determining bolometric magnitudes is readily apparent.
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Figure 6.  The period-luminosity diagram for the SMC after making J—K-based
bolometric corrections, color-coded as defined in Fig. 4. With these BCs, sources
from different parts of the Mira and SRV sequences shift away from each other in
P-L space, creating the blue slip and red droop.
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Figure 7. Bolometric corrections based on K—L reduce both the blue slip and the
red droop, but they do not eliminate them completely.
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