THE INFRARED SPECTRAL CLASSIFICATION OF OXYGEN-RICH DUST SHELLS

G. C. SLOAN¹ AND S. D. PRICE² Received 1997 December 9; accepted 1998 July 13

ABSTRACT

This paper presents infrared spectral classifications for a flux-limited sample of 635 optically identified oxygen-rich variables including supergiants and sources on the asymptotic giant branch (AGB). Several classes of spectra from oxygen-rich dust exist, and these can be arranged in a smoothly varying sequence of spectral shapes known as the *silicate dust sequence*. Classification based on this sequence reveals several dependencies of the dust emission on the properties of the central star. Nearly all S stars show broad emission features from alumina dust, while most of the supergiants exhibit classic features from amorphous silicate dust. Mira variables with symmetric light curves generally show broad alumina emission, while those with more asymmetric light curves show classic silicate emission. These differences may arise from differences in the photospheric C/O ratio.

Subject headings: circumstellar matter — infrared: stars: — stars: AGB and post-AGB — stars: fundamental parameters — stars: mass loss

1. INTRODUCTION

Since the launch of the Infrared Astronomical Satellite (IRAS) in 1982, several authors have developed systems to classify the many types of spectra obtained by the Low-Resolution Spectrometer (LRS). The LRS characterizations introduced in the LRS Atlas (IRAS Science Team 1986) and the AutoClass system (Cheeseman et al. 1987; Goebel et al. 1989) classified the entire database of 5425 spectra. In a series of papers, Little-Marenin and collaborators concentrated on the oxygen-rich circumstellar dust shells (Little-Marenin & Price 1986; Little-Marenin & Little 1988, 1990; hereafter referred to as LML classification). They departed from previous methods by not classifying the entire spectrum; instead they concentrated only on the dust emission, which they isolated by estimating and removing the stellar contribution. Their investigation uncovered several distinct and previously unrecognized classes of oxygen-rich dust.

In the LML system, Silicate class emission (Sil) includes spectra with a relatively narrow, classic silicate feature at 10 μ m. When this feature is accompanied by an additional component at 11 μ m the spectrum becomes Sil + or Sil + +, depending on its strength. Some Sil + + spectra also have an emission feature at 13 μ m, which defines the threecomponent (3c) class in the LML system. The S class in the LML system includes spectra in which the dust emission peaks not at 9.7 μ m but rather at ~ 10.5–10.8 μ m. Spectra with a broad, low-contrast emission component peaking at longer wavelengths (~ 12 μ m) are classified as broad.

Sloan & Price (1995; hereafter Paper I) followed up on the LML system by modifying and quantifying the classification method and applying it to a large sample of sources associated with the asymptotic giant branch (AGB). By using ratios of the spectral emission from the dust shell at 10, 11, and 12 μ m, they could organize the entire sample of oxygen-rich dust spectra into a *silicate dust sequence*, which formed the basis for an improved version of the LML classification system. This paper presents the individual classifications discussed in Paper I and expands the earlier sample to include supergiants and S stars. Section 3 compares the various samples, and § 4 discusses the possible origins of the silicate dust sequence.

2. METHOD

2.1. The New Samples

We produced a flux-limited sample of AGB sources by cross-referencing the General Catalogue of Variable Stars (Kholopov et al. 1985–1988; GCVS) with the *IRAS* Point Source Catalog (1988; PSC). We limited the initial sample to variability classes associated with the AGB: Mira, SRa, SRb, and Lb (Hoffmeister, Richter, & Wenzel 1984) and retained only those sources brighter than 28 Jy in the 12 μ m filter ([12] < 0.0).

Paper I concentrated on sources with optical spectral types of M or K in order to focus on spectra from oxygenrich dust, but the AGB sample also included carbon stars, S stars, and sources with unknown optical spectral types (Table 1). The carbon stars are the subject of a separate study (Little-Marenin, Sloan, & Price 1997; Sloan, Little-Marenin, & Price 1998). This paper adds S stars and variability classes associated with supergiants to the sample, since both groups predominately show oxygen-rich dust emission.

The sample of S stars includes more than just the 18 AGB stars identified by optical spectral class in Paper I. Three S stars in the AGB sample were originally included among the carbon stars, but Little-Marenin et al. (1997) found that they possess oxygen-rich dust shells. We have transferred them to the S star sample because the SIMBAD database lists two as S stars and one even as a K5. Three S stars which the GCVS classified as "SR" variables are also included; they are probably SRb variables. Paper I treated weak S stars, i.e., those stars with a strength index of 1 or 2, as MS stars and included them with the oxygen-rich sample. This practice continues here; all MS stars are a part of either the oxygen-rich AGB or supergiant samples.

To compare the properties of dust shells around AGB stars with dust around supergiants, we cross-reference all

¹ NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000; sloan@ssa1.arc.nasa.gov.

² Phillips Laboratory, PL/GPOB, 29 Randolph Road, Hanscom AFB, MA 01731-3010; price@plh.af.mil.

TABLE	1
THE SAME	LES

OPTICAL		A	AGB SAMPLE				OTHER SAMPLES			
CLASS	Mira	SRa	SRb	Lb	Total	SR	SRc	Lc	Total	
M or K	241	29	157	119	546		38	27	611	
S	13	2	4	2	21	3			24	
C	31	8	33	24	96				96	
None	17	1		2	20				20	
Total	302	40	194	147	683	3	38	27	751	

known SRc and Lc variables from the GCVS with the PSC, uncovering 38 SRc variables and 27 Lc variables brighter than [12] = 0.0. All had optical spectral types indicating oxygen-rich photospheres.

2.2. Classification

The spectrum for each source in our sample comes from the database from the *IRAS* Low-Resolution Spectrometer maintained at the University of Calgary, which includes the sources published in the LRS Atlas and by Volk & Cohen (1989; hereafter VC). We correct each spectrum as described by Cohen, Walker, & Witteborn (1992).

To isolate the dust spectrum, we assume that the shell is optically thin, so that the total spectrum is a simple sum of contributions from the photosphere and dust shell:

$$S_{\text{LRS}}(\lambda) = S_{*}(\lambda) + S_{\text{dust}}(\lambda) . \tag{1}$$

Estimating and removing the stellar contribution isolates the dust contribution. In general,

$$S_*(\lambda) = B(\lambda, T_*)Q_*(\lambda)e^{-\tau_d(\lambda)}.$$
 (2)

We assume that (1) the low optical depth (τ_d) of the shell allows us to ignore the $e^{-\tau_d}$ term, and (2) the optical efficiencies in the stellar photosphere (Q_*) depend only on the opacity of the H⁻ ion and on the SiO molecule, so that

$$S_*(\lambda) = E(\lambda, T_*)[1 - Q_{\rm SiO}(\lambda)], \qquad (3)$$

where $E(\lambda, T_*)$ is the Engelke function (Engelke 1992) and Q_{sio} is the absorption efficiency of photospheric SiO (strongest at 8 μ m). An M6 III spectrum characterizes the photosphere of the average AGB source. This corresponds to a 3240 K Engelke function with 15% SiO absorption at 8 μ m. We fit our estimated photospheric spectrum to the short-wavelength end of the LRS spectrum and subtract it from all wavelength elements (see Fig. 1). The difference is the contribution from the circumstellar dust shell.

We assign the resulting spectrum to one of several categories by visual inspection (Table 2): naked (N), silicate emission (SE), silicate self-absorption (SB), silicate absorption (SA), or carbon-rich dust emission (CE; usually with a

Т	ABLE 2	
Infrared	Emission	CLASSES

Class	Description	VC Class
N	Naked (no dust)	S
SE	Silicate (and oxygen-rich dust) emission	E & F
SB	Silicate self-absorbed emission	E
SA	Silicate absorption	Α
CE	Carbon-rich dust emission	C & F
Н	Very red spectrum (possible H II region)	Н
P	Peculiar (or noisy)	

pronounced SiC emission feature at $\sim 11.2 \ \mu$ m). A very small number of sources contain extremely red spectra (H, since they are probably contaminated by emission from H II regions) or are otherwise peculiar, very noisy, or impossible to classify (P). Figure 2 illustrates these spectra, and Table 3 shows the distribution with dust class for each subsample.

These broad categories are analogous to the first digit in the LRS characterizations and the metaclasses in the AutoClass system. VC introduced a system similar to ours (see Table 2). They refer to naked (N) sources as S (for stellar), silicate emission (SE) as E, silicate absorption (SA) as A, and carbon-rich emission (CE) as C. They also define an F class, which contains a mix of lower contrast dust shells. Our classification offers two improvements over

FIG. 1.—Three sample dust extractions. In each of the above panels, we show the corrected LRS spectrum (*thin solid line*), the assumed stellar continuum, (*dotted line*), and the residual dust spectrum (*thick solid line*). The shaded regions show the wavelength ranges over which we determine the flux ratios F_{10}/F_{11} and F_{10}/F_{12} .

FIG. 2.—Examples of several of the infrared spectral classes observed. Each spectrum is plotted *before* continuum subtraction. The CE spectrum is for a carbon star and is further classified by Sloan et al. (1998) as SiC. We do not include a silicate absorption (SA) spectrum since none appeared in any of our samples or a peculiar (P) spectrum since the three spectra in this class do not resemble each other.

theirs. First, we are able to assign most members of the F class to either SE (generally broad emission, SE1-3) or CE. Second, we recognize self-absorbed silicate emission as a separate class, SB. Kwok, Volk, & Bidelman (1997) present a useful list of classifications as defined by VC for most of the sources observed by the LRS.

2.2.1. Naked Stars

The spectrum of naked stars (class N) consists of a stellar photosphere with little or no dust emission (Fig. 2). The border between naked and other classes is not clear-cut, especially for spectra with a low signal-to-noise ratio, where uncertainties in estimating the stellar spectrum can lead to significant uncertainties in the residual dust emission.

 TABLE 3

 Dust Emission Classes among the Subsamples

Subsample	Ν	SE	SB	CE	Η	Р	Total
O-rich AGB:							
Lb	51	67			1		119
SRb	30	126				1	157
SRa	1	28					29
Mira	2	232	3	2		2	241
Subtotal	84	453	3	2	1	3	546
Supergiants:							
Lc	9	17			1		27
SRc	4	33			1		38
Subtotal	13	50			2		65
S stars:							
S	4	17		3			24
MS ^a	4	15					19
Subtotal	8	32		3			43

^a Included in the O-rich AGB and supergiant totals.

The most useful diagnostic is the dust emission contrast, the ratio of the summed emission from the dust to the summed emission from the star over the interval 7.67–14.03 μ m. All of our sources with a dust emission contrast less than 4% are classified as naked sources, and all with a dust emission contrast greater than 8% are classified as nonnaked. In the transition region between 4% and 8%, we classified sources with lower signal-to-noise ratio as naked, since any dust emission that might exist was impossible to characterize (or even recognize with any confidence).

2.2.2. Silicate Emission (SE) Sources

Sources classified as SE show silicate emission (or more precisely, emission from oxygen-rich dust). Plotting the flux ratios F_{10}/F_{12} versus F_{10}/F_{11} places all SE sources on one smooth curve, the *silicate* or *oxygen-rich dust sequence*, which can be parameterized by the power law

$$F_{10}/F_{12} = 1.32(F_{10}/F_{11})^{1.77}$$
 (4)

The flux ratios for a given source will not fall exactly on this power law but will fall nearby (Fig. 3). Paper I defined the *corrected flux ratio* F_{11}/F_{12} from the point on the power law closest to the point defined by the actual flux ratios for the source. The corrected flux ratio is the basis for the SE index:

$$SE = 10(F_{11}/F_{12}) - 7.5, \qquad (5)$$

(truncated, not rounded). Sources that fall outside the SE1-8 range are classified as either SE1 or SE8. Figure 4 presents the sums of all good spectra for each SE index.

Roughly speaking, SE1 and SE2 correspond to the Broad LML class, SE3–4 to Sil + + (and 3c and S), SE5–6 to Sil +, and SE7–8 to Sil. In the discussion below, it is convenient to group these classes in three larger categories: *broad* oxygen-rich dust emission (SE1–2), *structured* silicate emission (SE3–6), and *classic* narrow silicate emission (SE7–8).

2.2.3. Other Dust Classes

As the mass-loss rate of an evolved star increases, its shell will grow optically thick. For oxygen-rich dust shells, the silicate emission feature will become self-absorbed (first broadened, then with a noticeable dip at 10 μ m) and finally develop into a strong silicate absorption feature. We refer to self-absorbed oxygen-rich dust spectra as SB and fully absorbed spectra as SA. In this nomenclature, a shell will evolve from SE to SB to SA as the mass-loss rate from the

FIG. 3.—The silicate dust sequence, as defined by the flux ratios for individual spectra in the AGB sample (*filled circles*) and a fitted power law (*solid line*).

central star increases. While SB spectra are rarely identified as such in the literature, SA spectra are commonly seen in OH/IR stars and other sources associated with LRS characterizations between 30 and 39. Our sample of optically identified variables selects against heavily obscured sources, so it is not surprising that no SA spectra appear in our sample. However, the sample does include three SB sources, all long-period Mira variables with very red [12] - [25]colors.

A small number of sources in our sample of oxygen-rich stars show emission from carbon-rich dust emission (CE), usually from silicon carbide dust (Little-Marenin et al. 1997; Sloan et al. 1998). Figure 2 shows that the resemblance between CE spectra and SB spectra is only superficial.

2.2.4. The 13 µm Feature

Little-Marenin & Little (1988) first noticed that many of the spectra from oxygen-rich dust contained an emission

FIG. 4.—Mean spectrum for each of the eight silicate emission (SE) indices, obtained by summing all members in the AGB sample of each index, after removing the stellar spectrum.

feature at 13 μ m, which they used to define the threecomponent class. The 13 μ m feature appears with all other classes of spectra from oxygen-rich dust, and so we do not consider it when determining the SE index (Paper I). Sources with a 13 μ m emission feature are noted by appending a "t" to the SE classification. In a couple of instances, the 13 μ m feature is the only dust emission present, which results in a classification of "Nt." The 13 μ m sources are treated in more detail by Sloan, LeVan, & Little-Marenin (1996).

2.3. The Tables

Tables 4, 5, and 6 present the classifications for the AGB, supergiant, and S star samples. The names of the sources from the PSC are in column (1), followed by the names of the associated sources in the GCVS (col. [2]), the variability class (col. [3]), and the period in days (where known; col. [4]). The spectral type (col. [5]) is generally from the GCVS, but in some cases we replace it with the spectral type from the SIMBAD database or from Bidelman (1980). We use the 12 μ m magnitudes ([12]; col. [6]) and [12] – [25] colors (col. [7]) as defined in the PSC. The LRS characterizations (col. [8]) are described in the LRS Atlas. The dust emission contrasts (D.E.C.; col. [9]) are defined in § 2.2.1., and the corrected flux ratios F_{11}/F_{12} (col. [10]) are defined in § 2.2.2. These latter two quantities determine the dust classifications (col. [11]).

3. COMPARING THE SAMPLES

Paper I searched for differences in the types of oxygenrich dust spectra observed among the four variability classes associated with the AGB (Mira, SRa, SRb, and Lb), but all four classes showed similar distributions of broad, structured, and classic silicate emission. This section recon-

 TABLE 4

 Infrared Spectral Classifications of the AGB Sample

-

			Period							
PSC	Name	Variability	(d)	Spectral Type	[12]	[12] – [25]	LRS	D.E.C.	F_{11}/F_{12}	Dust
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
()	()	()	()	()	()	()	()		()	()
$00007 + 5524 \dots$	Y Cas	Μ	413.48	M6–8.5e	-1.34	0.76	22	0.58	1.07	SE3
$00042 + 4248 \dots$	KU And	Μ	750.00	M10 I–III:	-3.06	1.14	26	0.83	1.27	SE5
00050-2546	SY Scl	М	411.00	M6e-8:	-0.36	0.85	26	0.81	1.35	SE5:
00119 - 0803	AD Cet	Lb		M3 III	-0.13	-0.04	18	-0.06	1 14	N
00121 - 1912	AE Cet	Lb. Lb.		M1 III_3 III	-0.45	-0.07	10	_0.08	1 34	N.
00121 1012	S Sel	M	362 57	$M_3 \Theta_{e}(T_c)$	1 41	0.07	15	0.00	1.07	SE3
$00120 - 5219 \dots$		M	302.37	$M_{5} = 90(10)$	-1.41	0.47	15	0.24	1.07	SEJ SE1
$00203 + 3330 \dots$	T Cas		444.03	N10-9.0e	-2.93	0.01	13	0.34	0.93	SEI
$00245 - 0052 \dots$	UY Cet	SKD	440.00	M/	-1.53	0.83	14	0.42	1.10	SEST
00254-1156	AG Cet	SKD	•••	M3	-0.89	0.09	1/	0.00	0.00	IN N
00254-331/	η Scl	Lb		M4 IIIa	-0.51	0.13	18	-0.05	1.53	N:
$00340 + 6251 \dots$	TY Cas	Μ	645.00	M6	-0.63	0.52	28	0.87	1.55	SE7
$00445 + 3224 \dots$	RW And	Μ	430.30	M5–10e(S6,2e)	-0.26	0.83	22	0.38	1.14	SE3:
$00484 + 6238 \dots$	VY Cas	SRb	100.00	M6–7	-0.28	0.92	22	0.35	1.13	SE3:
$00498 + 4708 \dots$	RV Cas	Μ	331.68	M4.5–9.5e	-0.13	0.76	23	0.57	1.11	SE3:
$00515 - 6308 \dots$	BQ Tuc	Lb:		M4 III	-0.42	0.12		0.08	1.42	N:
$00541 + 4825 \dots$	KS Cas	SRa	454.00	M5	-0.08	0.66	16	0.17	1.14	SE3:t
01030-3157	AD Scl	M :		M9	-0.48	0.50	15	0.25	1.01	SE2:
01037 + 1219	WX Psc	М	660.00	M8	-4.03	1.37		0.49	0.81	SB
$01149 + 0840 \dots$	S Psc	М	404.62	M5–7e	-0.06	0.66	23	0.53	1.21	SE4:
01150 + 5732	V465 Cas	SRb		M5	-1.02	0.67	41	0.17	1.06	SE3
01217 ± 6049	BT Cas	M	399.00	M8	-0.67	1.00	23	0.50	1 1 3	SE3.
$01217 + 0049 \dots$	ST Dec	SPh	540.00	M5	0.07	0.01	23	0.50	1.13	SES
01231 ± 1020	u Dha	JL.	540.00	MO IIIo	-0.19	0.91	16	0.04	0.99	SE0 SE1.
$01201 - 4554 \dots$	y Pile	LU:		MU IIIa	-0.98	0.01	10	0.14	0.88	SEI:
$01438 + 1850 \dots$	SV PSC	SKD	102.00		-1.08	0.85	23	0.44	1.29	SESU
$014/2 + 5329 \dots$	II Per	SRD		M5 II-III	-0.44	0.76	26	0.44	1.53	SE/:
$01562 + 5434 \dots$	U Per	M	320.26	M5-/e	-0.66	0.45	15	0.21	0.89	SE1
$02036 - 1027 \dots$	UZ Cet	SRa	121.74	M2	-0.46	0.80	•••	0.42	1.25	SE4:
$02039 - 5722 \dots$	Y Eri	Μ	302.70	M7e	-0.03	0.53	15	0.16	0.79	SE1:
$02143 + 4404 \dots$	W And	Μ	395.93	S6, 1–9, 2e/M4–M1	-1.93	0.65	22	0.27	1.30	SE5
$02145 + 7831 \dots$	AG Cep	Μ	445.00	M9.2–10e	-0.20	0.68	26	0.82	1.28	SE5
02168-0312	o Cet	Μ	331.96	M5–9e	- 5.59	0.72		0.46	1.92	SE8
02234-0024	R Cet	Μ	166.24	M4e-9	-0.03	1.22	29	1.08	1.56	SE8
02251 + 5102	RR Per	Μ	389.62	M6–7e	-0.76	0.60	15	0.32	0.96	SE2
02302+4525	UX And	SRb	400.00	M6 III	-1.69	1.01	24	0.69	1.31	SE5
$02339 + 3402 \dots$	R Tri	М	266.90	M4 III–8e	-0.80	0.40	16	0.12	1.08	SE3
$02347 + 5649 \dots$	YZ Per	SRb	378.00	M1 Jab–3Jab	-0.34	1.13	27	0.97	1.42	SE6
02380 + 3059	Y Ari	SRb	109.00	M5e	0.00	0.34	17	0.05	0.73	SE1:
02427 - 5430	W Hor	SRb	137.00	Mc	-2.01	0.91	22	0.83	1.10	SE3t
02427 ± 6247	COCas	SRb	300.00	M6 5	-0.47	0.89		0.32	1 19	SF4.
02455 - 1240	Z Fri	SRb	200.00	M4 III	-0.87	0.64	25	0.29	1 79	SE8
02455 ± 1718	Σ Δri	SRo	316.60	M6_8e	_1 33	0.55	16	0.29	0.94	SE1
$02455 + 1710 \dots$	Y Hor	SRa	270.60	M6 8e	0.70	0.55	16	0.15	0.94	SE1
$02404 - 3913 \dots$		SNA	279.00	M5111	-0.79	0.33	21	0.15	0.80	SEIL
$02497 - 0020 \dots$		SKU			-0.48	0.72	21	0.09	1.50	SEJ:
$02522 - 5005 \dots$	K Hor	M CD1	407.60	M5-8eII-III	- 3.53	0.64	24	0.55	1.33	SEST
$02529 + 180 / \dots$	RZ Ari	SRb		M6 III	-1./9	0.08	18	-0.00	5.32	N
$02532 + 5426 \dots$	ER Per	SRb	150.00	M6.5	-0.96	0.72	16	0.17	1.34	SE5:t
$02568 + 4356 \dots$	AE Per	SRb	115.00	M5	-0.09	0.95	15	0.36	1.08	SE3:
$02587 + 2136 \dots$	UZ Ari	Lb:	•••	M8	-0.17	0.69	14	0.30	0.83	SE1:t
$02596 + 0353 \dots$	α Cet	Lb:	•••	M2 III	-2.30	0.00	18	-0.01	1.61	Ν
$03019 + 3838 \dots$	ρ Per	SRb		M4 IIb–IIIa	-2.59	0.08	18	-0.01	1.01	Ν
$03082 + 1436 \dots$	U Ari	Μ	371.13	M4–9.5e	-0.99	0.49	21	0.20	1.19	SE4
03118+4623	AA Per	SRa	130.40	M7	-0.27	0.90		0.44	1.00	SE2:
03170+3150	UZ Per	SRb	927.00	M5 II–III	-0.89	1.07	25	0.76	1.33	SE5
03172-2156	τ Eri	Lb		M3 III	-1.90	-0.02	17	0.02	0.58	Nt
03318-1619	RT Eri	М	370.80	M7e	-1.87	0.54	15	0.33	1.05	SE3
03336-7636	X Men	М	380.00	M3e	-0.58	0.75	26	0.79	1.36	SE6
03415 + 8010	SS Cen	SRb		M5 III	-1.51	0.77	17	0.08	1.07	SE3
03437 - 1215	π Eri	Lb.		M2 III	-0.24	0.06	18	-0.03	0.48	N.
03463 - 0710	BR Eri	SRb	175 50	M5	_0.24	0.50	17	0.05	0.16	SE2.
03489 - 0131	SU Eri	SRL	112.00	M4 III	_112	0.50	24	0.00	1 35	SE4
$03-107 = 0131 \dots 010$	SW Eri	M	400.60	MQ	_0.38	0.74	2 4 26	0.52	1.55	SE6
03507 ± 1115	IK Tan	M	470.09	M6_10e	_ 5 5/	0.02	20	0.70	1.75	SE0
$03507 \pm 1113 \dots$		M	210.00		- 3.34	0.04	20	0.30	1.34	SE/
03511-4338	U Hor	IVI T 1	348.40		-0.70	0.72	20	0.09	1.30	SE3
0.555/-1.559	γEri	LD:			-1.4/	0.04	18	-0.02	0.73	IN CTC
04094 - 2515	w Eri	M	3/6.63	M/e-9	-1.34	0.66	24	0.56	1.35	SE6
$04106 + 2617 \dots$	V482 Tau	Lb:		M0-6	-0.11	1.07		1.05	1.29	SE5
04140-8158	U Men	SRa	407.28	Me	-2.70	0.75	24	0.72	1.28	SE5
$04157 - 1837 \dots$	RS Eri	Μ	296.00	M7e	-0.44	0.59		0.27	0.98	SE2:
$04166 + 4056 \dots$	IR Per	SRa	175.00	M6.5	-2.10	0.96	23	0.59	1.22	SE4t
$04250 + 1555 \dots$	W Tau	SRb	264.60	M4–6.5	-0.06	0.72	17	0.06	1.19	SE4:
$04255+1003\ldots\ldots$	R Tau	Μ	320.90	M5–9e	-1.25	0.84	21	0.38	1.07	SE3

TABLE 4—Continued

			Period							
PSC	Name	Variability	(d)	Spectral Type	Г127	[12] – [25]	LRS	D.E.C.	$F_{\star,\star}/F_{\star,\star}$	Dust
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
(1)	(-)	(0)	()	(6)	(0)	(.)	(0)	(-)	(10)	(11)
04265 + 5718	RV Cam	SRb	101.00	M4 II–III–6	-0.79	0.99	22	0.27	1.40	SE6t
04280 + 2722	V729 Tau	SRb		M6	-0.43	0.87	14	0.34	0.90	SE1:t
04311 - 0004	BD Eri	M	336.00	M9e	-0.36	0.64	14	0.36	1.03	SE2.
04328 ± 2824	III Tau	SRa	418.00	M7	-0.71	0.59	15	0.28	0.95	SE1t
04320 + 1624	a Ton	I h.	410.00		2.49	0.00	19	0.20	1.52	N
04330 + 1024	D D ot	LU. M	279 16	M4 7.5°	- 3.40	-0.09	15	-0.01	1.52	SE2.+
$04330 - 0307 \dots$			2/0.40	M4-/.3C	-0.20	0.44	15	0.10	1.05	SE2:1
$04345 - 2740 \dots$	UU Eri	SKD	340.00	M /	-0.22	0.70	15	0.20	0.95	SE2:
$04355 + 0814 \dots$	RX Tau	M	331.80	M6-/e	-0.99	0.63	15	0.32	0.92	SEIt
$04361 - 6210 \dots$	R Dor	SRb	338.00	M8 IIIe	- 5.65	0.29	•••	0.16	1.47	SE7t
$04382 - 1946 \dots$	DM Eri	SRb		M4 III	-0.95	0.06	18	-0.04	1.59	Ν
04387 – 3819	R Cae	Μ	390.95	M6e	-1.87	0.63	23	0.58	1.14	SE3
$04497 + 1410 \dots$	o Ori	SRb		M3.2 IIIaS	-1.20	0.06	18	-0.03	1.33	Ν
$04560 - 0608 \dots$	UV Eri	Μ	433.22	M7	-0.37	0.80	28	1.18	1.44	SE6:
$04566 + 5606 \dots$	TX Cam	Μ	557.40	M8–10	-4.41	0.53	27	1.06	1.38	SE6
05027-2158	T Lep	Μ	368.13	M6–9e	-1.86	0.85	15	0.28	0.99	SE2
05069-3434	SZ Col	Lb:		M6	-1.36	0.51	16	0.16	0.95	SE1
$05071 - 6327 \dots$	WZ Dor	SRb		M3 III	-0.34	0.01	18	-0.05	1.39	N:
$05073 + 5248 \dots$	NV Aur	М	635.00	M10	-2.26	1.77	24	0.85	1.06	SB
05090 - 1154	RX Len	SRb		M6.2 III	-2.49	0.67	22	0.18	1.38	SE6
05096 - 4834	S Pic	M	428.00	M6 5-8 III-IIe	-211	0.71	25	0.73	1 36	SE6
05098 - 6422	U Dor	M	394 40	M8 IIIe	-157	1.03	26	0.75	1.30	SE6
05132 ± 5331	R Aur	M	457 51	M6 5_0 5e	_3.03	0.56	15	0.70	1.00	SEC
$05152 \pm 5551 \dots$		IVI Ib.	437.31	MA III	- 5.05	0.00	19	0.07	1.00	NI-
$05140 \pm 4244 \dots$ 05217 2042	FU Aui	LU. Ib.	•••	M4 III M1 III	-0.00	0.00	10	-0.00	2.00	IN. SEQ
$0.5217 - 3.543 \dots$		LU. Ih	•••		-0.15	1.05	20	0.33	2.00	SE0
05220-0011				M7 IIIe	-0.31	0.85	14	0.52	0.98	SE2L
$05231 + 5004 \dots$	AC Aur	M	311.00	Mbe	-0.05	0.79	22	0.43	1.14	SE3:
05256 ± 0839	V440 Ori	Lb		M5	-0.04	0.83		0.33	0.95	SEI:
05265-0443	S Ori	M	414.30	M6.5-9.5e	-1.82	0.62	15	0.24	0.98	SE2
05351-0147	X Ori	M	422.20	M9	-1.32	0.83	24	0.58	1.25	SE4
$05354 + 2458 \dots$	GP Tau	SRb		M7	-1.42	0.95	22	0.50	1.22	SE4
$05365 - 1404 \dots$	RW Lep	SRa	149.90	M8	-0.98	0.68	15	0.23	0.82	SE1t
$05367 + 3736 \dots$	RU Aur	Μ	466.47	M7–9e	-1.84	0.86	25	0.80	1.28	SE5
$05368 + 2841 \dots$	AW Aur	Μ	695.00	M5–9	-0.11	0.75	15	0.36	1.09	SE3:
$05378 + 2804 \dots$	AB Tau	SRa	142.00	M5–7	-0.88	0.86	15	0.32	1.11	SE3
$05384 + 3854 \dots$	SZ Aur	Μ	454.04	M8e	-0.84	0.57	15	0.30	1.04	SE2t
$05388 + 3200 \dots$	U Aur	Μ	408.09	M7–9e	-1.53	0.75	23	0.44	1.22	SE4:
$05390 + 1448 \dots$	FX Ori	SRb	720.00	M3	-0.22	0.91	25	0.63	1.57	SE8t
$05404 - 2343 \dots$	RT Lep	Μ	399.00	M9e	-1.06	0.81	22	0.47	1.08	SE3
05411-8625	R Oct	Μ	405.39	M5.5e	-1.26	0.75	15	0.27	0.92	SE1
05450-3142	S Col	Μ	325.85	M6e-8	-0.57	0.67	14	0.38	1.00	SE2
$05528 + 2010 \dots$	U Ori	Μ	368.30	M6–9.5e	-3.46	0.51	26	0.81	1.37	SE6t
$05534 + 4530 \dots$	TW Aur	SRb	150.00	M5 III	-1.67	0.75	25	0.83	1.36	SE6t
$05535 + 4822 \dots$	LO Aur	Μ		M8–9	-0.40	1.07	28	1.10	1.43	SE6
$05559 + 7430 \dots$	V Cam	Μ	522.45	M7e	-2.14	0.85	24	0.69	1.22	SE4
$05588 + 1054 \dots$	DP Ori	SRb		M6.5	-0.38	0.67	15	0.27	1.11	SE3t
05592-0221	V352 Ori	Lb		M7ep	-1.85	0.94		0.49	1.35	SE6
$06011 + 2829 \dots$	BS Aur	Μ	462.00	M8–9	-0.95	0.83	28	1.04	1.41	SE6
06036-2411	S Lep	SRb		M6 III	-2.40	0.90	26	0.83	1.41	SE6t
06067 + 3125	BU Âur	SRa	169.00	M1	-0.61	0.54		0.30	1.04	SE2:
06133+6132	UW Lvn	Lb:		M3 IIIab	-0.93	0.02	18	-0.02	1.76	Ν
06139 + 3313	VW Aur	SRb	220.00	M6	-1.44	0.81	22	0.48	1.20	SE4t
06199 + 2232	µ Gem	Lb		M3.0 IIIab	-2.58	0.01	18	-0.02	1.49	N
06202 - 0210	V Mon	M	340 50	M5-8e	-0.99	0.39	16	0.13	0.94	SE1
06224 ± 1701	GN Ori	M	118 30	M3 00 M7	-0.78	0.26	44	0.15	0.71	SiC
06250 ± 6134	VIvn	SRb	110.50	M5 III_IV	-0.34	1 20	23	0.21	1 32	SE5.t
06261 ± 1637	AO Gem	Lb	•••	M6 5-8	-0.44	0.79	15	0.31	0.96	SE2.
06278 ± 2729	DW Gem	Lb	•••	M3_7	_1.89	0.75	27	0.91	1 48	SE2.
00270 ± 2727		M	385 71	M7e	0.01	0.75	25	0.80	1.40	SE7
00300 ± 3137	GL Mon	SPh	102 50	MA 65	-0.01	0.55	16	0.80	0.81	SEJ.
$00333 - 0320 \dots 00000000000000000000000000000000$	SV Mon	M	105.50	M_{60} 0	- 1.22	0.51	25	0.10	1 22	SE1 SE5
$00349 - 0121 \dots 06262 + 5054$		M	422.17	M7 0 5 to	-1.00	0.70	25	0.77	1.32	SE5
06/23 + 0005		M	429.00	M1 Q	- 1.40	0.03	21	1.70	1.40	SEC SEC
$00423 \pm 0903 \dots$		M	428.30	IVI 1-0	-0.07	0.72	20	1.00	1.40	SE0
$00431 + 1343 \dots$	CU Dec	IVI N	400.00	Mo Mo	-0.28	0.50	27	0.84	1.30	SES:
$00434 - 3028 \dots$	CH Pup	M	303.30		-0.57	0.83	23	0.52	1.19	SE4
$00439 + 3019 \dots$	A Gem	M	204.10	M_{7c}	-0.08	0.53	1/	0.13	1.11	SE3:
$00490 - 1030 \dots$	DL CMa	M	545.00	MO	-1.01	0.99	20	0.75	1.30	SE0
$00300 + 0829 \dots$	GA MON	INI L la	527.00	N19 N7	-3.52	1.00	28	0.91	1.45	SE0
$00334 - 104 / \dots$	US CMa	LD:		M /	-0.11	1.04	22	0.50	1.25	SED:t
$00540 - 2353 \dots$		SKD	106.60	M /	-0.96	0.87	23	0.54	1.26	SEST
00001+0322	AZ Mon	M	388.90	M9	-0.28	0.64	22	0.56	1.14	SE3:t
$0'/021 - 0852 \dots$	HN Mon	Μ	410.00	M8	-1.59	0.97	29	1.37	1.44	SE6

TABLE 4—Continued

			Period							
PSC	Name	Variability	(d)	Spectral Type	[12]	[12] – [25]	LRS	D.E.C.	F_{11}/F_{12}	Dust
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
			. ,				. ,			. ,
07091 – 2902	GW CMa	Lb		M5	-0.51	0.73	14	0.34	0.90	SE1:t
$07104 + 1614 \dots$	BQ Gem	SRb		M4 IIIab	-0.87	0.10	17	0.02	0.77	Ν
07120-4433	L Pup	SRb	140.60	M5 III–6IIIe	-4.83	0.42		0.60	0.00	:(P)
$07229 + 3328 \dots$	XX Gem	М	384.05	M9–10e	-0.22	0.64	22	0.45	1.09	SE3:
07232 - 0544	TT Mon	M	323 17	M5e-8	-0.48	0.78	23	0.46	1 37	SE6.
07232 - 0344	S CM	M	222.04	M6 80	1.40	0.76	15	0.40	0.06	SEO.
07299+0825		IVI M	502.94		-1.40	0.50	20	0.23	0.90	SEZ
0/304 - 2032	Z Pup	M	508.60	M4-9e	-1.00	0.81	29	1.34	1.39	SEO
0/329-2352	DU Pup	M	550.00	M	-1.69	1.13	27	0.99	1.34	SES
$07382 + 2032 \dots$	Y Gem	SRb	160.00	M6e-7	-0.01	0.31	17	0.08	1.20	SE4:
$07445 - 2613 \dots$	SS Pup	Μ	391.00	M6e	-1.10	0.75	29	1.31	1.44	SE6
07518-2612	OR Pup	Lb:		M7	-0.53	0.14	18	-0.02	0.90	N:
07536-2830	HU Pup	SRa	238.00	M3	-1.20	1.52	28	1.46	1.31	SE5
07543-3008	PX Pup	Lb:		M6 III	-0.40	0.17	17	0.01	1.18	N:
07585 - 1242	U Pup	М	318.44	M5-8e	-1.27	0.97	25	0.80	1.31	SE5
08003 ± 3629	SV L vn	SRb	010111	M5 III	-0.66	0.94	23	0.21	1 44	SE6.
08063 + 6522	P7 UMa	SPh	115.00	M5 6	0.50	0.75	16	0.21	1.44	SE3.
08003 ± 0322	AS Due	M	224.65	M7-0	-0.54	0.75	10	0.18	1.07	SEJ.
$080/8 - 3801 \dots$	AS Pup	NI N	524.05	M/e-9	-1.40	0.55	15	0.29	0.95	SEI
08084-1510	DP Pup	M		M8e	-0.28	0.99	29	1.19	1.37	SE0:
$08107 - 3459 \dots$	Y Pup	SRb	110.00	M'/	-0.36	0.49	22	0.15	1.38	SE6
$08117 + 2453 \dots$	RX Cnc	SRb	120.00	M8	-0.22	0.38	16	0.07	0.69	SE1:
$08138 + 1152 \dots$	R Cnc	Μ	361.60	M6–9e	-2.54	0.49	15	0.24	1.01	SE2
08150-3117	NN Pup	Μ		M7e	-0.23	0.65	21	0.35	0.97	SE2:
$08189 + 0507 \dots$	FZ Hva	Lb		M6	-1.07	0.81	21	0.33	1.16	SE4t
08196 + 1509	Z Cnc	SRb	104.00	M6 III	-0.48	0.80	24	0.49	1.37	SE6:t
08200 - 2528	OT Pup	Lb		M4	-0.50	1 10	24	0.78	1 23	SE4
08220 - 0821	FK Hya	Lb		Mb	-2.20	0.89	20	1 31	1.23	SE7t
08220 - 0821	PD Cno	SPh	•••	M2 III	- 2.20	0.02	19	0.00	0.00	NI.
$08239 + 1249 \dots$	DF CIIC	SKU	200.00		-0.03	0.02	10	-0.00	0.00	IN:
082/2-0609	KI Hya	SKD	290.00	M6-8e	-1.44	0.53	16	0.11	0.57	SEI
$08349 - 5945 \dots$	KK Car	M	•••	MSep	-1.59	0.57	21	0.40	1.06	SE3
$08375 - 1707 \dots$	АК Нуа	SRb		M4 III	-2.08	0.77	22	0.32	1.25	SE4t
$08400 - 4755 \dots$	EP Vel	SRa	240.00	M6	-1.13	1.01	26	1.01	1.30	SE5
$08437 + 0149 \dots$	EY Hya	SRa	182.70	M7	-1.39	0.79		0.44	0.95	SE2
$08555 + 1102 \dots$	RT Cnc	SRb		M5 III	-1.03	0.56	41	0.25	1.12	SE3
$09005 + 3856 \dots$	UX Lvn	SRb:		M6 III	-0.24	0.13	17	0.01	0.00	N:
09057 + 1325	CW Cnc	Lb		M6	-1.25	0.82	15	0.34	1.07	SE3
09069 ± 2527	W Cnc	M	393.22	M6 5_9e	-0.89	0.83	23	0.43	1 16	SF4
00105 4224	SV Vol	SDP	575.22	M5/6 III	0.05	0.05	23	0.45	1.10	SE7
$09103 - 4334 \dots$		SRU SRL	175.00	M5/0 III	-0.90	0.64	15	0.40	1.01	SE7
$091/3 - 3010 \dots$		SKU:	175.00		-0.13	0.08	10	0.20	1.00	SE2.1
$09180 + 5654 \dots$	CG UMa	Lb		M4 IIIa	-0.38	0.15	18	-0.03	0.00	N:
$09185 - 4918 \dots$	RW Vel	Μ	443.10	M7 III(II)e	-2.34	0.59	15	0.29	0.96	SE2
09220-4839	RS Vel	Μ	409.50	M7e	-2.11	0.69	21	0.39	1.04	SE2
$09273 - 5157 \dots$	Y Vel	Μ	449.90	M8e–9.5	-1.15	0.78	23	0.47	1.20	SE4
09309-6234	R Car	Μ	308.71	M4-8e	-3.06	0.45	15	0.21	0.95	SE1
09331-1428	X Hya	Μ	301.10	M7-8.5e	-1.34	0.55	15	0.34	1.00	SE2
$09425 + 3444 \dots$	R LMi	М	372.19	M6.5-9.0e(Tc:)	-2.94	0.60	24	0.74	1.20	SE4t
09429 - 2148	IW Hya	M	650.00	M9	-3.32	1.34	28	1.18	1.27	SE5
09429 ± 5721	CS LIMa	Lb	000100	M3 IIIah	-0.38	0.08	17	0.02	0.00	N·
00448 ± 1130	PLeo	M	300.05	M6 8 III 0 5e	4 71	0.00	17	0.02	0.00	SE2
09440 ± 1139		SDP	150.00	M0-8 III-9.5C	-4.71	1.00	15	0.23	1.05	SE2+
$09460 - 414 / \dots$	SU Vel	SKU	150.00	M3(III)	-1.60	1.00	15	0.34	1.05	SESU
09481 - 4425	SZ vel	SKD	150.00	MSe	-0.48	0.83	22	0.34	1.25	SED:
$09511 - 5356 \dots$	Z Vel	M	411.40	M9e	-1.16	0.55	15	0.28	0.89	SEIt
$09564 - 5837 \dots$	RR Car	SRb		M6.5S II–III	-1.89	0.68	15	0.22	0.96	SE2
$10118 - 6038 \dots$	SU Car	Μ	575.60	M5-8e	-0.63	1.02	29	1.51	1.47	SE7
$10133 - 5413 \dots$	W Vel	Μ	394.72	M5–8 IIIe	-1.57	0.62	22	0.50	1.10	SE3t
$10147 - 5057 \dots$	GY Vel	Lb		M4/5 III	-0.18	0.12	17	0.00	0.00	N:t
10189-3432	V Ant	Μ	302.76	M7 IIIe	-1.02	1.00	28	1.02	1.49	SE7
10226 - 6039	UV Car	Lb		M3-5	-0.64	1.23	29	2.84	1.40	SE6
10261 - 5055	VZ Vel	SRa	317.00	Mée	-0.28	1.02	27	0.75	1 53	SE7
$10201 - 5055 \dots$		I h	517.00	M6	0.20	0.71	27	0.75	1.55	SE2
10303 ± 7001		CD1		MG	-0.10	0.71	22	0.20	1.11	SEJ SE4.
10353-1145	гг нуа	SKD		MO	-0.93	0.97		0.33	1.17	SE4:
10401 - 532/	HH Vel	SKD	100.00	MJ5/0 III	-1.03	1.08	26	0.85	1.42	SEOU
10411 + 6902	K UMa	Μ	301.62	M3-9e	-1.30	0.97	23	0.42	1.35	SE6
$10469 - 5355 \dots$	WX Vel	Μ	411.50	M5–7 IIIe	-0.23	0.78	22	0.50	1.11	SE3:
$10521 + 7208 \dots$	VX UMa	Μ	215.20	M8e	-0.25	0.94	26	0.83	1.33	SE5
10580-1803	R Crt	SRb	160.00	M7	-3.38	0.77	22	0.64	1.10	SE3t
11010-0256	SX Leo	SRb	100.00	M6	-0.10	0.55	16	0.15	0.94	SE1:
11011 - 6651	KV Car	SRb	150.00	M4 III	-0.44	0.77	43	0.25	1.27	SE5:
11065 ± 3634	CO UMa	Lb		M3 5 IIIah	_0.27	0.11	17	-0.01	0.00	N·
11125 7524	CS Dro	Lb		M5	1 27	0.11	22	0.01	1 25	SEA.
11123 ± 7324 11152 = 2152		CDL	200.00	M2	- 1.27	0.90	23 17	0.00	1.23	51:4:l
$11133 - 2132 \dots$	KA UII	SKD	500.00		-0.10	0.20	1/	0.03	1.13	IN IL
11251+452/	SIUMa	SKb	110.00	M4-5 111	-0.48	0.64	•••	0.16	1.09	SE3:
$11252 + 1525 \dots$	AF Leo	SRb	107.00	M5	-0.57	1.08		0.65	1.20	SE4:

TABLE 4—Continued

			Period							
PSC	Name	Variability	(d)	Spectral Type	Г12 7	[12] - [25]	LRS	DEC	$F \dots / F$	Dust
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
(1)	(2)	(5)	(7)	(5)	(0)	(7)	(0)	()	(10)	(11)
11358 ± 0824	ω Vir	Ib		M4 III	-0.86	0.06	18	-0.05	1 29	N
11445 + 4244		LU Lb	•••	M6 III	1.06	1 10	10	0.03	1.19	SE4
11445 + 4544			•••		-1.00	1.19		0.42	1.10	5E4
$11462 - 2628 \dots$	II Hya	SKb		M4 III	-0.93	0.07	18	-0.02	0.79	N
$11466 - 4128 \dots$	X Cen	Μ	315.10	M5–6.5e	-1.56	0.52	23	0.37	1.35	SE6
$11485 - 1055 \dots$	RU Crt	Lb:		M3	-1.15	0.51		0.14	1.06	SE3:
11501-0719	S Crt	SRb	155.00	M6–7e	-0.69	0.63	16	0.20	1.21	SE4:
11538 ± 5808	Z UMa	SRb	195 50	M5 IIIe	-0.89	0.57	16	0.11	0.89	SE1t
12020 + 0254	TT Vir	SPL	124.00	M5	0.09	1.01	26	0.11	1 21	SE2
$12020 + 0234 \dots$		SKU L1	134.00		-0.08	1.01	20	0.08	1.51	SEJ.
12046-0629	KW VIr	LD	•••	M5 III	-1.21	0.61		0.35	1.13	SEST
$12148 - 6741 \dots$	ϵ Mus	SRb:		M5 III	-2.08	0.07	18	-0.01	1.28	Ν
$12170 - 1858 \dots$	R Crv	Μ	317.03	M4.5–9:e	0.00	0.41		0.33	0.63	P :
12230-5943	ST Cru	Μ	440.00	M6e	-1.70	0.72	23	0.51	1.21	SE4
12277 ± 0441	BK Vir	SRb	150.00	M7 III	-2.36	0.59	15	0.24	1.15	SE4t
12279 ± 6928	CO Dra	Lh	100100	M3 IIIa	-0.31	0.04	18	-0.03	1 24	N
12205 5718		M	242.60	M4 6a	0.51	0.04	24	0.05	1.24	SEC
12295-5718		IVI I 1	542.00		-0.71	0.82	17	0.01	1.55	SE0
12319-6/28	BO Mus	Lb	•••	M6 11–111	- 1.69	0.20	17	0.02	0.44	IN
$12345 - 1715 \dots$	T Crv	Μ	401.34	M6e	-0.22	0.63		0.45	1.02	SE2:
$12380 + 5607 \dots$	Y UMa	SRb	168.00	M7 II–III:	-2.08	0.75	15	0.27	1.00	SE2t
12517-0915	∉ Vir	Lb		M3 III	-0.55	-0.08	18	-0.03	1.15	N:
12526 ± 4728	TU CVn	SRb		M5 III	-0.77	0.11		-0.01	5 40	N٠
12562 2324	T Com	M	406.00	M2: 8 0a III	0.10	0.08	28	0.87	1.57	SE8
$12302 \pm 2324 \dots$	DT Via	CD1	155.00		-0.19	0.98	20	0.07	1.57	SE0
$13001 + 0527 \dots$		SKD	155.00	M18 111	- 3.03	0.78	21	0.46	1.07	SESI
$13039 + 2253 \dots$	FS Com	SRb		M5 III	-0.89	0.10	18	-0.01	0.00	Ν
$13062 - 5958 \dots$	WW Cen	SRb	304.00	M5–7	-0.03	0.48	31	0.10	0.65	SE1:
13114-0232	SW Vir	SRb	150.00	M7 III	-3.45	0.81		0.41	1.12	SE3t
13144-6225	V397 Cen	Lb:		M4(S:)	-1.04	1.08		2.45	1.20	SE4t
13150 - 4124	V497 Cen	M	335.00	Me	_0.92	0.67	14	0.37	0.95	SE2
13130 - 4124	V CVr	SDo	101.00	M4 62 III at	-0.72	0.07	20	1.00	1.60	SE2
131/2+434/	V C VII	SKa	191.69	M4-be ma:	-1.07	0.77	29	1.00	1.09	SEOL
$13215 - 6424 \dots$	U Mus	M	356.00	M6e	-0.24	0.57	15	0.28	0.95	SE2:
$13244 - 5904 \dots$	OS Cen	Μ	433.00	M6e	-0.72	0.92	41	0.50	0.99	SE2
13269-2301	R Hya	Μ	388.87	M6-9eS(Tc)	-4.37	0.48	15	0.24	0.98	SE2t
13303-0656	S Vir	М	375.10	M6 III-9.5e	-1.70	0.58	16	0.19	0.97	SE2
13368 - 4941	V744 Cen	SRb		M8 III	-2.24	0.84	22	0.36	1 21	SF4
13462 2807	W Uvo	SPo	261.00	M75 0op	5.42	0.04	02	0.50	2 22	SEA
$13402 - 2807 \dots$	W Hya	SRa SD1	301.00	M5 III	- 3.43	0.19	10	0.10	1.40	N
13403 - 3412	v 806 Cen	SKD			- 2.39	-0.04	18	0.01	1.40	IN
$13468 + 3947 \dots$	R CVn	Μ	328.53	M5.5–9e	-1.40	0.55	15	0.24	1.07	SE3
$13492 - 0325 \dots$	AY Vir	SRb	113.00	M6	-0.54	0.74	16	0.21	1.15	SE4:
$13499 + 6458 \dots$	CU Dra	Lb:		M3 III	-0.73	0.12	18	-0.01	1.20	Ν
13548 - 3049	TW Cen	М	269.27	M4e-8II:	-0.54	0.46	22	0.23	1.25	SE5:
13574 ± 3726	RW CVn	SRb	100.00	M7 III	_0.08	0.81		0.28	1.05	SE2.
$13374 + 3720 \dots$		SRU	22.04	M7 III	2.54	0.01	22	0.20	1.05	SE2.
14003 - 7035	0 Aps	SKU	52.04		- 5.54	0.72	22	0.29	1.27	SEJU
$14020 - 3515 \dots$	AQ Cen	M	387.50	Me	-2.32	0.54	29	1.26	1.4/	SE/
$14059 + 4405 \dots$	BY Boo	Lb:	•••	M4–4.5 III	-0.97	0.13	18	-0.03	1.34	Ν
$14081 - 1604 \dots$	ET Vir	SRb		M2 IIIa	-0.04	0.08		-0.04	1.27	N:
14086-2839	RU Hva	Μ	331.50	M6-8.8e	-1.09	0.82	26	0.69	1.52	SE7t
14129 - 5940	R Cen	М	546.20	M4–8 IIe	-3.09	0.58	22	0.78	1.05	SE2
14142 1612	FW Vir	SPh	0.00120	M6 III	0.88	0.80	22	0.45	1 1 2	SE3
$14142 - 1012 \dots$		M	220.02	MG 82	-0.00	0.05	15	0.45	0.05	SES
$14102 \pm 0/01 \dots$		M	530.92	Mo-se	-0.85	0.38	15	0.20	0.95	SE2
1410/-0/1/	UZ Cir	M	538.00	Me	-0.02	0.77	22	0.54	1.06	SE3t
$14188 - 6943 \dots$	VX Cir	Μ	417.00	M7e	-0.19	0.56	•••	0.49	1.20	SE4:
$14200 + 2935 \dots$	CI Boo	Lb		M3 III	-0.14	0.20	•••	-0.05	1.80	Ν
$14219 + 2555 \dots$	RX Boo	SRb	340.00	M6.5-8 IIIe	-3.69	0.80		0.48	1.07	SE3t
$14247 + 0454 \dots$	RS Vir	М	353.95	M6 III–8e	-1.46	1.01	24	0.56	1.35	SE5
14277 ± 3904	V Boo	SRa	258.01	M6e	-0.42	0.41	16	0.16	1.03	SE2.
14280 2052	V Con	SPh.	180.00	Mac 7	1.94	0.11	16	0.10	0.02	SE1+
$14260 - 2932 \dots$	V708 Car	JL.	180.00		-1.64	0.00	10	0.15	0.92	SEIL SEL
14310-6044	V /98 Cen	LD:		M6 III	-0.58	0.43	1/	0.09	0.75	SEI:
$143/1 + 3245 \dots$	RV Boo	SRb	137.00	M5-/e	-1.61	0.93	22	0.39	1.26	SESt
$14390 + 3147 \dots$	RW Boo	SRb	209.00	M5	-0.84	0.78	23	0.28	1.45	SE7
$14412 + 2644 \dots$	W Boo	SRb:	450.00	M2–4 III	-0.36	0.08	18	-0.06	1.10	Ν
14455-3625	V768 Cen	SRb		M3	-1.21	0.16	18	0.01	0.00	Ν
14550 - 1214	FY Lib	SRb	120.00	M5 III	-1.27	0.73	22	0.24	1 28	SE5
14550 5446	VIun	M	306.82	M7e	1.27	0.75	24	0.64	1.20	SE5
14567 + 6607		101	570.02	IVI /C	-1.5/	0.07	∠ 4 10	0.04	1.27	SEC N
1430/+000/		SKD			-1.01	0.12	18	-0.01	0.00	IN
14580-3416	AP Cen	M	357.00	Mbe	0.00	0.50	15	0.25	1.10	SE3:
$14598 - 7124 \dots$	V Aps	Ĺb		Mb	-0.40	0.97	22	0.63	1.15	SE3:t
$15011 - 2505 \dots$	σLib	SRb		M3.5 IIIa	-2.13	-0.11	18	0.00	0.00	Ν
15014-4040	GM Lup	Lb:		M6 III	-0.41	0.10	18	-0.02	4.28	N:
15097 + 1909	FL Ser	Lb		M4 IIIab	-0.07	0.05		0.03	0.00	N:
15193 ± 1429	S Ser	M	371 84	M5-6e	_045	0.63	22	0.48	1 12	SE3.
15103 1 2127	S C+B	M	360.24	M6 %	, 2 1 2	1 05	24	0.40	1.12	SES.
15175 ± 5152		TAT TAT	217.65	M7 05-	-2.13	1.03	24 15	0.04	1.27	000
13214 - 2244	KS LID	M	21/.00	IVI /-8.5e	-2.06	0.41	15	0.30	0.9/	SE2
15239-5733	K Cır	SKb	222.00	M4/6 III	-0.45	0.49	16	0.15	0.74	SE1:

TABLE 4—Continued

			Period							
PSC	Name	Variability	(d)	Spectral Type	[12]	[12] – [25]	LRS	D.E.C.	F_{11}/F_{12}	Dust
(1)	(2)	(3)	(4)	(5)	້(6)	(7)	(8)	(9)	$(10)^{12}$	(11)
(1)	(-)	(8)	(.)	(0)	(0)	(/)	(0)	(-)	(10)	(11)
15255 + 1944	WX Ser	М	425.10	M8e	-2.30	1.08	29	1.59	1.38	SE6
15298 ± 0348	WW Ser	M	365.80	M8e	-0.48	0.65	14	0.34	0.95	SE1t
15202 2700	SV Lib	M	402.66	Ma	0.40	0.05	22	0.24	1 1 4	SE2.
$15303 - 2700 \dots$	SV LID	M	402.00	Ma	-0.21	0.51	22	0.22	1.14	SES:
$15314 + /84 / \dots$	S UMI	M	331.00	M6-9e	-1./8	0.58	21	0.32	1.08	SEST
$15323 - 4920 \dots$	R Nor	Μ	507.50	M3e–6 II	-0.75	0.89	23	0.50	1.20	SE4
$15341 + 1515 \dots$	τ Ser	SRb	100.00	M5 IIb–IIIa	-2.06	0.77	22	0.22	1.24	SE4
$15361 + 2441 \dots$	LY Ser	Lb:		M4 III	-1.24	0.17	17	0.03	0.92	Ν
15380 - 6545	IZ TrA	Lb		M6 III	-0.80	0.66	16	0.16	0.92	SE1t
15402 5449	T Nor	M	240.70	M3 6a	0.00	0.00	25	0.10	1.91	SES
$15402 - 5449 \dots$			142.00		-0.77	0.74	23	0.45	1.01	OE2
15410-0155	BG Ser	M	143.00	M0-8e	-1.50	0.55	21	0.38	1.08	SES
$15483 + 1517 \dots$	R Ser	Μ	356.41	M5 III–9e	-2.07	0.49	24	0.47	1.33	SE5
$15492 + 4837 \dots$	ST Her	SRb	148.00	M6–7 IIIaS	-2.12	0.78	41	0.21	0.90	SE1
$15566 + 3609 \dots$	RS CrB	SRa	332.20	M7	-0.67	0.87	26	0.90	1.40	SE6t
15576-1212	FS Lib	М	415.00	M8.1–9.0	-0.55	1.02	29	1.24	1.41	SE6
16011 ± 4722	X Her	SRb		M6e	-3.08	0.80	24	0.53	1 39	SE6t
16020 2125	7 500	M	242.02	M55.70	0.12	0.00	16	0.00	0.00	NI.
$10030 - 2135 \dots$		IVI I 1	343.03		-0.12	0.30	10	0.08	0.00	IN.
$16061 + 0844 \dots$	FQ Ser	Lb		M4 III	-0.17	0.06		-0.17	1.32	N
$16063 - 4906 \dots$	V Nor	SRb	155.90	M5 III	-0.75	0.36	17	0.06	0.76	SE1:t
$16081 + 2511 \dots$	RU Her	Μ	484.83	M6e-9	-1.96	0.70	23	0.64	1.12	SE3
$16095 + 2337 \dots$	LQ Her	Lb:		M4 IIIa	-0.51	0.08	17	-0.01	0.00	N:
16118-4439	RU Nor	М	393.30	M7e	-0.05	0.75	15	0.29	0.93	SiC
16127 - 7834	δ Ans	I b.		M4_5 III	_1 34	0.12	18	_0.01	0.00	N
16128 5029	W Nor	50. 50h	134 70	MA/5/III	- 1.34	0.12	10	0.01	1 22	SEV.
$10120 - 3220 \dots$	W NOT	SKU	134.70	M4/3(111)	-0.94	0.09		0.32	1.22	SE4:
16164 + 5952	AI Dra	Lb		M4 IIIa	-0.58	0.15	18	-0.00	0.00	N
$16175 - 6120 \dots$	RS TrA	M:	436.40	Me	-0.06	0.56	15	0.28	1.02	SE2:
$16235 + 1900 \dots$	U Her	Μ	406.10	M6.5–9.5e	-3.12	0.45	23	0.55	1.19	SE4
16241-3111	WW Sco	Μ	431.00	M6e-9	-0.15	0.59	15	0.26	0.99	SE2:
16250 - 0729	V2105 Oph	SRb:		M2.5 III	-0.15	0.05	18	-0.02	1.27	N:
16260 ± 3454	V607 Her	M	475.00	MQ	-0.86	1 32	28	1 11	1.40	SE6
16260 + 3434	V See	M.	251 00	MO	-0.00	0.60	15	0.22	0.96	SEU SE1.
10203-1914	1 500		551.00		-0.02	0.00	15	0.55	0.80	SET:
$16269 + 4159 \dots$	ZZ Her	SRb	•••	M6 III	-2.97	0.39	16	0.08	0.78	SEIt
$16306 + 7223 \dots$	R UMi	SRb	325.70	M7 IIIe	-1.43	0.64	15	0.29	1.01	SE2t
16308-1601	T Oph	Μ	366.82	M6.5e	-0.32	0.65	15	0.30	0.88	SE1:
16387 - 2700	AX Sco	SRb	138.00	M6	-0.56	0.63	15	0.21	1.12	SE3t
16418 ± 5459	S Dra	SRb	136.00	M7	-1.66	0.93	24	0.53	1 34	SE5t
16422 + 1212		M	241.05	M6 650	0.25	0.75	15	0.55	1.04	SE2.
$10432 + 1213 \dots$		IVI I 1	541.95		-0.23	0.40	10	0.18	1.03	SEZ.
$16457 + 4219 \dots$	V636 Her	Lb		M4 111–111a	-0.04	0.16	18	-0.02	0.67	N:
$16473 + 5753 \dots$	AH Dra	SRb	158.00	M 7	-0.87	0.50	22	0.19	1.38	SE6:
$16496 + 1501 \dots$	S Her	Μ	307.28	M4,S–7.5,Se	-0.21	0.37	17	0.06	1.07	N:
16520-4501	RS Sco	Μ	319.91	M5e-9	-1.71	0.67		0.27	1.11	SE3
16521 - 2153	SY Oph	SRb	132.00	M5	-0.99	0.85	42	0.40	1.11	SE3
16534 - 3030	RR Sco	M	281.45	M6 II_IIIe_9	-2.06	0.49	15	0.21	1.06	SE3t
$10004 - 3000 \dots$	DT See	M	440.04	S72(M6 M7c)	1.00	0.47	22	0.21	1.00	SE3
17001-3031	KI SCO		449.04	S7,2(MI0-M17e)	-1.88	0.01	22	0.37	1.10	SES
$1/043 - 3145 \dots$	IU Sco	M	3/3.04	M/IIe-9	-0.17	0.87	23	0.39	1.26	SES:
$17048 - 1601 \dots$	R Oph	M	306.50	M4–6e	-0.91	0.43	16	0.15	1.05	SE3:
$17079 - 7405 \dots$	W Aps	Lb	•••	M6	-0.58	0.93	21	0.44	1.13	SE3t
$17081 + 6422 \dots$	TV Dra	Lb		M8p(S)	-0.82	0.64	15	0.20	0.92	SE1t
$17086 + 2739 \dots$	CX Her	SRb	114.00	M7	-0.04	0.61	15	0.23	1.18	SE4:
17115-3322	RW Sco	М	388 45	M5e	-1.69	0.95	27	0.82	1 37	SE6
17123 ± 1107	V438 Onh	SPh	160 00	M0_7e	_0.84	0.65	15	0.12	0.00	SE1+
17102 0100	V1600 0-1-	J L	109.90	M0-/C	- 0.04	0.05	15	0.10	1 1 2	SEIL
$1/123 - 2122 \dots$	v 1099 Opn				-0.03	0.77	15	0.23	1.12	SES:
1/139+0446	UY Oph	M	332.00	M / III	-0.71	0.57	27	0.99	1.45	SE6:
$17141 - 1737 \dots$	V1769 Oph	Μ	•••	M8–10	-0.46	0.74	25	0.81	1.36	SE6
$17236 + 1657 \dots$	V640 Her	Lb		M4 IIIab	-0.07	0.09	17	0.00	0.00	N:
$17296 + 3231 \dots$	KT Her	Μ	381.00	M6e	-0.04	0.66	28	1.05	1.45	SE6
17334+1537	MW Her	М	449.00	M8-9	-1.84	1.11	29	1.17	1.43	SE6
173/3 + 1052	V700 Oph	M	370.00	M5 IIIe	0.31	0.66	25	0.70	1 47	SE7.+
17343 ± 1032	TV Dre	IVI I 1-	370.00		-0.31	0.00	20	0.70	1.47	SE7.t
1/301+3/40	TY Dra			M15-8	-0.92	1.10	28	0.94	1.59	SEOL
1/38/-4343	RU Sco	M	370.75	M4/6-/ II-IIIe	-0.90	0.44	16	0.17	0.89	SEI
$17388 - 1645 \dots$	BG Oph	Μ	342.50	M9	-0.71	0.95	26	0.70	1.37	SE6
17398-4344	TV Sco	SRb	200.00	Me	-0.69	0.83	41	0.51	1.05	SE3
17445-4414	OX Sco	Μ	360.00	Me	-0.07	0.52	14	0.38	1.05	SE3:
17468-2900	V758 Sor	Lb		M2	-0.59	0.97		1.03	1 36	SE6
17508 2/10	RN Sec	M	616.00	M6	0.55	0.00	22	0.51	1.50	SE4
17512 0212		1VI T 1-	010.00	1V10 M5	-0.74	1.20	22	0.01	1.1/	SE4t
1/313-2313	v / /4 Sgr		106.00		-2.19	1.20	29	2.00	1.41	SE0
1/331-494/	w Ara	SKD	126.00	MD III	-0.10	0.83	15	0.28	0.95	SEI:t
$1/538 - 3728 \dots$	V438 Sco	Μ	392.00	M3e	-0.69	0.87	24	0.54	1.33	SE5
17540-1919	VV Sgr	Μ	401.50	M3-8e	-1.18	0.45	28	0.87	1.46	SE7
17541 + 1110	RT Oph	Μ	426.34	M7e(C)	-0.80	0.71	22	0.63	1.09	SE3t
17553 + 4521	OP Her	SRb	120.50	M5 IIb-IIIa(S)	-0.70	0.31	17	0.01	0.44	N
17579 ± 2335	WY Her	M	376.00	M5_7e	_0.00	0.95	20	1 00	1.62	SE8
12004 2250	V1051 S	141	510.00	M0	-0.00	0.95	22	0.40	1.02	SE0
10004-2239	v 1931 Sgr	11/1	510.00	1019	-0.30	0.03	23	0.49	1.19	SE4

TABLE 4—Continued

			Period							
PSC	Name	Variability	(d)	Spectral Type	Г127	Г12] — Г25]	LRS	DEC	F = /F	Dust
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(0)	(10)	(11)
(1)	(2)	(3)	(4)	(3)	(0)	(\prime)	(0)	(9)	(10)	(11)
10010 2002	V1004 C	M		105	1 72	0.07	20	0.07	1.40	0127
$18018 - 2802 \dots$	V1804 Sgr	M:	•••	M9.5	-1.73	0.96	28	0.97	1.48	SE/
$18125 - 7741 \dots$	BR Oct	Lb:	•••	M4–6	-0.51	0.85	23	0.49	1.32	SE5
18142-3646	n Sgr	Lb:		M3.5 III	-2.20	-0.00	18	-0.01	1.80	Ν
18157 ± 1757	IO Her	SRb		M4	-0.89	0.33	17	0.08	1 35	SE6.
$10107 + 1757 \dots$	V1014 Orth	J L	•••	N1-	-0.09	0.55	27	0.00	1.55	SEC.
$18183 + 0554 \dots$	v1014 Opn	Lb	•••	Mbe	0.00	0.93	27	0.91	1.48	SE/:
$18186 + 3143 \dots$	TU Lyr	Lb		M6	-0.92	0.92	22	0.50	1.16	SE4t
18213 ± 0335	V2090 Oph	Lb:		M6:-9	-1.36	0.85	28	1.05	1.44	SE6
18222 + 2022	TWI	20. M	276 71	MG	0.55	0.66	41	0.48	0.02	SE1.+
18222 + 3933		IVI	370.71		-0.55	0.00	41	0.40	0.93	SEL.
$18238 - 2542 \dots$	HO Sgr	Μ	437.00	M10	-1.00	0.61	28	1.12	1.41	SE6
$18243 + 0352 \dots$	V988 Oph	SRb		M7e	-1.11	0.80	26	0.67	1.57	SE8t
18246-3321	RV Sar	м	315.85	M4e_9	_0.02	0.43	16	0.19	0.84	SE1.
$10240 - 3321 \dots$	N Sgi	CD1	125.00	N1+0-5	-0.02	0.43	15	0.17	0.04	OD1
$18247 + 0729 \dots$	v 585 Opn	SKD	135.00	M5	-0.11	0.84	15	0.29	0.93	SEI:
$18296 - 0957 \dots$	VW Sct	Μ	234.00	M4 –7	0.00	0.55		0.11	1.55	P :
18309-6955	RT Pav	SRb		M4/5 III	-0.50	0.95	24	0.60	1.38	SE6:t
18347 - 0241	CZ Ser	Lh		M6 5	-0.49	1 12	16	0.18	1 07	SE3.
18240 + 1022	V1111 Orb	M	•••	MATTE O	2.51	0.67	26	0.10	1.07	CE5
$18349 \pm 1025 \dots$	VIIII Opn	IVI		M14 111-9	- 5.51	0.07	20	0.92	1.50	SES
$18359 + 0847 \dots$	X Oph	Μ	328.85	M5–9e	-2.90	0.44	15	0.24	0.94	SE1
18396-4549	RW Tel	SRb	127.35	M4–6II–IIIe	-0.10	0.69	16	0.16	1.00	SE2:
18399 - 1920	V3879 Sor	SRb		M52 III	-117	0.18	18	-0.04	1 50	N
10401 + 2954	FLL	CD1	146.00	M15.2 III	1.17	0.10	41	0.04	1.00	CE24
$18401 + 2854 \dots$	FILyr	SKD	140.00	IVI.	-1.30	0.98	41	0.62	1.00	SE2l
$18406 - 4324 \dots$	V388 CrA	M:	•••	Me	-0.75	0.76	29	1.32	1.54	SE7
$18409 + 1220 \dots$	KX Her	Μ	495.00	M8e	-1.21	0.99	28	1.26	1.37	SE6
18429-1721	V3952 Sar	M٠		M9	_0.90	1.03	29	1 57	1 47	SE7
10120 1721	DW T	NT.	502 75	M7a	0.20	1 20	27	1.57	1 40	SEA
10430 + 4334	KW LYF	IVI	303.73		-0.90	1.29	21	0.94	1.42	SE0
$18494 + 1209 \dots$	LO Her	Μ	471.00	M8 III	-0.24	0.90	26	1.16	1.24	SE4:
18501-2132	V2059 Sgr	Μ	405.00	M8	-0.91	0.93	23	0.56	1.19	SE4
18520 - 1635	UX Sor	SRb	100.00	Mb	-134	0.90	24	0.45	1 53	SF7
$10520 - 1055 \dots$	DWG	SRU CD1	116.00	N10	-1.54	0.70	17	0.45	1.55	OE1
$18537 - 1035 \dots$	RW SCI	SKD	116.70	M5	-0.68	0.42	17	0.07	0.88	SEI:
$18537 + 4352 \dots$	R Lyr	SRb	•••	M5 III	-2.79	0.12		0.02	0.69	Ν
18560-2954	V3953 Sgr	M:		M9	- 3.39	0.84	27	1.00	1.38	SE6
10007 2247	SUSar	SPh		M6 III	1 50	0.60	16	0.21	1 1 2	SE/t
19007 - 2247		SKU			-1.59	0.09	10	0.21	1.10	SE4L
$19039 + 0809 \dots$	R Aql	M	284.20	M5-9e	-2.88	1.02	23	0.36	1.28	SES
$19042 - 4858 \dots$	U Tel	Μ	445.00	M7e	-2.15	1.03	29	1.31	1.44	SE6
19045 ± 0704	V844 Ag1	SRa	369.00	M5–7en	-0.50	0.40	16	0.14	1.03	SE2
10047 1706	FO Sar	M	434.00	M8e	1 10	0.66	11	0.45	0.06	SE2
19047 - 1700			434.00		-1.19	0.00	41	0.45	0.90	SE2
$19055 + 0613 \dots$	V34/ Aql	Lb	•••	M6-8	-1.37	0.57	15	0.24	0.92	SEIt
$19059 - 2219 \dots$	V3880 Sgr	Μ	510.00	M8:	-2.53	1.22	28	1.20	1.30	SE5
19093-3256	V342 Sor	М	372.00	M9	-263	1 11	28	115	1 38	SE6
10008 + 6601	\$7 Dro	Th	272.00	M5	0.42	1.02	22	0.25	1 20	SE5
19098 + 0001	SZ DIa			MI3	-0.42	1.02	22	0.55	1.29	SEJ
$19118 + 4653 \dots$	SS Lyr	Μ	346.33	M5 IIIe	-0.28	0.64	14	0.40	1.04	SE2:
19143-5032	V Tel	SRb	125.00	M6/8	-1.48	0.97	14	0.46	1.04	SE2t
19152 - 3640	V924 Sor	М	285.00	Me	-0.58	1 04	29	1.06	1 49	SE7t
10167 2101	7 Sar	M	450.41	$M_{A2} O(S_2)$	0.10	0.69	22	0.21	1 10	SE2.
1910/-2101	Z Sgr	IVI A D I	430.41	M4e-9(Se)	-0.10	0.08	22	0.51	1.10	SES.
$19194 + 1734 \dots$	T Sge	SRb	165.50	M4-6.5	-1.74	0.74	15	0.36	1.05	SE3t
$19243 + 7135 \dots$	YZ Dra	Μ	347.60	M8e	-0.58	0.69	24	0.63	1.29	SE5t
19267 ± 0345	V858 Ag1	Lb		M4–5	-0.50	1.11	26	0.93	1.35	SE6
10287 4602	AF Cya	SPh		M5e 7	1 10	0.68	16	0.20	1.06	SE3t
19287 + 4002	AF Cyg	SKU		NIJE-/	-1.10	0.08	10	0.20	1.00	SESU
$19296 + 4331 \dots$	UV Cyg	SKb	135.50	M6	-1.41	0.94	25	1.08	1.25	SE4t
$19306 + 0455 \dots$	V1293 Aql	SRb		M5 III	-0.38	0.83	43	0.24	1.12	SE3:
19309-6252	Z Pav	SRb	135.50	M7 IIIe	-0.89	0.54	16	0.13	0.90	SE1
10312 + 0521	V450 Ag1	SPh		M5 III 8 III	0.81	0.00	17	0.00	1.83	N.
10204 ± 2022		SKU N	561.00		-0.01	0.07	17	-0.00	1.05	11. OF 2
19324 + 3033	нк Суд	IVI	301.00	101-010	-0.30	0.90	20	0.90	1.29	SES
$19328 + 0035 \dots$	V607 Aql	Μ	474.00	M9	-0.46	0.85	25	0.82	1.35	SE5:
19356+1136	RT Aal	М	327.11	M6-8e(S)	-1.05	0.75	24	0.56	1.29	SE5
10360 2823	BG Cyg	M	288.00	M7 8e	0.74	0.50	15	0.26	0.07	SE2t
$19309 + 2023 \dots$	BUCyg		200.00	NI /00	-0.74	0.50	15	0.20	0.97	SE2t
$19384 + 4346 \dots$	V462 Cyg	M	366.68	M/e	-0.11	0.63	14	0.35	0.62	SEI:
$19409 + 5520 \dots$	V1351 Cyg	Lb		M5 IIIa	-0.32	0.17	18	-0.02	2.10	Ν
19440-4118	V3960 Sgr	Lb		M5/7	-0.13	0.82	22	0.27	1.15	SE3:
19451 ± 1824	δSae	LP.		M25 II_III + BOV	_1 30	0.06	18	_0.03	1 57	N
19431 + 1624		LU.	•••	M2.3 H - H + B	-1.59	0.00	10	-0.03	1.57	
19503+2219	INS VUI	LD:		IVI DI II	-2.26	0.80	24	0.61	1.55	SESt
19510-5919	S Pav	SRa	380.86	M7 IIe–8 III	-3.12	0.58	14	0.32	0.97	SE2t
19528-2919	RR Sgr	Μ	336.33	M4–9e	-1.75	0.51	23	0.34	1.25	SE4
19536 + 3237	V468 Cym	M	485.80	M7	_1 39	1.05	28	1.04	1 / 3	SEA
17330 ± 3237	1700 Cyg	11/1	103.00		-1.30	1.05	20	1.04	1.43	SE0
19550-0201	KK Aql	M	394.78	M6e-9	-2.67	0.70	21	0.85	1.50	SE7
19564-0801	RS Aql	Μ	410.12	M5e-8	-0.12	0.47	14	0.47	1.05	SE2:
19575-5930	NU Pav	SRb		M6 III	-2.28	0.07	18	0.00	0.29	Ν
19577 + 1722	VZ Sge	Th		M4 IIIa	_0.62	0.03	19	_0.04	1 10	N
$1/3/7 \pm 1/22$	VL SEC		•••		-0.02	0.05	10	-0.04	1.10	11.
19586+3637	v1511 Cyg	Lb	•••	M10 III	-1.25	1.38	29	1.25	1.39	SE6
19595-2751	V3872 Sgr	Lb	•••	M4 III	-1.34	0.16	17	0.01	0.00	Ν
20000+4954	Z Cvg	М	263.69	M5–9e	-1.14	1.35	69	1.09	1.58	SE8
20010 ± 3011	V718 Cya	SPh	264.00	M0-5	_0.78	1 10	27	1 59	1 22	SE4+
$20010 \pm 3011 \dots$	V710 Cyg	SKU I 1	204.00	1VIU-J	-0.78	1.17	21	1.30	1.23	5E4t
20015+3019	v / 19 Cyg	LD	•••	1 v14e	- 1.90	1.19	29	2.17	1.26	SE2

TABLE 4—Continued

			Period							
PSC	Name	Variability	(d)	Spectral Type	Г127	[12] — [25]	LRS	D.E.C.	F_{11}/F_{12}	Dust
(1)	(2)	(3)	(4)	(5)	[6]	(7)	(8)	(9)	$(10)^{-12}$	(11)
(1)	(-)	(5)	(.)	(0)	(0)	(/)	(0)	(-)	(10)	(11)
20038 - 2722	V1943 Sor	Lb		M8	-2.86	0.53	15	0.20	1.00	SE2t
20042 ± 1040	V466 Agl	M	428.00	M5	_0.37	0.47	28	1.08	1 30	SE6.
$20042 + 1040 \dots$	SV A al	M	255.00	M5 70	-0.57	0.47	20	1.00	1.59	SEC.
20047 + 1248	SY Aqi		355.92	M3-7e	-0.90	0.81	28	0.98	1.50	SE/L
$20062 + 5650 \dots$	VSSS Cyg	Lb	•••	Mo	-0.30	0.90		0.82	1.01	SE2:
$20075 - 6005 \dots$	X Pav	SRb	199.19	Mc	-3.23	0.79	22	0.63	1.15	SE3t
$20077 - 0625 \dots$	V1300 Aq1	M :	680.00	M :	-4.12	1.38	23	0.79	0.99	SB
20079-0146	V584 Aal	Lb		M8	-0.82	0.76	21	0.31	1.13	SE3t
20109 ± 3205	V557 Cvg	M	382.00	M7_9	-0.75	1.00	29	1 11	1 51	SE7
$20109 + 3203 \dots$	AC Cyg	SPL	142.00	M7	1 27	0.80	24	0.55	1.51	SE4
$20113 + 4917 \dots$		SKU	142.00		-1.57	0.69	15	0.55	1.41	SEOU
20125+0856	K Del	M	285.07	MIS-6e	-0.10	0.52	15	0.29	1.12	SES:
$20135 + 3055 \dots$	SX Cyg	M	411.02	M/e	-0.17	0.71	21	0.38	1.01	SE2:
20144-3916	RT Sgr	Μ	306.46	M5–7e	-0.42	0.43	16	0.25	1.09	SE3:
$20165 + 3413 \dots$	AU Cyg	Μ	435.31	M6–7e	-1.40	0.94	27	0.99	1.41	SE6
20165 - 5051	Y Tel	Lb		M7 III	-0.89	0.73	16	0.18	0.98	SE2
20198 ± 4017	V405 Cvg	Lb		M6 5	-0.34	0.75	21	0.22	1 23	SF4.t
20108 6843	AC Dro	L b		M5 IIIab	0.71	0.11	18	0.01	0.00	N
$20170 + 0045 \dots$	AV Vul	LU		M5 9	-0.71	1.01	22	0.01	1.00	CEA.
$20239 + 2004 \dots$				MJ-8	-0.00	1.01	15	0.58	1.25	SE4:
$20248 - 2825 \dots$	I Mic	SKb	347.00	M6e	-3.10	0.53	15	0.20	0.94	SEIt
$20248 + 7505 \dots$	UU Dra	SRb	120.00	M8 IIIe	-1.67	1.14	23	0.74	1.20	SE4t
$20255 + 4054 \dots$	KZ Cyg	Μ	405.95	M8e	-0.39	0.68	21	0.35	1.11	SE3
20259-4035	U Mic	Μ	334.29	M5–7e	-0.15	0.87	24	0.51	1.49	SE7
20268 + 1606	RS Del	SRb:		M5-8	-0.55	0.51	17	0.11	1.02	SE2
20270 ± 0943	CT Del	Lb		M7	-0.05	0.65	23	0.23	1 56	SF8.
20276 0455		Lb	•••	M6	0.03	1.06	25	0.55	1.50	SE8.
20270-0455					-0.47	1.00		0.55	1.00	SEO.
20296-2151	KU Cap	M	347.37	M9e	-0.14	1.09	28	0.95	1.00	SEð
$20297 + 3221 \dots$	AI Cyg	SRb	197.30	M6 –7	-0.15	0.97	23	0.41	1.28	SE5:
$20305 + 6246 \dots$	BF Cep	Μ	430.14	M7	-0.06	0.54	16	0.19	0.89	SE1:
$20356 + 1805 \dots$	EU Del	SRb		M6.4 III	-1.98	0.17	17	0.03	0.22	Ν
$20392 + 1141 \dots$	Y Del	М	468.40	M8e	-0.29	1.00	23	0.57	1.18	SE4t
20417 - 0500	Y Aar	М	382 34	M6 5e-9	-0.44	0.64	23	0.52	1 21	SF4
20425 ± 3218	V570 Cya	M	500.00	M5 7	0.62	1.03	28	1 14	1.21	SE5
$20423 \pm 3210 \dots$	U Dal	SDP	110.00		-0.02	1.05	20	0.40	1.34	SE5
$20431 + 1/34 \dots$	U Del	SKU	110.00		-1.75	0.91	23	0.40	1.29	SEJU
$20438 - 0415 \dots$	w Aqr	M	381.10	M6-8e	-0.89	0.55	22	0.34	1.14	SE3
$20443 + 0215 \dots$	V Aqr	SRa	244.00	M6e	-0.97	0.43		0.18	0.98	SE2:
$20451 - 0512 \dots$	EN Aqr	Lb		M3 III	-0.82	0.04	18	-0.02	0.00	Ν
$20466 + 2248 \dots$	FI Vul	Lb		M3	-0.82	0.37	16	0.11	1.26	SE5:
$20469 + 3139 \dots$	AM Cvg	М	370.60	M6e	-0.28	0.63		0.33	1.08	SE3:
20502 + 4709	RZ Cvg	SRa	275.69	M7.0-8.2ea	-1.42	0.99	23	0.78	1.12	SE3t
20502 ± 2658	IIW Vul	M	365 50	M7	0.00	0.62	14	0.44	1.01	SE2.
$20503 \pm 20503 \dots$		M	457.00	MOo	1.01	0.02	12	0.44	1.01	SE2.
$20507 + 2510 \dots$		IVI T 1	437.00	N196	-1.01	0.75	13	0.00	1.00	SE2t
20511+2523	IN VUI	Lb		M/	-0.21	0.83	14	0.30	0.99	SE2:t
$20526 - 5431 \dots$	S Ind	Μ	399.95	M6–8e II–Ib:	-0.78	0.99	22	0.29	1.25	SE5
$20529 + 3013 \dots$	UX Cyg	Μ	565.00	M4–6.5e	-1.96	0.99	29	1.41	1.56	SE8t
$20581 + 5841 \dots$	UW Cep	Μ		M8	-0.04	0.80	22	0.57	1.13	SE3:
$21012 + 2347 \dots$	DY Vul	Lb		M3-6	-0.83	0.19	18	-0.01	1.28	Ν
21044 - 1637	RS Cap	SRb	340.00	M4	-2.27	0.80	27	0.71	1.53	SE7t
21088 ± 6817	T Cen	M	388 14	M5 5_8 8e	-3.56	0.43	15	0.22	0.94	SE1
21100 1425	DV Agr	Th.	500.14	M4	0.87	0.45	24	0.22	1 54	SE7
21100-1435		LU.	201.15	N14	-0.87	0.07	24	0.31	1.34	SE7
21200-4034	V MIC	IVI	301.13	1V15-be	-1.5/	1.08	29	1.12	1.40	SE/
$21208 + 7737 \dots$	GH Cep	Μ	331.00	M3	-1.00	0.77	26	0.75	1.40	SE6
$21243 - 6943 \dots$	SX Pav	SRb		M5–7 III	-1.49	0.11	18	-0.00	0.00	Ν
$21286 + 1055 \dots$	UU Peg	Μ	456.50	M7e	-1.89	1.11	26	0.93	1.32	SE5
$21341 + 4508 \dots$	W Cvg	SRb	131.10	M4–6e(Tc:) III	-2.73	0.59	16	0.13	1.03	SE2
21389 ± 5405	RUCyg	SRa	233.43	M6-8e	-2.07	0.92	24	0.62	1 32	SE5t
$21303 + 3403 \dots$	V1330 Cvg	SPh	255.45	M3 6	0.46	0.52	24	0.02	0.83	N.
21402 ± 4552	AM Com	M	222.00	M9	-0.40	0.10	14	0.01	0.05	IN.
21414 + 7009	AM Cep	M	333.00		-0.30	0.81	14	0.48	0.99	SE2
$21426 + 1228 \dots$	IU Peg	M	321.60	M /-8e	-0.81	0.69	15	0.32	0.99	SE2
$21439 - 0226 \dots$	EP Aqr	SRb		M8 III	-3.38	0.81	23	0.52	1.28	SE5t
$21453 - 4708 \dots$	R Gru	Μ	331.96	M5–7 II–IIIe	-0.25	0.62	15	0.27	0.86	SE1:
$21456 + 6422 \dots$	RT Cep	Μ	621.55	M6	-1.98	1.04	28	1.27	1.33	SE5
21563 + 5630	PR Cep	Lb:		M8	-1.19	1.03	26	0.89	1.28	SE5
21565 ± 4132	DL Lac	M	375.00	Me	-0.72	1.04		1 56	1.59	SE8
22000 ± 5643	VV Can	M	526.08	M6	_0.40	0.63	22	0.60	1 1 9	SE4
22000 - 30-3	TWD	CDL	020.00	M6 °	- 0.40	0.05	23	0.00	1.10	SE4
$22017 + 2800 \dots$	I w reg	SKD	929.30	$100-\delta$	-2.42	0.97	20	0.83	1.43	SEOU
22023+6252	мо Сер	LD:		M5 III	-0.58	0.07	17	0.04	0.70	N
$22035 + 3506 \dots$	SV Peg	SKb	144.60	M7	-2.43	0.92	21	0.49	1.10	SE3t
$22097 + 5647 \dots$	CU Cep	SRb	700.00	M4–6	-2.14	1.12	29	1.64	1.41	SE6t
22142-8454	BW Oct	Lb:		M7 III	-1.76	0.82	23	0.41	1.26	SE5t
22145-8041	ε Oct	SRb		M6 III	-1.81	0.12		0.00	0.00	Ν
22230-4841	S Gru	Μ	401.51	M5–8IIIe	-1.64	0.69	22	0.37	1.19	SE4
22233 + 3013	RV Peg	M	396.80	M6e	-1.60	0.97	29	1 76	1.51	SE7
222.67 - 4400	δGru	Lb		M4.5 IIIa	-1 47	0.07	18	_0.01	0.00	Ň
	~ 014	L 0.	•••	111 I.J 1110	1.7/	0.07	10	0.01	0.00	

SLOAN & PRICE

TABLE 4—Continued

PSC (1)	Name (2)	Variability (3)	Period (d) (4)	Spectral Type (5)	[12] (6)	[12] — [25] (7)	LRS (8)	D.E.C. (9)	F_{11}/F_{12} (10)	Dust (11)
22272+5435	V354 Lac	Lb		M0 III:	-1.04	3.09	72	1.81	0.49	Н
$22280 + 1250 \dots$	GM Peg	Lb		M8	-0.32	0.54	15	0.27	1.02	SE2:
$22296 - 6214 \dots$	v Tuc	Lb:		M4 III	-0.82	0.06	18	-0.05	1.32	Ν
$22306 + 5510 \dots$	NY Lac	SRb	150.00	M7.5–8	-0.60	0.86	21	0.41	1.07	SE3
$22315 + 2418 \dots$	SS Peg	Μ	424.80	M6-7e	-1.20	0.35	14	0.30	0.95	SE2:t
$22359 - 1417 \dots$	AB Aqr	Lb		M7	-0.35	0.85	15	0.29	0.95	SE2t
$22466 + 2705 \dots$	ST Peg	SRb	136.20	M6e	-0.51	0.81		0.32	1.31	SE5:
$22476 + 4047 \dots$	RX Lac	SRb	650.00	M7.5Se	-1.36	0.36	16	0.12	0.85	SE1
$22489 + 6359 \dots$	VX Cep	Μ	532.30	M8	-0.54	0.76	22	0.40	1.05	SE3:
$22525 - 2952 \dots$	V PsA	SRb	148.00	Mb	-2.35	0.69	22	0.35	1.24	SE4t
$22586 + 4614 \dots$	BC And	Lb		M7 III	-0.02	0.83	•••	0.19	1.08	SE3:
$22594 + 6117 \dots$	V352 Cep	Lb		M7:	-0.16	1.13	25	0.35	1.91	SE8:t
$23000 + 5932 \dots$	AS Cep	Lb		M3	-0.73	1.16	28	1.70	1.34	SE5t
$23013 + 2748 \dots$	β Peg	Lb		M2.5 II–IIIe	-2.84	0.06	18	-0.01	1.08	Ν
$23013 + 3735 \dots$	CF And	Lb		M7	-1.46	0.93	•••	1.03	1.38	SE6t
$23041 + 1016 \dots$	R Peg	Μ	378.10	M6–9e	-2.03	0.57	22	0.41	1.18	SE4
$23063 - 3024 \dots$	Y Scl	SRb		M4	-1.49	0.62	•••	0.54	1.52	SE7
$23070 + 0824 \dots$	GZ Peg	SRa		M4S III	-1.14	0.05	18	-0.01	0.00	N:
$23093 + 4843 \dots$	ES And	Lb		M6	-0.11	0.89	15	0.29	1.01	SE2:
$23095 + 5925 \dots$	V Cas	Μ	228.83	M5-8.5e	-0.94	0.47	16	0.13	0.83	SE1
$23106 + 6340 \dots$	CK Cep	SRb	110.00	M7	-0.09	0.74	15	0.22	0.93	SE1:
23142-0759	χ Aqr	Lb		M3 III	-0.90	0.10	•••	0.00	0.00	Ν
$23142 + 1019 \dots$	EO Peg	Lb		M7	-0.38	0.11	17	0.06	0.76	N:
$23173 + 2600 \dots$	W Peg	Μ	345.50	M6-8e	-2.22	0.65		0.37	1.13	SE3
$23173 + 4823 \dots$	BE And	SRb		M5	-0.26	0.47	15	0.26	1.09	SE3:t
23180+0838	S Peg	Μ	319.22	M5-8.5e	-0.37	0.44		0.18	0.93	SE1:t
$23182 + 3920 \dots$	RY And	Μ	393.40	M8	-0.19	0.77	24	0.66	1.22	SE4:
$23201 - 1105 \dots$	SV Aqr	Lb		Mb	-0.57	0.79	15	0.28	1.03	SE2:
$23202 + 5901 \dots$	V398 Cas	Lb		M2	-0.77	0.55	22	0.34	1.15	SE4
$23212 + 3927 \dots$	BU And	Μ	382.15	M7e	-1.41	0.67	14	0.44	1.01	SE2
$23278 + 6000 \dots$	V582 Cas	SRa	300.00	M5	-1.39	1.24		1.33	1.32	SE5
$23284 + 5958 \dots$	V530 Cas	Lb		M3	-1.65	1.22	29	1.79	1.39	SE6
$23309 + 2213 \dots$	HW Peg	Lb:		M5 IIIa	-0.86	0.07	18	-0.02	1.12	N:
23365 + 5159	SV Cas	SRa	264.50	M6.5	-1.64	1.06	25	0.71	1.39	SE6
23412-1533	R Aqr	Μ	386.96	M5-8.5e + peC	-4.37	0.40		0.36	1.46	SE7
$23420 + 5618 \dots$	Z Cas	Μ	495.71	M7e	-0.97	0.97	41	0.46	0.93	SE1
$23425 + 4338 \dots$	EY And	Μ	360.00	M7–9	-1.02	1.25	26	0.95	1.35	SE5
$23439 + 5412 \dots$	RT Cas	SRa	399.80	M7	-0.36	0.65	15	0.30	0.90	SE1
23522-0010	XZ Psc	Lb		M5IIb	-0.50	0.08	18	-0.01	0.79	N:
$23528 + 4821 \dots$	RS And	SRa	136.00	M7–10	-1.59	0.70	22	0.37	1.30	SE5t
$23558 + 5106 \dots$	R Cas	Μ	430.46	M6-10e	-4.19	0.60	24	0.61	1.27	SE5t
23564-5651	S Phe	SRb	141.00	M3-6 IIIe	-1.13	0.80	02	0.51	1.98	SE8
23575+2536	Z Peg	Μ	334.80	M6-8.5e(Tc)	-0.70	0.62	15	0.25	0.89	SE1:
23594-0617	YY Psc	Lb:		M3 III	-1.22	-0.11	18	-0.04	0.70	Ν

siders the Mira variables and expands the comparison to supergiants and S stars, where differences in the distribution of dust types do occur.

3.1. The Light Curve of Mira Variables

Among Mira variables, the spectrum from oxygen-rich dust varies with the shape of the light curve (Vardya, de Jong, & Willems 1986). Mira variables with asymmetric light curves tend to show classic silicate emission while Mira variables with more symmetric light curves generally show the broad emission feature. The silicate dust sequence allows a more quantitative analysis of this relationship, as Figure 5 shows by plotting the asymmetry factor $(f = 100 \times \text{rise time/total period})$ as a function of corrected flux ratio F_{11}/F_{12} (which is the basis for the SE index in eq. [5]). A least-squares fit over the range SE1-7 (i.e., 0.85 $< F_{11}/F_{12} < 1.55$) gives $f = 62 - 16.5 \times F_{11}/F_{12}$ with a correlation coefficient of 0.58.

3.2. Supergiants

The supergiants are divided into two variability classes, SRc and Lc. The irregulars (Lc) pulsate too weakly for any

FIG. 5.—Relationship between the shape of the silicate feature (*horizontal axis*) and the asymmetry of the light curve for the Mira variables in our sample. Mira variables with symmetric light curves tend to show broad emission (SE1–3), while Mira variables with the most asymmetric light curves tend to have features classified as SE5–7 (structured and classic silicate profiles). The dashed line is a least-squares fit over the SE1–7 range.

 TABLE 5

 Infrared Spectral Classifications of the Supergiants

=

			Period							
PSC	Name	Variability	(d)	Spectral Type	[12]	[12]-[25]	LRS	D.E.C.	F_{11}/F_{12}	Dust
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
00102 2020	T Cat	SP.	158.00	M5 68 Ha	2.11	0.10	16	0.15	0.76	SE1+
$00192 - 2020 \dots 01507 \pm 5450$	YY Per	SRC	415.00	$M3-03$ He $M4$ Hb \pm b	-2.11 -1.00	0.19	26	0.15	0.70	SEIL SE7
01377 + 5437	RI Per	SRC	367.00	M3 5 Ib	-0.50	1 17	20	1 47	1.47	SE7
02185 + 5622	SU Per	SRC	533.00	M3.5 Jab	-0.50	1.06	25	0.81	1.40	SE5
02103 + 5652	RS Per	SRC	244 50	M4 Jab	-1.05	1.00	26	1.09	1 33	SE5t
$02192 + 5821 \dots$	S Per	SRc	822.00	M3 Iae–7	-2.70	1.15	26	1.53	1.20	SE4t
$02384 + 3418 \dots$	W Tri	SRc	108.00	M5 II	-0.45	0.80	23	0.40	1.26	SE5
02469 + 5646	W Per	SRc	485.00	M3 Ia–Iab–7	-1.26	1.41	28	1.68	1.30	SE5t
03030+5532	IO Per	Lc	•••	M3 Iab	-2.32	1.28	27	1.28	1.32	SE5t
03113 + 5441	V411 Per	SRc	467.00	M3.4 Ia	-0.25	1.22	14	0.58	1.14	SE3
03449+6522	BE Cam	Lc		M2 II	-1.31	0.15	18	-0.00	0.00	Ν
04020-1551	V Eri	SRc		M6 II	-2.65	0.94	22	0.67	1.08	SE3t
$05292 + 1833 \dots$	CE Tau	SRc	165.00	M2 Iab–Ib	-1.77	0.32	17	0.01	0.00	Ν
$05374 + 3153 \dots$	NO Aur	Lc		M2S Iab	-0.47	0.86	43	0.23	0.92	SE1
$05524 + 0723 \dots$	α Ori	SRc	128.14	M1–2 Ia–Ibe	-5.55	0.48	02	0.25	1.79	SE8
$05562 + 4556 \dots$	π Aur	Lc	•••	M3.5 II	-1.45	0.08	18	0.01	0.00	Ν
$06088 + 2152 \dots$	TV Gem	SRc	•••	K5.5–M1.3 Iab	-1.33	0.64	28	1.03	1.43	SE6
$06092 + 2255 \dots$	BU Gem	Lc	•••	M1–2 Ia–Iab	-1.10	1.02	23	0.67	1.23	SE4t
$06210 + 4918 \dots$	ψ Aur	Lc		K5-M0 lab-lb	-0.48	0.66	21	0.15	1.24	SE4
$06520 - 240 / \dots$	o CMa	LC	•••		-0.35	0.53	17	0.04	0.79	IN N
$00397 - 2731 \dots 07245 + 4605$	σCMa				-1.09	0.18		0.04	0.48	IN SEC
$07243 \pm 4003 \dots \dots$		Jo	110.00	MOS ID = III $MOS ID = ID + P2 V$	-1.59	0.80	19	0.29	1.55	SE0 N
$0/314 - 1424 \dots $	MZ Pup		•••	M2ep-1a0 + B2 - v M1 IIb	-0.00	0.12	10	-0.01	0.00	N
$08023 - 3231 \dots 08372 - 0924$	RV Hva	SRC	116.00	MI-IIO M5_II	-0.31 -1.08	0.31	24	0.05	1 39	SE6
00072 - 00240000000000000000000000000000000	RV IIya RS Cnc	SRC	120.00	M5-II M6e-Ib-II(S)	-3.07	0.66	27	0.40	1.55	SE6t
10056 - 5300	CM Vel	SRC.	780.00	M0-5(II)	-2.94	0.00	29	2 4 5	1.44	SE7t
10154 - 6104	V337 Car	Lc	/00.00	K3 II	-0.57	-0.03	18	-0.05	1.40	N
$10186 - 6012 \dots$	EV Car	SRc	347.00	M4.5 Ia	-2.43	1.04	29	1.94	1.42	SE6
10226-5956	CK Car	SRc	525.00	M3.5 Iab	-1.51	1.04	29	2.02	1.43	SE6
10428-5909	RT Car	Lc		M2 Ia-0	-1.20	1.72		3.41	1.30	H(SE)
10484-5943	IX Car	SRc	400.00	M2 Iab	-0.66	1.21	27	1.07	1.40	SÈ6
10520-6049	CL Car	SRc	513.00	M5 Iab	-1.02	0.75	26	0.90	1.30	SE5
13141-6119	V396 Cen	Lc:		M4 Ia–Iab–6	-0.69	1.24	25	0.68	1.35	SE5
16262-2619A	α Sco	Lc	•••	M1.5 Iab–Ib	-5.13	-0.11		0.06	2.73	SE8
$17080 - 3215 \dots$	AH Sco	SRc	713.60	M4e–5 Ia–Iab	-3.37	0.92	28	1.58	1.33	SE5t
$17123 + 1426 \dots$	α Her	SRc	•••	M5 Ib–II	-4.32	0.19	19	-0.04	0.93	Ν
$17488 - 2800 \dots$	KW Sgr	SRc	670.00	M0 I–4Ia	-2.37	0.99	29	1.55	1.38	SE6
17566-3555	V540 Sgr	Lc		M5 lab	-0.76	1.04	29	1.33	1.43	SE6
$18050 - 2213 \dots$	VX Sgr	SRC	/32.00	M4 la-luela	-4.96	0.82	26	0.73	1.41	SE6
$18248 - 1229 \dots$	UY Set	SKC	/40.00	M4 Ia-lab	-2.41	1.25		1.04	1.21	SE4
$18304 + 393 / \dots$	AT Lyr		•••	M4-5 10-11 M4 11	-1.0/	0.14	1/	0.05	1.00	SE2
$18527 + 3030 \dots 18550 + 0022$		SKC.	•••	M0 Jab 21a Jab	-1.65	0.20	10	0.01	0.98	IN SE5
$10330 \pm 0023 \dots 10032$		SPC	340.60	MO Iab-21a-1ab M3 Jab	-0.07	1.00	24	2.36	1.20	SEJ SE7
$19032 - 4002 \dots 19480 \pm 2447$	NR Vul	Lc	547.00	MJ Iao	-1.37 -1.44	0.92	26	1 21	1.52	SE4
20193 ± 3527	V1749 Cvo	LC	•••	M3 Jab	-0.42	1 11	23	0.65	1.24	SE3t
20194 + 3646	BI Cvg	Lc		M4 Jab	-2.68	1.22	29	1.87	1.44	SE6
20197 + 3722	BC Cvg	SRc	700.00	M3.5 Ia	-2.94	2.71		1.44	1.30	H(SE)
20241 + 3811	KY Cyg	Lc		M3.5 Ia	-3.14	1.08		1.62	1.26	SE5
20270+3948	RW Cyg	SRc	550.00	M2–4 Ia–Iab	-2.56	1.07		1.36	1.36	SE6
$21245 + 6221 \dots$	SW Cep	SRc		M3.5 Ia–Iab	-1.10	1.25	29	1.91	1.42	SE6t
$21417 + 0938 \dots$	ε Peg	Lc		K2 Ib	-1.41	0.01	18	-0.01	0.00	Ν
21419 + 5832	μ Cep	SRc	730.00	M2e Ia	-4.15	0.74	28	0.74	1.60	SE8
$21552 + 6323 \dots$	VV Cep	EA/GS + SRc	430.00	M2p Ia–Iab+B8:e V	-0.99	0.27	17	-0.00	0.00	Ν
$22282 + 5644 \dots$	ST Cep	Lc		M2 Ia–Iab	-0.72	1.10	28	1.29	1.49	SE7
$22317 + 5838 \dots$	V354 Cep	Lc	•••	M2.7 Iab	-1.10	1.00	29	1.75	1.39	SE6
22345 + 5809	W Cep	SRc		K0p-M2ep Ia + B0/B1	-1.58	1.20	29	1.19	1.50	SE7
22396-4708	β Gru	Lc:		M3–5 II–III	-3.81	0.06		0.01	1.04	N
22456 + 5453	U Lac	SRC		M4ep lab $+$ b	-1.60	0.80	27	0.81	1.45	SE7
$22525 + 6033 \dots$	MY Cep	SRC		M/-7.51	-1.49	1.35	24	1.14	1.11	SE3
23092 + 5236	SS And	SKC	152.50	MO II M2 Ia Jah	-0.50	0.66	16	0.19	0.76	SEI
23201 + 3/42	V 358 Cas		025.00	IVID 18-180 M2 4 Ic	-1.18	1.30	29	2.40	1.42	SEOU
23410 ± 0130	rz Cas	SRC	925.00	1V12-4 la M2 Lab	- 2.80	1.03	20	1.93	1.3/	SEO SE7
23304 + 0043	12 Cas		•••	1V12 1au	-1.00	1.10	29	1.55	1.40	SE/

 TABLE 6

 Infrared Spectral Classifications of the Optical S Stars

PSC (1)	Name (2)	Variability (3)	Period (d) (4)	Spectral Type (5)	[12] (6)	[12] – [25] (7)	LRS (8)	D.E.C. (9)	F_{11}/F_{12} (10)	Dust (11)
00001+4826	IW Cas	М	396.38	\$4.5,9e	-0.59	0.79	21	0.39	1.08	SE3
$00213 + 3817 \dots$	R And	Μ	409.33	S3,5-8,8e(M7e)	-2.66	0.83		0.70	1.09	SE3
$00428 + 6854 \dots$	V524 Cas	Μ		S	-1.00	1.20	27	1.17	1.26	SE5
$01159 + 7220 \dots$	S Cas	Μ	612.43	S3,4–5,8e	-2.71	0.95	22	0.53	1.07	SE3
$03377 + 6303 \dots$	BD Cam	Lb		S5,3(M4 III)	-0.40	0.11	18	-0.03	1.04	Ν
$04352 + 6602 \dots$	T Cam	Μ	373.20	S4,7–8.5,8e	-0.41	0.21	17	0.03	0.57	Ν
$10436 - 3459 \dots$	Z Ant	SR	103.80	S5,4	-0.08	0.73	42	0.55	0.85	SE1
13136-4426	UY Cen	SR	114.60	SC	-0.72	0.49	43	0.14	1.07	SiC
$13477 - 6009 \dots$	VX Cen	SR	307.80	S8,5e(M4–8II–III)	-0.54	0.27	17	0.06	0.68	SE1:
$16334 - 3107 \dots$	ST Sco	SRa	194.50	S4,7:(R5)	-0.66	0.63	16	0.21	0.88	SE1
$17206 - 2826 \dots$	V521 Oph	SRb	320.00	S5,4(M4)	-0.33	0.28	17	0.02	0.00	Ν
$17544 - 2951 \dots$	V1717 Sgr	SRa	440.00	Ce:(K5)	-1.03	0.91	41	0.27	0.97	SE2
$18586 - 1249 \dots$	ST Sgr	Μ	395.12	C4,3–S9,5e	-0.67	0.48	21	0.24	1.12	SE3
$19111 + 2555 \dots$	S Lyr	Μ	438.40	SCe	-0.43	0.76	41	0.33	1.01	SE2
$19126 - 0708 \dots$	W Aql	Μ	490.43	S3,9–6,9e	-4.36	0.63	22	0.37	1.10	SE3
19133-1703	T Sgr	Μ	394.66	S4.5,8–5.5,8e	-0.38	0.44		0.16	0.91	SE1
$19311 + 2332 \dots$	EP Vul	Lb		S6,5–8,7	-0.12	0.66	16	0.12	0.39	SiC
$19354 + 5005 \dots$	R Cyg	Μ	426.45	S2.5,9-6,9e(Tc)	-1.42	0.80	22	0.34	1.08	SE3
$19486 + 3247 \dots$	χ Cyg	Μ	408.05	S6,2–10,4e(MSe)	-4.44	0.15		0.28	1.07	SE3
$20026 + 3640 \dots$	AA Cyg	SRb	212.70	S7,5-7.5,6(MpTc)	-0.37	0.54	31	0.07	0.00	Ν
20120-4433	RZ Sgr	SRb	223.20	S4,4ep	-0.33	1.10	16	0.22	0.98	SE2
$21027 + 3704 \dots$	GR Cyg	Μ		S	-1.28	0.56		0.31	0.76	SiC
22196-4612	π Gru	SRb	150.00	S5,7e	-3.77	0.77	42	0.31	1.00	SE2
$23554 + 5612 \dots$	WY Cas	Μ	476.56	S6,5pe	-0.64	0.93	42	0.41	1.07	SE3

characteristic period to emerge and are analogous to Lb variables on the AGB. The SRc variables pulsate with enough regularity for a period to be identified; they probably pulsate in an overtone mode (or two), while Lc variables pulsate in a series of higher overtones. Hoffmeister et al. (1984) point out that most or all of the red supergiants not yet identified as variables are probably low-amplitude irregulars.

The percentage of naked stars reflects the strength of the pulsation mode (Table 3). About one-third of the irregulars are naked, but only 10% of the semiregulars are. This behavior parallels the decreasing percentage of naked AGB stars along the sequence $Lb \rightarrow SRb \rightarrow SRa \rightarrow Mira$ (Paper I).

Varying the assumed photospheric continuum will rarely change the SE classification by more than one index, but we have still tried to reduce systematic errors by modifying our assumed spectrum for the differing samples. Table 7 shows the corresponding effective temperatures (Lang 1992) and percentage of SiO absorption (at the resolution of the LRS) used to define the stellar photospheres of the different samples, based on the mean spectral types of M4 for SRc variables and M2 for Lc variables.

One SRc (α Her) and one Lc (α Sco) appear to have *no* SiO absorption in the large LRS beam. A ground-based

TABLE 7Properties of Photospheres

Subsample	Spectral Type	T _{eff} (K)	SiO Absorption (%)
AGB	M6 III	3240	15
S star	M6 III	3240	15
SRc	M4 I	2980	12
Lc	M2 I	3450	10

spectrum of α Her obtained with GLADYS at the Wyoming Infrared Observatory (WIRO) in 1993 (March 4 and June 27) shows an impressive 25% SiO absorption band from a smaller 2" beam (Fig. 6), supporting the likelihood that lowlevel extended emission in the larger LRS beam has filled in the absorption feature (M. Cohen, private communication). The GLADYS spectrum was obtained using standard techniques described by Sloan, Grasdalen, & LeVan (1993) and calibrated with α Boo as a standard, using the template spectrum from Walker & Cohen (1992). Fitting and removing an Engelke function with no SiO absorption from the LRS spectra reveals that α Her is naked and that α Sco is a classic SE source.

FIG. 6.—Three spectra of α Her from GLADYS (symbols with error bars), compared to the spectrum from the LRS (solid line), and a model spectrum (dotted line). The model is a 2800 K Engelke function, with 25% peak SiO absorption subtracted. Apparently, diffuse SiO molecular emission in the broad LRS beam has filled the photospheric absorption feature visible in the smaller GLADYS beam back in.

Variable	Total	SE Sources	$\langle SE \rangle$	$\langle F_{11}/F_{12} \rangle^{\rm a}$	$\langle D.E.C. \rangle^{b}$	<[12]−[25]>
Lb	119	67	4.6 ± 2.4	1.21 ± 0.24	0.62 ± 0.58	0.86 ± 0.24
SRb	157	126	4.3 ± 2.3	1.18 ± 0.23	0.38 ± 0.27	0.76 ± 0.20
SRa	29	28	4.4 ± 3.0	1.19 ± 0.30	0.51 ± 0.37	0.76 ± 0.28
Mira	241	232	4.6 ± 2.0	1.21 ± 0.21	0.61 ± 0.36	0.73 ± 0.22
Lc	27	17	5.4 ± 1.8	1.37 ± 0.38	1.02 ± 0.70	0.93 ± 0.39
SRc	38	33	5.9 ± 1.7	1.34 ± 0.20	1.11 ± 0.65	0.97 ± 0.29
MS	19	15	2.9 ± 1.9	1.08 ± 0.22	0.42 ± 0.57	0.67 ± 0.22
S	24	17	2.4 + 1.1	1.01 + 0.13	0.39 + 0.25	0.73 + 0.28

TABLE 8PROPERTIES OF THE SUBSAMPLES

^a Corrected flux ratio.

^b Dust emission contrast.

Removing the stellar photosphere from the supergiant spectra reveals a distribution of SE classes significantly different from the AGB population (Fig. 7). Most of the supergiants fall into the range SE5–7, with more classic than structured silicate emission, compared to the AGB sources, which cover a much broader range of SE classes. The SRc variables are shifted slightly to more classic silicate emission than the Lc variables, but the difference of only half an SE

FIG. 7.—Distributions of silicate profile shapes for supergiants and the AGB sample. Neither the SRc nor the Lc samples contain many sources with broad emission (SE1-3). In the top two panels, the unshaded parts of the histogram count stars with spectral classes later than M4; these sources probably have lower mass than the other supergiants, may be on the AGB, and account for many of the broad emission spectra.

index is not very meaningful given the large standard deviations of the sample (Table 8).

Most of the variable supergiants in this sample are distinguished from variable AGB sources by their optical spectral class. Many AGB sources, however, can have sufficiently low atmospheric pressures to mimic supergiants, but they will have much later spectral classes. Separating sources with spectral classes later than M4 in Figure 7 makes the difference between SRc variables and the AGB sample even larger.

3.3. S Stars

To supplement our meager total of 24 S stars, we have borrowed 19 MS stars from the other samples, 15 from the oxygen-rich AGB sample, and four from the supergiant sample (listed in Table 9).

We assume the S stars have photospheric properties which are identical to the AGB sample (Table 7). Only four are naked. Three show carbon-rich emission (CE), and all of these would be classified as "SiC" sources in the system of Sloan et al. (1998). The remaining 17 show oxygen-rich dust emission (SE), and all but one show broad SE emission (SE1-3) (Fig. 8). Thus, the dust emission around S stars differs from the AGB sample as much as the supergiant sample, but in the opposite direction. Furthermore, not one of the S stars exhibited a 13 μ m feature.

The MS stars appear to be a blend of S stars and normal oxygen-rich AGB sources. Four are naked; the remaining 15 are SE. Again, these concentrate in the SE1–3 range, although five lie in the SE4–6 range. Two of this latter group are from the supergiant sample, which tends to exhibit classic emission. The fraction of 13 μ m sources among this group matches the fraction among the general AGB sample.

TABLE 9

	MS STARS	
AGB Sample	AGB Sample	AGB Sample
$\begin{array}{c} 00445 + 3324 \\ 02143 + 4404 \\ 04497 + 1410 \\ 09564 - 5837 \\ 13144 - 6225 \\ 13269 - 2301 \\ 15492 + 4837 \end{array}$	$\begin{array}{c} 16496+1501\\ 17001-3651\\ 17553+4521\\ 19167-2101\\ 19356+1136\\ 22489+6340\\ 23070+0824 \end{array}$	00192 - 2020 05374 + 3153 07245 + 4605 09076 + 3110

FIG. 8.—Distributions of silicate profile shapes for S stars, MS stars, and the AGB sample. All but one of the S stars show broad emission (SE1-3). The MS stars appear to be a blend of the S stars and AGB sample.

3.4. The LML S Dust Class

The LML classification method included a group of spectra in which the dust emission peaked in the $10.5-10.8 \mu$ m range. Little-Marenin & Little (1988) identified this group as the "S" class, and they suspected that the dust chemistry might be related to the unusual photospheric chemistry of S and MS stars. Paper I showed that the "S" class dust spectra generally fell in the SE3 portion of the silicate dust sequence, overlapping the Sil++ and three-component classes. Because of this overlap, Paper I called into question the existence of the "S" class as a distinct dust emission class but noted that flux ratios at 10, 11, and 12 μ m were not very sensitive to fine-scale spectral details that might distinguish the "S" class spectra.

To look more carefully at the spectral properties of the "S" class in the LML system, we concentrate on those sources classified as "S" by LML and SE3 by us, and we compare their spectra to the average SE3 spectrum. Our AGB sample includes 16 of the 31 strong S stars examined by Little-Marenin & Little (1988). LML classified seven as "S," and six of these seven are classified here as SE3. Of the 11 Mira variables classified by Little-Marenin & Little (1990) as "S" that are in our AGB sample, six are SE3. Figure 9 compares the average spectra from these two groups to the sum of all SE3 sources in our AGB sample. The Mira variables and the SE3 sum are nearly indistin-

FIG. 9.—Comparison of the dust emission profile for SE3 sources in the AGB sample (*dotted line*), S stars classified with "S class" dust emission by Little-Marenin & Little (1988; *solid line*), and similarly classified oxygenrich Mira variables (Little-Marenin & Little 1990; *dashed line*).

guishable. The spectrum from the S stars shows two differences from the SE3 sum. First, there is no 13 μ m feature, since, as noted in the previous section, S stars do not exhibit this feature. Second, there is a slight enhancement in the dust emission from 10 to 11 μ m, although its significance is questionable. Spectroscopic observations with the Short Wavelength Spectrometer aboard the *Infrared Space Obser*vatory (see, e.g., the STARTYP project by Price et al.) will permit analysis at higher spectral resolutions. At the resolution of the LRS, the only significant difference between the SE3 class in our system and the "S" class dust emission in the LML system is the lack of a 13 μ m feature in the S stars.

LML found that 35% of the S stars exhibited S-class dust emission, compared to only 5% of the oxygen-rich Mira variables. These percentages compare favorably to the differences in the distributions with SE class between the AGB sample and the S stars (Fig. 8). Most S stars show SE1–3 dust emission, while the AGB sample is more evenly distributed over the entire SE1–8 range.

4. DISCUSSION

4.1. The Physical Nature of the Silicate Dust Sequence

The silicate dust sequence shows that the various dust emission classes identified in the LML system fall along a continuous sequence of dust spectra. A general form for the dust component in equation (1) is

$$S_{\rm dust}(\lambda) = \sum_{i} B(\lambda, T_i) Q_i(\lambda) (1 - e^{-\tau_i(\lambda)}) , \qquad (6)$$

where the summation is over each component of the dust shell. The total dust spectrum depends on three variables: the temperature of the shell and the optical depth of the shell, both of which depend on the geometry and density of the shell, and the optical efficiencies, which depend primarily on the chemical composition of the dust grains. Thus, the silicate dust sequence must result from the variation in one or more of these properties.

Vardya et al. (1986) and Little-Marenin & Price (1986) suggested a chemical dependence, with the classic emission feature resulting from silicate material and the broad emis-

sion feature arising from alumina material (Onaka, de Jong, & Willems 1989). Structured silicate spectra, with emission components at both 10 and 11 μ m, resemble spectra seen in comets (Bregman et al. 1987; Hanner, Lynch, & Russell 1994b; Hanner et al. 1994a) and interplanetary dust particles, which are known to contain crystalline silicate grains (Sandford & Walker 1985), and this similarity has led to suggestions that structured silicate emission in circumstellar dust shells arises from crystalline forms of silicates (Tielens 1990; Little-Marenin & Little 1990; Nuth & Hecht 1990).

Ivezic & Elitzur (1995) argue that many of the dust emission classes observed on the silicate dust sequence result only from variations in the optical depth of the shell. To complete the possibilities, Hron, Aringer, & Kerschbaum (1997) suggest that the silicate dust sequence results from variations in the temperature of the dust shell.

The recent set of radiative transfer models by Egan & Sloan (1998) examines these possibilities in detail. They confirm that the upper end of the silicate dust sequence (the classic profile) arises from amorphous silicates, while the lower end of the silicate dust sequence (the broad profile) arises from amorphous alumina materials.

The structured silicate classes present more of a problem. Egan & Sloan (1998) confirm the claim of Ivezic & Elitzur (1995) that increasing the optical depth of a shell of amorphous silicates will drive it down the silicate dust sequence from SE8 to lower indices. It is unlikely, however, that this effect could produce the majority of shells classified below SE5, since as discussed in Paper I, the lower silicate dust sequence shows increasingly blue [12] – [25] colors, while optically thicker models are redder. Nonetheless, the existence of three SB spectra in our AGB sample supports the uncomfortable possibility that at least some fraction of the structured silicate sources are actually unrecognized SB spectra. Until this issue is sorted out, it is impossible to determine what fraction of the structured silicate spectra arise from crystalline silicate grains.

4.2. The Possible Influence of Photospheric Chemistry

It is clear that the lower silicate dust sequence (broad emission) results from amorphous alumina grains, while the upper silicate dust sequence (classic emission), results from amorphous silicates. Expressed in these terms, the expansion of the sample in Paper I to include supergiants and S stars reveals that supergiants generally produce dust shells composed of amorphous silicates, while stars with optical spectral classifications of S and MS produce dust shells composed predominantly of amorphous alumina dust. This chemical dichotomy also exists among Mira variables, with symmetric light curves associated with alumina and asymmetric light curves associated with silicates.

The differences in dust chemistry between the supergiants and S stars may provide the key to understanding the origin of the silicate dust sequence. The C/O ratio stays <1 in supergiants owing to the reduced influence of dredge-ups in a more massive envelope (Ritossa, Garciá-Berra, & Iben 1996). For this reason, none of the supergiants are C or S stars. The S stars have higher C/O ratios (~ 1 by definition). We suggest that the differences between the S stars, supergiants, and general AGB sample could arise from how the chemistry of the photosphere manifests itself in the chemistry of the dust grains.

Stencel et al. (1990) argued that the age of a dust shell determines its chemical properties. Alumina grains will con-

dense before silicate grains, owing to the higher condensation temperature of alumina and the greater affinity of oxygen for aluminum compared to silicon. Thus the condensing dust will be alumina-rich initially. Once the aluminum is exhausted, the greater abundances of silicon will lead to dust increasingly dominated by silicates.

We suggest an alternative: it is the C/O abundance of the outflowing gas that drives the chemistry of the dust. In outflows in which the C/O ratio is nearly unity, most of the oxygen will be bound up in CO molecules and will be unavailable for grain condensation. If binding of oxygen and alumina uses up the available oxygen, none will remain to form silicate grains, and alumina grains will dominate the resulting shell. In outflows of progressively lower C/O ratios, the shells will have increasing amounts of silicate grains compared to alumina grains.

Differences in the photospheric chemistry may explain the distribution of SE classes within the general AGB sample as well. High-quality optical spectroscopy of sources on the lower portion of the silicate dust sequence could test this hypothesis by determining what fraction of them are unrecognized S and MS stars. Existing studies have generally avoided dusty stars, owing to the difficulty of obtaining high-quality optical data when a circumstellar shell enshrouds the photosphere.

The dependence of SE index on asymmetry in the light curve of Mira variables leads to the possibility that the shape of the light curve may reflect the C/O ratio in the photosphere. In other words, most stars with symmetric light curves would have to be MS or S stars in which dredge-ups have increased the C/O ratio to values closer to 1. This relationship would explain the even higher values of seen in carbon-rich Mira variables, where f $\langle f \rangle = 48.7 \pm 4.2$ (compare this value to Fig. 5). Again, high-resolution optical spectroscopy could test this hypothesis.

5. CONCLUSION

We have developed a new classification system for infrared dust spectra based on the principles of (1) removing the stellar contribution to the spectrum to isolate the dust emission component and (2) using flux ratios at 10, 11, and 12 μ m to quantify the shape of the spectrum. For oxygen-rich dust, this method leads to the silicate dust sequence, along which all previously known spectral classes from oxygenrich dust can be ordered.

Not only does the silicate dust sequence provide a useful shorthand for describing the dust emission around a star, but it is also a powerful and straightforward diagnostic of the nature of the shell and the star it surrounds. The application of this method to a large sample of optically identified variables on the asymptotic giant branch and on the supergiant branch reveals a number of interesting dependencies with variability type and photospheric C/O ratio. These dependencies provide constraints on the interrelation of the properties of the circumstellar dust shell and the properties of the underlying star, and these constraints may provide the keys to unlocking the continuing mystery of how stars shed their envelopes as they evolve into planetary nebulae or supernovae.

This research made use of the LRS database maintained at the University of Calgary, the SIMBAD database at Strasbourg, and data and software distributed by the NASA

Astronomical Data Center. The authors are grateful for useful discussions with I. R. Little-Marenin, M. P. Egan, P. R. Wood, and C. H. Smith. G. C. S. received support during this project from the Phillips Lab Scholar program, the National Research Council, and NSF grant INT-

9703665. G. C. S. also thanks the Physics Department at the University of New England in Armidale, Australia, and the School of Physics, University College, Australian Defence Force Academy, who hosted him during the writing of this paper.

REFERENCES

- Bidelman, W. P. 1980, Publ. Warner Swasey Obs., 2(6), 185
- Bregman, J. D., Witteborn, F. C., Allamandola, L. J., Campins, H., Wooden, D. H., Rank, D. M., Cohen, M., & Tielens, A. G. G. M. 1987, A&A, 187, 616
- Cohen, M., Walker, R. G., & Witteborn, F. C. 1992, AJ, 104, 2030
- Cheeseman, P., Stutz, J., Self, M., Taylor, W., Goebel, J., Volk, K., & Walker, H. 1989, Automatic Classification of Spectra from the *Infrared* Astronomical Satellite (IRAS) (NASA RP-1217) (Washington: GPO)
- Egan, M. P., & Sloan, G. C. 1998, in preparation
- Egan, M. P., & Stoan, G. C. 1996, in preparation
 Engelke, C. W. 1992, AJ, 104, 1248
 Goebel, J., Volk, K., Walker, H., Gerbault, F., Cheeseman, P., Self, M., Stutz, J., & Taylor, W. 1989, A&A, 222, L5
 Hanner, M. S., Hackwell, J. A., Russell, R. W., & Lynch, D. K. 1994a,
- Icarus, 112, 490
- Hanner, M. S., Lynch, D. K., & Russell, R. W. 1994b, ApJ, 425, 274 Hoffmeister, C., Richter, G., & Wenzel, W. 1984, Variable Stars (Berlin: Springer)

- Hron, J., Aringer, B., & Kerschbaum, F. 1997, A&A, 322, 280 Ivezic, Z., & Elitzur, M. 1995, ApJ, 445, 415 *IRAS* Point Source Catalog, Version 2.0. 1988, Joint *IRAS* Science Working Group (Washington: GPO) (PSC)
- *IRAS* Science Team. 1986, A&AS, 65, 607 (LRS Atlas) Kholopov, P. N., et al. 1985–1988, General Catalogue of Variable Stars (4th ed.; Moscow: Nauka; & Grenbelt: NASA Astronomical Data Center) (GCVS)
 Kwok, S., Volk, K., & Bidelman, W. P. 1997, ApJS, 112, 557
 Lang, K. R. 1992, Astrophysical Data: Planets & Stars (New York:
- Springer)

- Little-Marenin, I. R., & Little, S. J. 1988, ApJ, 333, 305
- Little-Marenin, J. R., & Price, S. D. 1986, in Summer School on Interstellar Processes: Abstracts of Contributed Papers, ed. D. J. Hollenbach & H. A. Thronson (NASA Technical Memorandum 88342), 137
- Little-Marenin, I. R., Sloan, G. C., & Price, S. D. 1997, in IAU Symp. 177, The Carbon Star Phenomenon, ed. R. F. Wing (Dordrecht: Kluwer), in press
- Nuth, J. A., & Hecht, J. H. 1990, Ap&SS, 163, 79
- Onaka, T., de Jong, T., & Willems, F. J. 1989, A&A, 218, 169 Ritossa, C., García-Berra, E., & Iben, I. 1996, ApJ, 460, 489 Sandford, S. A., & Walker, R. M. 1985, ApJ, 291, 838

- Santoru, S. A., & Walker, K. M. 1985, ApJ, 291, 838
 Sloan, G. C., Grasdalen, G. L., & LeVan, P. D. 1993, ApJ, 404, 328
 Sloan, G. C., LeVan, P. D., & Little-Marenin, I. R. 1996, ApJ, 463, 310
 Sloan, G. C., Little-Marenin, I. R., & Price, S. D. 1998, AJ, 115, 809
 Sloan, G. C., & Price, S. D. 1995, ApJ, 451, 758 (Paper I)
 Stencel, R. E., Nuth, J. A., Little-Marenin, I. R., & Little, S. J. 1990, ApJ, 350 L45 350, L45
- Tielens, A. G. G. M. 1990, in From Miras to Planetary Nebulae: Which Path for Stellar Evolution?, ed. M. O. Mennessier & A. Omont (Gif-sur-Yvette: Editions Frontières), 186

- Volto, Editions Frontieres), 180 Vardya, M., de Jong, T., & Willems, F. 1986, ApJ, 304, L29 Volk, K., & Cohen, M. 1989, AJ, 98, 931 (VC) Walker, R. G., & Cohen, M. 1992, An Atlas of Selected Calibrated Stellar Spectra (NASA Contractor Provide 1777(51) Spectra (NASA Contractor Report 177604)