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A method s presented which allows fully self-consistent
numerical simulation of asymptotically flat axisymmetric nonrotating
geheral relativistic systems. These techniques have been developed
to model and understand resulting relativistic effects in gravita-
tional core collapse and gravitational radiation generation. Both
vacuum (Bri11) spacetimes and matter-filled configurations can be

treated. We use the (3 + 1) decomposition of Arnowitt, Deser and

Misner to write general relativity in a dynamical form. The conformal

approach, including the transverse-traceless decomposition of
extrinsic curvature due to York, is used to solve the initial value
problem. In addition, these techniques are extended to provide a
fully constrained evolution scheme. Several new boundary conditions,
"applied at large but finite radius, are derived for the elliptic
constraint equations. Our method uses a simplifying three-gauge,

placing the metric in quasi-isotropic form. The resulting

v

three-metric contains only two components for which we must solve.

One, the conformal factor, is fixed by the Hamiltonian constraint.

The second has nice radiative features and is related in the weak-
field 1imit to the usual transverse-traceless gravitational wave
amplitude. The time slicing is determined by implementation of the
maximal slicing condition. We show the resulting equations are regular
everywhere, including at the symmetry axis, the origin, and across the
horizon when a black hole forms. Treatment of the relativistic hydro-
dynamic equations is described. A computer code has been developed
around these techniques. A number of the numerical methods are dis-
cussed with particular attention paid the regularization of the finite
differencing near the singular points of the spherical polar coordinate
system. We show a number of preliminary numerical results from several
nonspherical core collapse and bounce calculations. Both the hydro-
dynamic features, and the balance between gravitational radiation and
mass-energy are discussed. We are able to calculate with sufficient
accuracy to see the radiation reaction effect of the loss of energy in
the system directly in the quasi-local mass indicator. Finally we
demonstrate the necessity of making a full relativistic treatment of
nonspherical supernova core collapse if accurate (better than a factor
of 2 -5) results for gravitational radiation emission are to be

achieved.
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CHAPTER 1

INTRODUCTION

By now most of the analytic fronts in classical general
relativity have been well explored. However, it is a testimony to the
mathematical difficulty of the theory that the known exact solutions
are characterized by high degrees of symmetry. This is true whether
one is dealing with spacetime solutions that are asymptotically flat
(Schwarzschild, Kerr-Newman geometry, dust collapse, etc.) or those
describing the universe as a whole (Friedmann or Bianchi models). We
will exclusively concern ourselves here with asymptotically flat space-
times. Here, nontrivial dynamic solutions (two or three space dimen-
sions) cannot be obtained analytically. It is precisely these dynamic
configurations that are necessary for the production of gravitational
radfation. If we are to make predictions of the amount of gravita-
tional radiation emission from realistic astrophysical sources, calcu-
lational techniques must be extended to at least include dynamic sys-
tems exhibiting axisymmetry. It is hoped that in the next decade
gravitational radiation detectors will reach sensitivity levels
sufficient to observe violent astrophysical sources.‘

Approximate calculational techniques do exist for general
relativity, which do not require special symmetry assumptions. How-

ever these techniques are perturbative in nature and apply to systems

in which relativity does not play too large a role. The quadrupole
moment formalism for example requires that the source emitting gravita-
tional radiation be moving with slow internal velocities and have a
weak gravitational field. While this formalism may be adequate to
describe some sources of interest (binary pulsars for example), it
loses its applicability for very violent, high speed and strong gravity
sources. These sources on dimensional grounds are those likely to be
the most efficient emitters of gravitational radiation.

Hence for both these reasons, lack of high degrees of
symmetry and inapplicability of perturbative methods, various
researchers have turned to what has become known as mumerical rela-
tivity to study these sources. Numerical relativity has as its goal
the fully self-consistent calculation of the Einstein equations and
relativistic hydrodynamics by typically finite difference techniques.
There are no approximations assumed save the finite difference approxi-
mation 1tself. And in this case, this small parameter (ratio of zone
size to characteristic physical length) can be made as small as we
choose, independently of the physics of the source.

Early work on calculating relativistic systems numerically
was undertaken in the sixties by Hahn and Lindquist2 and May and

White.3

Hahn and Lindquist ambitiously attempted to calculate the axi-
symmetric (i.e. two-dimensional) collision of two black holes. This
attempt was only partially successful and did not yield the desired

answer, namely, how much gravitational radiation is produced from the



coalescence. May and White calculated one-dimensional, spherically
symmetric spacetimes. While these systems will not emit gravitational
radiation, they were nonetheless successful in calculating collapse to
neutron stars and to black holes (though in this latter case their cal-
culation terminated very early due to their choice of gauge conditions
In the seventies the number of numerical relativistic calcula-
tions began to grow. Smarr and Eppleys'8 completed calculations of the
head-on black hole collision begun by Hahn and Lindquist and studied by
Cadez and DeWitt. Numerical cosmologies with plane symmetry were
studied by Centre11a9 and Centrella and Nilson.]o Piran developed a
computer code to study cylindrical collapse and cylindrical space-
times.]]
Numerical work was also begun on codes to allow simulation of
axisymmetric hydrodynamic systems (to study for example stellar core

collapse scenarios). The progenitors of the work reported in this

12 13

thesis were the efforts by Smarr and Wilson © and Dykema and Wilson.
Our goals have been to obtain a computer code capable of simulating
axisymmetric, nonrotating gravitational collapse and gravitational
radiation generation. The desire has been to produce a computer code
robust enough to follow either vacuum or matter-filled configurations
and to follow collapse through either a deep relativistic hydrodynamic
bounce or to the formation of a black hole. We have typically
restricted attention to fluids obeying an adiabatic equation of state

thus far. Our main concern heretofore has been in obtaining a good

4)_

simulation of the gravitational field and gravitational radiation. Thus
little emphasis has been placed sd far on the detailed microphysics
necessary to model a supernova core collapse. In addition, it was

felt necessary to restrict the problem to vanishing rotation until one
had achieved an understanding of the difficulties in simulating two-
dimensional systems containing matter.

This understanding is now largely achieved as it is hoped will
be revealed in this thesis. There are questions to be studied with the
existing code, but we will no doubt shortly seek to broaden the present
technique to include explicit generation mechanisms for producing
asphericity and more realistic nuclear equations of state. Parallel

efforts, which include rotation, have been undertaken by Nakamura]4 a

15

nd
his coworkers and by Piran and Stark ~ drawing on analytic considera-
tions by Bardeen and Pim\n.]6 These various efforts are based on very
different methods or gauge conditions. Varying amounts of computer
power are also available to each group. Ultimately, we believe that
if our field is to gain wide spread credibility, several calculations
made along different 1ines of attack must be compared favorably to say
with certainty that we have calculated a source's waveform and emitted
flux. While each of these methods is becoming further refined, no
attempt at comparing test calculations has been made. Hopefully this
situation will not long prevail.

Our method of calculating axisymmetric collapse is based on

al7

the ADM metho of treating general relativity as a dynamical prob-

lem. This formalism is reviewed and the necessary equations are



obtained in Chapter II of this thesis. The relativistic hydrodynamic

4,12 as closely as

equations are given in the form proposed by Wilson
possible. This topic is also discussed in Chapter II.

At nearly the same time that these numerical developments
were occurring during the seventies, major advances were being made
theoretically on questions relating to the solution of the initial
value problem, or constraint equations, of general relativity. These
efforts were largely lead through the efforts of York18 and his co-
workers. A number of these methods for obtaining initial data for our
numerical evolutions are laid out in Chapter III. Accompanying these
advances on the initial value problem were theoretical considerations
of dynamical gauge conditions to be used in numerical applications.
This topic is also dealt with in Chapter III.

Chapter IV presents the partial differential equations that
are obtained for our models of axisymmetric, nonrotating gravitational
collapse in the gauge in which we have chosen to work. A number of
new considerations are presented there for asymptotic parts of the
gravitational field. Our method, which already appears now to be
fairly accurate, will probably be further refined using this analysis.
Various mass and gravitational radiation flux indicators that have been
used to great advantage in our simulations are discussed in Chapters

III and IV. Results from the use of these indicators are given in

Chapter VI.

Some of the numerical techniques which have recently under-
gone significant refinement are discussed fn Chapter V. These tech-
niques have greatly increased the range of utility of our code and
significantly enhanced its accuracy. Several tentative tests of the
accuracy of our method are given in Chapter VI. A large scale effort
to rigorously test the code and method has not yet been mounted. How-
ever, after several additional refinements, which have been discovered
during the writing of this thesis, are added to our method, we will
undertake this necessary step. Finally, Chapter VI also presents
several preliminary results from simulations of oblate core collapse.
A sequence of runs to increasing bounce density were carried out. We
have obtained gravitational radiation efficiencies for these models
and these appear to indicate emission of 0.2 - 0.7% of the mass of the
system is possible. These models were designed to enhance the amount
of gravitational radiation produced. If these numbers stand up under
our future scrutiny and if real stellar core collapse can produce
asymmetries of this size, then these results applied to supernovae in
the Virgo cluster become observationally significant for detectors

able to reach h ~ 1072! level strains.
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CHAPTER 11

a) Formalism and Gravitational Field

In order to uncover the dynamical structure of general
relativity, it is necessary to break the four-dimensional, covariant
form of the theory and isolate the special nature of time. This is the
aim of the (3 + 1) formalism of Arnowitt, Deser, and Misner (ADM).]
Part of the splitting will involve considering a spacelike foliation
{2}, a set or family of non-intersecting spacelike three surfaces (t),
defined locally as level surfaces of a scalar function t. In a dynam-
ical context, t will amount to the coordinate time for the calculation
and the data (gravitational field and matter fields) will be represented
by three-dimensional constructs on the simultaneities £(t).

In terms of the foliation, Einstein's equations can be
described as a Cauchy initial value problem. For the moment we keep
the discussion in terms of the four-dimensional metric gab.2 A Cauchy
description then requires knowledge of 9,p and 349,p = 3,9ab throughout
an initial three-surface z(to) = 20.3 The field equations,4 Gab = Tab,
then will contain terms with second time derivatives a%gab and these
can be used with the initial data set to produce new values on a slice
Z(tO + At). The problem s not quite this simple, however. General
relativity is a gauge theory (general covariance under four-dimensional

coordinate transformations) and a direct consequence is the existence

8



of four constraint relations on the initial values of 9,p and atgab on
Ly The constraints can be revealed by examining the contracted
Bianchi identities:

0a
V.6

= 'Vieia . (])
The right-hand-side can contain at most second time derivatives and

therefore 6% at most first time derivatives. The four equations

602 - 702 (2)

are the constraints and the remaining equations

gl | (3)

are dynamical (contain aigab). The latter are however only six such
second order equations and the system is four-fold underspecified.
This ambiguity is due to the general covariance and is removed by the
imposition of four coordinate conditions which fix the coordinates in

the future of Eo'

The final aspect of the Cauchy problem, which makes it well
posed, is that the Bianchi identities guarantee that the evolution of

properly constrained initial data continues to satisfy the constraints.

Using the Bianchi identities (1) and the equations of motion for the

hatter, vaTab = 0, gives

7,(6% - 1) =y (6 - 1) (4)

10

Since the Einstein equations (2) -(3) cause the right-hand-side to
vanish on L), data satisfying (2) initially are maintained in time.
While this is true analytically (here defined as non-numerically), it
is important to note that this will not .exactly hold during a numerical
evolution. Such a calculation will shortly be advancing non-Einstein
data in time and there is, understandably, little known about the
stability of such a procedure (see however Moncrief5 for a method of
describing real, gauge, and constraint perturbations). How we have
chosen to deal with this difficulty will form a central part of this
thesis.

The ADM formalism has several compelling features from a
computational point of view. First, because it.derives from a
Hamiltonian, or canonical approach, the equations for the evolution
of the gravitational field naturally appear in first-order form (i.e.,
in terms of conjugate configuration and momentum fields with first
time derivatives only). This form is better suited for a numerical
calculation. Also, as will be shown, our algorithm reduces the
evolution of the gravitational field to a minimum number of canonical
pairs corresponding precisely to the number of operative degrees of

freedom.6

This has advantages for the calculation of gravitational
radiation. ’

Finally, the ADM formalism provides a very intuitive approach
to coordinate conditions. Once proper initial data have been posed,
gauge conditions are given which determine, as the calculation unfolds,

the set of surfaces E(t) in the future of L, and, in effect, a



n

congruence of curves which thread {f} and carry the initial spatial

coordinates x1 on Zo from slice to slice.

We associate with the surfaces (£} a closed one-form w.

Since dw = 0, this will locally give
w =dt , (5)

with t the scalar time function. Assume a dual basis of forms E2 and

vectors E, so (Ea.Eb) = Gab. In terms of the basis,

w, =T,t =3t . (6)
This one-form will have a norm which is defined by the four-metric
Jab’

gabwawb .0l (7)
Here, a, called the lapse function, is defined to be strictly positive
and the minus sign indicates w is timelike and the slices {L} are
spacelike. A normalized form can now be defined

2, = ow . (8)

b

so that ga 0,0, = -1. Because w is closed, dw = 0, Qa is irrotational

as can be seen by @ ~ dQ = 0 which implies
n[avbnc] =0 . (9)

With R, a unit vector normal to the slices can be defined

(with respect to {Ea)) as

12

b

) R, (10)

n = fga

The sign 1s chosen to make n? future pointing with respect to t, since
from (8) and (7)

(Q,n)=1 , (11)

and n? is obviously timelike, nana = -1.
The metric induced on the slices by Iabe called the first

fundamental form by differential geometers, is
Yab * 9ab * MM - (12)

This is the first example of a tensor which is spatial, since

ab ac_bd

"aYab = 0. The contravariant form, defined by y*~ = g°"g Yed? is

Yﬂb - gab + nanb . (]3)

The mixed form has the properties of a projection operator since
vy = 8% + nn, (14)

b

satisfies "aYab = 0 and Yaby c " Yac (and note that Yaa = 3), The

former property indicates that Yab projects free indices "into" the

slice; that is if T::::g is a general spacetime tensor then yang:::g
has been spatially projected on the "a" index since "avangiiig = 0,

Conversely, a normal projection operator N, can be defined
b

by reversing (14):
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a a a a
N p =N = ) b=Yg - (15)

If V? is an arbitrary vector then it can be decomposed into a

tangential and orthogonal part:
R L e A O VA L L (16)

where $? = Yabvb is a spatial vector (i.e., Sana = 0) and

7= Nabvb = -nanbvb lies in the normal direction. Each index of an
arbitrary tensor of rank-n can be projected either tangentially
(spatially) or orthogonally yielding 2" pieces.

Since L is the metric for the slices, we can define a
corresponding three-dimensional covarjant derivative. Such an operator
should produce a spatial tensor when acting on spatial objects and
should be compatible with Yab* This operator, Da' is defined by
projecting into the slice all free indices of the object formed by

action of the four-covariant derivative, Va' Thus

_.b
Daf Y avbf ’

b_ c b d
DaS =YY chS ,

b d b _f e
Dalc = vaye %l ¢ (17)

dre its actions on scalars, vectors, and two-tensors respectively

(with obvious extension). To check compatibility, use (12) to see

d e f -
Dach = Y gt CVd(gef + "e"f) =0 |, (18)

14
a a .
since Ya%he ° 0 and NaY p = 0. Da must be applied only to spatial
tensors; its action on arbitrary objects violates the Leibnitz rule,
as is evident by
by _ b b
Da(VbN ) = VbDaN + W Davb
c b d ¢ ,b,d
Fy N dvcw +y a“ N bvcvd . (19)
The curvature tensor for the slice Rcdab is defined by
requiring
DD, V¢ = RS, yd
[a’b) dab’ o (20)
and
doc _

NR4ap =0 (21)
for every spatial vector V¢, Equation (21) insures Rcdab is totally
spatial. The Ricci tensor is defined as expected by

C

%b‘ Raw 2 (22)

and the scalar curvature by
b
R =g, = yR (23)

It is clear that the relationship between Rcdab and the four-

dimensional curvature tensor 4 4RC

Rcdab will be important. dab Wil

however involve the "time" derivatives of (1) and (4). We have thus

far-only dealt with the notion (17) of a spatial projection of Y
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What is now required is to use v, to produce a generalized notion of a
normal derivative. To this end we use the Lie derivative whose effect

along a vector field Vs
L=V F

£5% = Pyt - st

v b
_ b, b
£5, 5 V9s, + 57,V
a a a C c a
L = vcch bt TV - TRV (24)

with obvious extension. Note that the covariant derivative Y has
been employed; not the partial derivatives %, which would be valid
only in a holonomic (coordinate) basis, (Ea} = (3a}.7'8

The Lie derivative may be used immediately to construct the

extrinsic curvature tensor (also called the second fundamental form):
Kab = -k LnYab : (25)

This represents in essence a velocity of the three-metric and is a
quantity of fundamental importance in the ADM scheme. Using (24) and

the fact that n® is a unit normal, Kab can be shown to satisfy

. ._.¢c.d
de B = aY bV(cnd) ’ (26)

as well, Thus Kab is also interpreted as the projected shear of the

unit timelike normal of the slices. It is obviously spatial,

nakab = 0, and symmetric. The acceleration of the unit normal is

16

defined by

= nd
a . =n Va"c . (27)

and 1s also spatial, ncaC = 0, Given (26) and (27) the following form

can be obtained:
Kab - -V(anb) - N(aﬂb) . (28)
The irrotational condition (9) can now be written equivalently as
Ma%b"c1 0 (29)
and projecting on n? and spatially projecting we obtain
Ycadev[c"dJ =0 . (30)
With (26) this implies
- C.d
Kab “YaY Vg - (31)

Then finally, using the identity Vahp = (yca - ncna)(de - "d"b)vc"d'

the useful expression
Valp = -Kap = My » (32)

is obtained.

The acceleration a, (27) can be simplified by use of
Ny = -auw,, (8) and (10), and the closure of w (5), dw = 0 -v[awb] =0
to find
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a. = Dc gnao . (33)

The vector field n® can be regarded as unit tangent vectors to a

congruence of observer worldlines. These observers can be considered
at rest in the foliation and are termed "Eulerian" observers. The
acceleration of these observers is thus (33) determined by spatial
gradients in the lapse. We have already mentioned the spatial coordi-
nate congruence along which xi = constant. These will in general be
different.

We are now in a position to obtain some of the projections
of 4Rcdab' Starting with (20), the commutator of D, acting on an
arbitrary spatial vector Vb is rewritten in terms of Yy Using (17)

and (32) the spatial gradient is expanded to:
DVE = vhogVC + Ky gvon® . (34)

Since this 1s spatial we may compute DanVc = Ydayebycfvd(oevf) by
substituting (34) to obtain

c_..d e c f dc f c d
DanV Y aY pY deVeV - Kabn Y deV - Ka Kde . (35)

Antisymmetrizing, using (20), the four-dimensional form

C .y 4pc d c
V[avb]V % 'R dabV , and noting that V- is arbitrary (aside from

being spatial), yields

f

e g._h 4 = _
Ya¥ b cY d Refgh = Rabed * KacKvd = KadKbe (36)

8 4Rcdab with one index

This is Gauss' equation.” The projection of

18
contracted on n? can also be obtained. Starting with the spatial
covariant derivative of Kbc:

Y [P, ;

DaKpe = =Y oY bY c"d""% * Kac?p o (37)
this is antisymmetrized on indices a and b to yield the Codazzi
equation

e f g d4 -

YpYa¥ " Refgd 0,Kpe - OpKae - (38)

Several contracted results will be important. From (36) we

obtain

egf h 4 . c
YV 4 Rargh = Rpg + KKpg = KpcKog s (39)

and
eg_fh 4 _ 2 ab
Y Y Refgh bt R + K - KabK » (40)

where K = tr(K) = Kaa. Contracting (38) yields

eg f d 4R

YUY n (a1)

efgd = OpK - DaKab

Thus far the relations that have been derived refer only to
conditions within a given slice. Even the extrinsic curvature Kab‘
which was formed (25) by Lie transporting Yap 3l0ng n?, is independent
of the extension of n® away from a given slice. This can be seen from
(26) since the projections restrict the covariant derivative to

directions tangent to the slice. Equations (36) and (38) must be
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regarded as necessary and sufficient integrability conditions to enable
imbedding of a slice with data (Yab'Kab) in the four-dimensional
manifold with 9ab'7 As these conditions relate the data only within

a given slice, it can be anticipated that they produce the initial
value constraints (2). This is the case as we proceed to show.

The left-hand-side of (40) can be rewritten:

eg_fh 4 = (89 e gy.fh f hy 4
v Refgh (g +nn?)(g" +nn’) Refgh

= 8 + 2n%pd g - (42)

4 4
Ryp = '%9;p Ro (42) can be shown

Using the Einstein tensor, Gab =
to equal ZnCndch as well, Thus,

cd 2 cd
2n"n ch =R+ K° - chK = (43)

The left-hand-side of (41) can be recast as bend 4Rfd and in turn

give
f d . a
Y pn 6pg = DK - DK . (44)

Connection is now made with the matter by defining the following

projections of the stress-energy tensor Tcd:

c d
n'n Tcd >

c d
Y Q" Tcd *

wv
"

_.c.d
Sab = Y a¥ bled (45)

20

Here Pys Sa' Sab are the energy density, momentum density, and spatial
stresses, respectively, defined in the frame at rest in the slice.
They are spatial i.e., Sana = 0 and Sabnb = 0. These quantities, it
should be noted, are less useful in a physical calculation than the
corresponding projections obtained 1n the fluid rest frame. This will
be discussed more completely later as the hydrodynamics 1is considered.

Results (43) and (44) can be rewritten as
R+ K2 - Kegk®d = 204 (46)
0.kK* -DK=S (47)
a'b b b :

These are the initial value equations. Equation (46) is called the
Hamiltonian constraint and (47) the momentum cpnstraint.

The remaining Einstein equations refer to the development
of the data and the foliation and not just to the individual slices.
The final projected components of the curvature tensor are
Ycadenenf 4Rcedf' " These contain the second derivatives of the metric
in the normal direction. Before proceeding to reduce these components,
it is important to quantify the notion of the spatial coordinate con-
gruence given before. We first note, In is not the natural
(orthogonal) time derivative along which Yab And Kab are propagated
through the foliation. A vector field t2 is required which will

satisfy the duality condition

(wot)=(dt,ty=1 . (48)



21

One such vector is an® as can be seen from (8) and (11). However this

is not unique as any vector of the form

t2 = on? + 8%, (49)

will satisfy (48) as long as (dt,8) = 0 or
a _
BN =0 . (50)

This spatial vector Ba is termed the shift vector; it introduces a tilt
between the congruence associated with t? and the surface normals. The
four functions, « and g2 (given (50)), represent the kinematical
freedom, guaranteed by general covariance, to ghoose coordinates in
the future of the initial slice, Ly We leave open for the moment the
connection between t® and any spatial coordinates. But note that if
(5) holds, this congruence with tangent vectors t? is parametrized

by the time function t and we may write

t%. = 2=

. .(51)

LI

QL
r«-l‘v

and so (48) is (dt,3,) = 1.
The Lie derivative I’n is now supplanted by

£t " £(Gn+8) = £(!n +£B (52)

The derivative £an has an important property; it always produces

spatial tensors when applied to spatial tensors since

a
£,.Yp =0 . (53)
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Calculation of £unKab leads to the result

1, =) c e f cdi4
& Lankab = =5 0alpe = KyeKTp * v a¥ b" " Recpg - (54)

The last term can be evaluated by noting,

e f cdd _.cde f 4 e f 4
Ya¥ "™ Roced Y Y o p Recpd - Y a' b Ref - (55)

The first term on the right-hand-side is (39), and using (45),
4 1
Rab = b = 7 9558 (With 6 = g% ), and (52) we obtain

- C
£tKab Dana + a[Rab - 2KacK oy KKab

1
= Sup E'Yab(pﬂ -s) "IBKab . (56)

Here S is the trace Yab

Sab of the spatial stresses. When we deal with
application of the formalism (Chapter IV) 1t is convenient to use

a
the mixed form K%, Using the fact LanYab = of v,y (25), and (53)
give

a
Y%

. a ac
aneb £anK b = 20K Ky (57)

and
a .. a a a
£,K% DDy + alR%y + KK°y - %,
-7 oy - ST+ £P, (58)

Note the term -2KacKcb is removed. Finally, t? is used to rewrite

(25) to obtain
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ttYab = -20Kab + LBYab . (59)

Equations (46), (47), (56) or (58) and (59) are the first order
formulation of the theory for the gravitational field. It is also
possible to &ecompose the equations of motion VaTab =0 in a similar
fashion and obtain evolution equations for PH and Sa' These are given

for completeness:
Lipy *+ a0, = a(S, K™ + Koy) - 25%0,0 + £g0, (60)
and
£.5% + oD, 5% = o(2k%0s + ks?) - s 0% +£,5 (61)
t bt ) @ b B b T PRY T Egd

where (60) is found from n,v,T2° = 0 and (61) from y* 7, T°¢ = 0. The
spatial stresses Sab are obtained from a constitutive relation, an
equation of state, dependent upon Py» Sa and other fluid attributes.
However, we have already stated this is not the best approach
computationally and it yill not be pursued further.

The bases {Ea} and {Ea} are thus far completely general;
they have no special relationship to the one-form w, Or the congruence
described by td. We proceed to specialize to a degree. A basis of
vectors {e;} (1 = 1,2,3) is introduced with each vector tangent to

every slice L. This requires
(w,e;)=0 . (62)

We also require that for each vector ey
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.ftei =0 (63)

i.e., the basis is dragged along t%.  Of course 1t must be verified
that (62) and (63) are compatible; that the transported basis remains
spatial. To be true this necessitates Ltma = 0, which can be shown

by use of (48):
fpo = £odt = d(£,E) = d(t,) =0, (64)

where to avoid confusion the time function t is here distinguished

from the vector t2.

a a

We take as the fourth basis vector: e, = t". This implies
t? has components, using (48) and (62),
a
t% = (1,0,0,0) , (65)

and t? commutes wiith the entire basis: £teu =0 (u=0,1,2,3). So by
enforcement of (63) the congruence with which t? is associated is the
spatial coordinate congruence alluded to earlier. The condition (65)
implies t? is a coordinate basis vector. Its action on a scalar
function f, tf = gof = atf is partial differentiation. Using (63),
the effect of £t on any tengor is also partial differentiation:

£t + at . (66)
With (62), '(8), and (10) we obtain

ng = 0o ., (67)
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and so any zeroth contravariant component of a spatial tensor vanishes.

Thus g2 = (0,8') and with (49) and (65) this yields

s (ol -ash) (68)
and
n, = (-2,0,0,0) , (69)
since nana = -1. We obtain the immediate consequences,
Yij = 91:] N (70)
from (69) and (12) and also,
0 0
vl al (7)
0 vy

These in turn imply Yinjk = 61k are three-dimensional inverses and

therefore By = Y1JBJ. This is true in general; spatial indices on
J

spatial tensors are raised and lowered with yi and Yije

The components of the full four-dimensional metric 9ap 3Te
now expressible:
2 i
-a +B:8 B
- } k (72)

gab = ’
By kg,

giving the line element
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ds? = (o? +g,8")dt? + 28, axlat + Yig axtad . (73)

Since V° = 0 for contravariant spatial vectors and Vo can be obtained
by solving naVa = 0 in the case of covariant vectors (the argument
extends to arﬁitrary rank tensors), the entire content of equations
(46), (47), (56), and (59) is available in their restriction to spatial
components. Using (66), the fundamental equations (for the gravita-

tional field) of the ADM method are

Hamiltonian constraint: R + K2 - K1JK’J =24 (74)

Momentum constraint: Dj(KU - yin) = sl , (75)

= - _ 2
3tK1j DiDja + a[R” ZKH'K j + KKU
- Sye - Syeiloy - S)1 + 820K
1§ = 2 Yi3'en B0 My
2 2
+ Ky 0y8% + K 5080, (76)
and
vy = -2aK1j + DiBJ + Djs1 . (77)
Here the Lie derivative terms have been expanded by (24) and the mixed
index result (58) can be found easily,
i i i i i
8 - + -
K j D Dju alR j + KK j S j
1 i [ TR
2 § j(pH S)] +8 DQKj

i L L i
+ K szB - K jDZB . (78)
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The equations have now been written solely in terms of three-dimensional
spatial tensors and the (3 + 1) splitting has been achieved.

Finally we note that (74) -(78) embody a great deal of
generality in that we have made no restriction on the spatial basis
(ei) and {its one-form dual (ei}.7 These basis vectors need not commute
[ei.ej] = ekck,j ¥ 0 (a non-coordinate basis) and in these cases
preservation of the spatial covariant derivatives in the Lie derivative
expansions in (76) -(78) is essential. In most applications, the
simplifications attendant to coordinate bases will be desirable and,
with the vanishing of the structure constants Ckij = 0, we may replace

D1 with 3y in these terms.

b) Hydrodynamics

We now turn our attention to the formulation, due to

10 of the relativistic hydrodynamic equations. Using (45),

Wilson,?’
the stress-energy tensor can be reconstructed in terms of ADM

quantities:

Tab - pHnanb + Sa"b + sbna + Sab . (79)

In the frame of the Eulerian observers, the fluid appears imperfect
since there will be a momentum flux (Sa) and anisotropic stresses
(Sab) in general. To describe a perfect fluid we work instead in the

fluid rest frame. There the stress-energy tensor has the form

28
T = oh%P 4 pg?® (80)

where the relativistic specific enthalpy is
h=]+g+p/p 5 (8])

Here p, €, and p are the rest energy density, specific internal energy
density and the isotropic pressure respectively. The fluid four-

velocity satisfies, of course,
TRTE B (82)

These two forms of the stress-energy tensor can be related.

The scalar quantity
= aﬂ t
U -naU al s (83)

evaluated using (69), is of primary importance. Since this is the
inner product of the two timelike unit vectors, it represents the local
boost factor (analogous to the special relativistic yY) between the
Eulerian observers (n?) and Lagrangian observers .(U?). Projecting (80)

with n, and yba we obtain the connections

oy = pht% - p (84)
S1 = phUU1 > (85)
515
S{J PYij + DhU1UJ = pYij + ;;a%‘ , (86)

with the ADM quantities. Using (82) a more useful form for U is
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derived by noting

U = 81Uy - a1+ yHuupt - (87)
vt=lqs \(UUNJ)’5 , (88)

and so
U=+ xSyt (89)

With this latter result, the trace S = Saa. used in (76) and (78), is

shown to be:
S=3p+oh(?-1) . (90)

We employ fluid rest frame quantities (84) -(86) in the hydrodynamic

description and the decomposition is performed relative to v? and not

n.

The matter may be taken to have a number of conserved scalar
attributes (e.g., baryon number, lepton number, charge, etc.) each

satisfying equations of the form
ay - 1
V,lo(pt") =0 . (91)

We will assume of our fluid at minimum that baryon number, proportional

tO Py IS COIISEIVEd.

or equivalently, where g = det(gab),
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L. 3,(/gou?) =0 . (93)
/g
The equations of motion
v, =0 , (94)
give an equation for internal energy by evaluating UbvaTab =0:
a a
Va(peU ) = -pv,U 5 (95)
and (92) has been used to subtract the rest energy density. This can
be rewritten as
1 p a
—3,(/~g pel®) = - 5 (/g ut) . (96)
/g 2 /g 2
Finally, the momentum equation is determined from the (6ac - U°Uc)
projection of
v ™ . 9, (ph UbU ) +9p=0 97
b' a p\P a aP ’ (97)

which can be put in the form

1 b 1 bc _

;Eg-ab(/:ﬁ ph u,u ) + P+ 7 ph UbUcaag =0 . (98)
Wilson's method involves writing these equations in a form

which most closely resembles Newtonian hydrodynamics. In this way

the vast body of knowledge on how to treat numerically ordinary hydro-

dynamics can be brought to bear on the relativistic version. To this
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end, we define the following quantities:
viauint
D =pU ’
E = pel - (99)
and, in terms of these, (85) becomes
S = ph UU1 = (D+E+ pU)Ui . (100)
Then, using /:E = uy% where y = det(yij), the fluid equations become
2, (r"0) +a,(y"0v') =0 (101)
at(vki) + a,(y%Evi) = -p[at(Y%U) + ai(y*uvi)] s (102)

2,(v"y) + 2,y *S;V') = - "[a;p + 3 ohUU 2,61 . (103)

Part of the analogy with Newtonian hydrodynamics comes from
the divergence form of the transport terms. Later this fact will be
very important (Chapter V) as we will employ a conservative differ-
encing algorithm for the transport. Equation (102) represents our
general relativistic version of the first law of thermodynamics. The
right-hand-side of (102) is the "pdv" work term. The source for the
mﬁmentum density (103) contains the pressure gradient and the term

UanaJ(gab). which remains to be simplified in a particular gauge.

The latter term supplies the gravitational and coordinate accelerations.
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The ph in this term plays the role of an effective inertial energy
density.]]

We have already noted that the factor U, appearing in the
equations (101) -(103) and in the definitions (99) and (100), is a
Tocal boost; 1t reduces to the usual special relativistic Lorentz
factor in flat space. There are also additional relativistic effects
in (101) -(103) due to the appearance of yk.

It is also useful to be able to obtain U from the fluid
state variables and ADM quantities. Using (89j and (100) the following

implicit equation results:

1Jsis

5
U= 1+Y__J_Z ) (104)

(D +E + pu)

As was mentioned earlier, an equation of state must be
specified to determine the pressure. The matter could be quite
complex, requiring several equations of state to relate, say, pressure,
temperature, chemical potentials H(4) to the density p, energy density

pe, and abundances.]2

We will for the most part want to consider
simple (one component) fluids and, in particular, consider a
barotropic equation of state (EOS). Such an EOS relates the pressure
to only one other thermodynamic variable, e.g., p = p(p).

The EOS that we use is the adiabatic law

p=(r=-1)pee , (105)



» 34

with adiabatic index r. Note, I cannot be referred to as the ratio of The fluids encountered in real situations will in general not

specific heats since the second equation of state relating p and pe to
temperature, T, is ignored (a specification of specific heats is
required). Substituting (105) in (92) and (95) results in the usual

adiabatic relation
v, (") =0, ' (106)
i.e., that p/pr = ¢« 1s constant along fluid flow lines. The equation
p=xol (107)

-1
is a polytropic law and the polytropic index is n = (r - 1)7".
A consequence of the perfect fluid assumption (80) and
conservation of baryon number (92) is that the entropy of the fluid

is conserved along flow lines. This can be seen by writing the first

law in the form

Yo (108)

Tds = dh - p~
where s is the specific entropy. This can be rewritten as
TRg,s = -Y U, (h®) - o™ op (109)
which combined with (92) and (95) gives
Vo, =0 . (110)

A perfect fluid is said to be Zocally adiabatic. Note, however, the

fluid need not be Zsentropio 1.e., Vs = 0.

only be anisentropic but also imperfect. If for no other reason, this
is due to the fact that fluids shock. Even if viscous effects are
small enough to be ignored in the smooth regions of a flow, they are
always important in the shock fronts.

If viscous effects in the smooth regions of the flow need to
be included, then the standard theories]3’]4’20 of relativistic
imperfect fluids can be applied to modify the stress-energy tensor
(80) and account for entropy transport (cf. equation (110)). Shocks,
however, will not be modeled in detail in general, unless this result
is the main reason for the calculation. The problem here is that
shock fronts are no more than several mean-free-paths wide, whereas
the smooth flow may have a characteristic length, particularly true
of astrophysical problems, many orders of magnitude larger. 1In a
numerical calculation the effects of the shock must be spread over a
region several zones wide. What is important is the satisfaction of

the Rankine-Hugoniot jump c:ondit:ionsw']5

across this region (the
relativistic version of these conditions is given in the Appendix).
This is accomplished by the introduction of a mathematical anr't:ifice.l6
called an artificial viscosity or pseudo-viscosity, into the humerical
algorithm, It is equivalent to adding a term to the stress-energy
tensor (80), which makes the fluid imperfect (viscous) in localized
regions that are shocking, and which guarantees the fluid equations

reproduce the jump conditions. The adiabatic condition (110) is then

violated and heat is generated. We return to this topic in Chapter V.
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A second effect due to shocks, the generation of vortices,
is also important and very evident in our calculations. To describe
vortices in our calculational framework, a relativistic definition of
circulation and a‘generalizatioh of the Helmholtz theorem is required.
Such a generalization, discussed by Smarr, Taubes, and wﬂson.n has
been developed by Taub]7 drawing on earlier work of Synge]8 and
Lichnemwicz.ls’]9

To this end, the enthalpy current defined by
g = U, (1)

is a fundamental quantity. We consider a ciosed curve, with path
a
parameter g, and corresponding spacelike tangent vector A%*. The

relativistic circulation is defined by

C= f ua(xa do = } hUaAa do . (12)

13 is recovered in the limits

Note that the non-relativistic definition
h+ 1 and Ua + vi. By use of Stoke's theorem it can be shown that the
initial circulation vanishes only if the initial flow is both
irrotational and isentropic. This result is proved in the Appendi x
of this chapter.

The circulation theorem (Helmholtz theorem) is a statement
on the conditions for growth (or decay) of C. If we consider the
contour of (112) as carried forward in time along the fluid flow

lines, the rate of change of C with proper time is
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£, § T(7,5)A% do (113)

where T and s are the temperature and specific entropy, respectively,
from (108). Obviously entropy gradients are necessary to drive changes
in the circulation. Not so obvious is the result that, with Stoke's
theorem and (113), the circulation is conserved, i.e., g%-- 0, only

if the EOS is barotropic. This is also shown in the Appendix.

Despite the assumption of an EOS of the form (105), the
barotropic condition necessarily. is violated in shocks. A shock will
Ieave'entropy gradients in its wake (even 1f none were present
initially) and thus drive circulation. At the risk of racing ahead in
the discussion, this can be graphically illustrated by a collapse and
bounce calculation made with the code. Figures la, b show the hydro-
dynamical motion, density contours and velocity field, at two times in
the collapse. Figure la represents the situatifon at t = 0. The
material was assumed isentropic initially and is very nearly irrota-
tional. A strong shock wave is apparent in figure 1b at cycle = 2500
in the calculation and after the core has bounced. A vortex is clearly
evident in the wake of the shock. Note that the circulation appears
largest in the region where the shock has descended density contours

obliquely. It is here that the contour integral of T,s is maximized.
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Figures la,b. Hydrodynamic snapshots showing rest energy density

contours and velocity field vectors. The symmetry axis is the \/\/\/“ //¢

vertical axis; the equatorial plane is represented by the horizontal . //

e
y //// // /

axis. Figure la indicates the start of the calculation. The material : P Y3 / /
is assumed initially isentropic and nearly irrotational. Figure 1b ' = /s // \/\// ‘// ‘/‘
shows the motion at 2500 cycles into the calculation after the core 1 ) / ‘// ///

w il

has bounced. A vortex is evident in the wake of the primary shock. ; : 74 // /A

A //‘/// ¢
Ml
g{”//ll //i/////
& 22 T 1 i
Figure 1la

) | B ¥
P A it sttt

Figure 1b
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APPENDIX

To verify the claims on relativistic circulation, the closed
contours with path parameter o and spacelike tangent vector, A2, are
used to produce tubes through spacetime. These tubes have topology
S] X R and are. derived from transporting the contours along fluid flow
lines (along integral curves of the four-velocity Ua). If x2 represent
lTocations on the tube, these points are parametrized by the two
coordinates o and the proper time t; 1.e., Xa(c,r). This implies the
basis vectors A2 = 3%; and 1? = 3%; on the tube form a coordinate
basis and thus commute:

Wl aaxd, aad _ aad? . (A1)
90 30 9T 9T 90 T

The relativistic enthalpy h, as we have defined it, has also
been called the index fnotion'® and the index of the fluid.'® The
enthalpy current (111), defined with h, can be used to form what will

be called here the enthalpy vorticity tensor:

A Vaup - (A2)

ab = Vp¥a = Va
This is related to the velocity vorticity tensor,
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by
Agp = hwyy + U 9h - Uvh . (A4)
We additionally have use for the vorticity vector Ea defined with
Weq by
Ea - %_nabcddeUb , (A5)

where 0309 i the four-dimensional Levi-Civita tensor. Equation (AS)

can be inverted to give
wgy = W g - Uy (T U8 + U (v 0008 (A6)
To proceed further, we take the spatial projection of (97)
(8, - v ), (ht®y,) + vp1 =0 (A7)
which can be rewritten as
oht®0, U, + (62, - VU )up =0 . (A8)
A second intermediate result comes from putting (108) in the form
T9,s =V,h - =V,p . (A9)

Combining (A8), (A9) with (A6) and (A4) yields a fundamental result:

¢, d
Aab - he U ncdab + T(VbS)Ua = T(VaS)Ub . (A]O)
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Before discussing the significance of (A10), we recast the
definition (112) of the relativistic circulation. The integrand uaxado
can be written as the differential 1-form u = uadxa. where x? = Xa(a.t).
and the path forms the closed boundary of a 2-surface, A. Stoke's
theorem may then be used with (A2) to obtain

b ax® . (A1)

C= I u= J du = %-I Ab dx
9A A A

It can be seen that if Aab vanishes on a surface bounded by the initial

closed curve then the circulation also vanishes. From (A10) it is

clear that Ea = 0 and Vas =0 imply Aab = 0. The converse can also be

demonstrated. Contracting (A10) with Ub and using the perfect fluid

assumption through (110) gives

b
AV = Vs, (A12)

and thus if Aab = 0 then Vas = 0 follows. In this case using (A10)

we obtain

d
Nedab =

£ o, (A13)
as well. If €% is to be nonvanishing, (A13) is possible only if g€

is proportional to U¢. From (A5) however we have gau° = 0 and since

U 1s timelike (nonnull) this leads to the conclusion Ea = 0. Thus

the vanishing of Aab has the necessary and sufficient conditions that

the fluid be irrotational (2 = 0) and isentropic (Vas = 0), locally.
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The vanishing of the circulation on a contour or tube is a nontocal
result; it requires that the flow satisfy the above conditions through-
out a 2-surface bounded by the contour.

We digress momentarily to obtain an interesting result. So
far the bounded 2-surface A has been quite general except that the
tangent vectors to the bounding contour must be spacelike. If this
2-surface is restricted to 1ie (as well as the contour) in the hyper-
surfaces I(t), connection with the ADM approach can be made. Positions
in A can be represented as Z?(u,v) where u and v are coordinates
parametrizing the surface. These generate tangent vectors:

YA

a _ a2 a
‘(u) T and ;(v) S spanning the tangent plane. The restric-

tion of A to £(t) implies c?u) and c?v) are spatial, i.e.,
a = a =2
C(u)na C(v)na 0 o (A]4)

The result for the circulation can be written out as

¢ = J Upphag 9 A O (A15)
Using the tangent vectors ;?u) and C?v)’ this can be reduced to
& b a _ a b
© = [ opayteustyy - fuetlas s o L

Then since the tangent vectors are spatial, (A14), we obtain

c= I deYcav[duc](cl(’u)C?v) = C?U)C?v))du Adv . (A17)

44

The enthalpy current e is timelike (111) but may be decomposed to
Mo ™ Mo * hUnc s (A18)
where ﬁc = ch“d 1s the spatial projection. Using this decomposition
we obtain
d . c ~
YbYa"ra%1 " Pptay b

using (30). This result is totally spatial; with its substitution ii

(A17) the summations can be restricted to spatial indices. Thus,
= LR . [,
¢ = [ opiiggteuyelyy - sty n e (Az0)

To proceed further a normal unit vector My is introduced by
ze, ch ol K o S R, I IO £
AMy = €xant(u)(v) Where men” = 1 and giy)Ely) = Ely)E(y) = € Am-
Using the definition e'Jko[‘ﬁJ] = (cur ﬁ)k and choosing the surface
tangent vectors to be right-handed with respect to the boundary

tangent, Ai, allows the circulation to be expressed as

c = I (curt )X m A dudv. . (A21)

The normalizing factor A can be determined from the above definition,

which gives
2 2 2 2
A" = |C(u)l IC(V)I - (C(u)‘C(v)) , (A22)

where |5(u)|2 = CZu)C(u)i and Tu)"%(v) © CZu)C(v)i‘ To interpret this
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factor, we calculate the 1nduced:metr1c on the 2-surface. We have
ds2 * Yy5 dx'dxj = YijcichB duAduB " (A23)

where capital indices A, B are restricted to A = 1,2 and duA = (du,dv).
2. .. i

The two-dimensional metric is therefore YaB Yijc AGB* Its

determinant, zy z det(zyAB), is shown easily to be just (A22) AZ.

Thus the result (A21) can be rewritten in the particularly simple

covariant three-dimensjonal form

¢ I (curl @)* m ()% dudv (A24)

despite that this derives originally from four-dimensional quantities.
The result (113) for the rate of change of the circulation
along the tube with respect to proper time is now derived. Taking the

derivative (112) gives]7
a
%% = § {(pra)Ub)\a + oy, g%;} do . (A25)

Using (A1) and (A2),

dc _ au"}

& § {AabUbAa + (vaub)bea tu, Tt do (A26)

Eill
Since we may write Aavaub = —53 , the last two terms may be grouped,

5%-(uaua), which contributes nothing around a closed contour. With

(A12), equation (113)

g% . § (v,s) Pdo (A27)
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is obtained. A sufficient condition for the circulation to be constant
(with respect to proper time) is that the fluid be isentropic. This
is not a necessary condition, however. The necessary and sufficient

condition is that, by Stoke's theorem,
Vb[T(Vas)] - Va[T(Vbs)] =0 . (A28)
Using (A9) this can be written as
VaPVpp = VpPVs0 = 0 . (A29)

By the same argument as before (see equation (A13)) this is possible

if and only if

Vap= Vo (A30)

i.e., the gradients are proportional with some function f. If the
EOS 1s barotropic, p = p(p), (A30) is satisfied and indeed we find
f= %g, the sound speed squared. If the EOS is of the form p = p(p,s),
taking the total differential shows (A30) cannot be satisfied. The
circulation is therefore constant if the EOS is barotropic
(e.g., eqn. (105)).

However, from (A28) if the circulation is to be driven
(g% #0) it is not sufficient for the fluid to be only anisentropic
but, from (A28), there must also be temperature gradients. Indeed,
it must also be true that VT # gv,s, where g is some scalar. This

is equivalent to the argument given above regarding a non-barotropic
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EOS violating (A30). This has the important consequence for shock
driven vorticity changes that AC is maximized in regions where the
shock propagates obliquely with respect to the density gradient.

If a temperature has not been defined, (A27) may be rewritten

using the first law (A9):

€. H(vapn" do . (A31)

In our numerical simulations, {f the EOS (105) is employed, g% will
be nonvanishing only in regions where the artificial viscosity is
operative. However the results (A27) and (A31) are not strictly valid
in such situations since the locally adiabatic assumption (110)
(dependent on the perfect fluid assumption), used in deriving (A12),
will be violated. .

A shock propagating through spacetime is represented by a
three-dimensional discontinuity surface with a spacelike normal vector

wl. The equations of motion (92) and (94) give the jump conditions

[pana] 0 , and
(A32)

[TAbwb]

n
o
-

by integrating and using Gauss' Theorem. Here the bracket is the
usual notation indicating the difference of the limits from above
and below the discontinuity surface i.e., [Al = A, - A_. We single

out the invariant quantity
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a a
F= p+U+wa = p_U_wa . (A33)
from (A32). Using the definition (80), the second condition can be
written as
F(h,U§ - h_V2) = wi(p, - p) . (A34)
Alternately, contracting with Ui and Uf. the fundamental relativistic
Rankine-Hugoniot condition
h h
2 2 + -
- h® =2 |— ¢ — -
hy = hZ (p+ p_](m p.) (A35)
is obtained. In the Vimits h » 1; ¢, p/p + 0, this reduces to the
nonrelativistic result.]3'2]
P, +p_
€+'€_=W(p+-p-) . (A36)
Equation (A35) can be cast in a dimensionless form
M2-1=a2(y-1)(§+1) , (A37)

h P [ =
where M = ﬁf-. y = 5%, n= ;i, and of = EEH‘ . Note that the size of
” .

a- determines the degree to which the preshock gas 1s relativistic.

The ratio of enthalpies, M, may be eliminated from (A37) upon substi-
tution of an equation of state. Using the adiabatic EOS (105), yields

the equation
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Cy(r = 1) + (rq + 1)In% - qCy(T + 1) + (T - 1)In
-(1-qy(y+tr-1=0 , (A38)

to be solved for the density ratio n in terms of the pressure ratio y.
Here q = h:] is the factor determining the importance of relativity.

The nonrelativistic 1imit is achieved by taking q + 1 and we obtain

from (A38) the familiar result for a "perfect gas"]3'2]:
y(r+1)+(r-1)
LG R ) (A39)
For strong shocks y >> 1, (A39) implies the usual maximum shock
compression
ns bl (A0)

For moderately relativistic configurations, (A38) must be
solved fully; care must be taken to use the solution for which
s, =S >0whenn>1andy> 1. A second interesting limit results
if the preshock gas is extremely relativistic. In this case q + 0
and the compression satisfies

n =[yrfr‘+‘]ls : (A1)

This has the interesting implication that for strong shocks, y >> 1,

Y
the compression ratio continues to rise with y, n + [T'¥_T] , as
opposed to (A40). For all such strongly relativistic systems it is
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Tikely that the effective adiabatic index approaches I+ 4/3. Certainly
for the sound speed |
v2 i e i (A42)
T-Tp

to remain bounded by vs2 < 1 requires I < 2,

Obtaining a more familiar form for the velocity jump condition
(A33) is difficult owing to the complete generality of the spacetime
coordfnates.'.we proceed to a degree by defining a shock velocity U?s):

u(s)U?s) =n? + U(w)"a ’ (A43)

R - a S - a
where U(w) nW and U(s) "au(s)' The vector U?s) is tangent to
the discontinuity surface (i.e. U?s)"a = 0), timelike normalized,
U?s)u(s)a = -1, and orthogonal to the two-surface formed by the inter-
section of the shock surface and the simultaneity £(t). Note, however,
that whereas the vector w® has invariant meaning, the shock velocity
depends upon the chosen time slicing and nd. Contracting (A43) with

n, yields

LORART T (A44)

Using (A43) and (A44) to rewrite (A32) gives

RE ﬁ {[pU] + U(S)U(S)a[pua]} =0 (A45)
S

or
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a b by _
O+U+ - p_U_ + gabU(s)U(s)(p+U+ - D_U_) =0 . (A46)

Without knowledge of the metric it is difficult to proceed beyond (A46).
If, however, we use a local inertial frame or restrict the calculation

to flat space, special relativity, (A46) becomes

O+Y+(1 - Y%s)(] = V(s)'v+)} = D_Y_(] - Y%s)(] = V(s)‘v_)} » (A47)

where U: = UE(].V:) = y+(].vi). If relative velocities are assumed

- P S
small, i.e. V(S)’ V+p V_ << 1, and Y(S) T - V(S)'V(S)

1+ V(s)'V(s) + 1, then (A47) reduces to
P V(s) (Ve = Vig)) = oV(g) (V. - Vigy) (A48)

the usual Rankine-Hugoniot condition.

CHAPTER III

The ADM equations for the gravitational field (1174-77) and
Wilson's formulation of the hydrodynamic equations (I1101-103) were
derived in the previous chapter. Here we consider how solutions to
these equations are to be found (either "by hand" or with the computer).
There are several identifiable steps to solving the Cauchy problem.
First, a soluiion to the initial value broblem (IVP) must be obtafined.
Then gauge conditions must be judiciously applied to cﬁnstruct a
fdliation of spacetime and a spatial coordinate congruence as the cal-
culation unfolds. Finally, the equations of motion are integrated,
propagating the initial data along the chosen spacetime coordinates.
In this last aspect, we must decide in a numerical context whether to
employ the constraints, which in an analytic sense are superfluous
once the IVP has been solved, to produce a fully constrained solution.
This chapter is devoted to a discussion of general aspects of the con-
formal approach to solving the IVP, to how the constraints are solved
on subsequent time slices to provide a fully constrained evolution,

and to several useful classes of gauge conditions.
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a) Initial Value Problem

As has been mentioned previously, the IVP is embodied by the
four constraint equations (I1174,75). Starting values for thg gravita-
tional fields (yij,Kij) must be found that are compatible with chosen
initial matter fields (pH,Si). Once the IVP 1s solved, gauge condi-
tions are imposed to determine the lapse function a ((_goo)-g) and the
shift vector B, (901)‘ These are kinematiecal, not dynamical,
quantities since the decomposed Einstein equations reveal no equations
of motion for a or 81. Once gauge conditions have been specified, a
spacetime development is constructed using the equations of motion
(1176,77) and (11101-103). It is important tg notice that the solution
of the IVP is quite independent of o and By» as can be seen by inspec-
tion of (1174,75). The lapse and shift affect only the development
of the data off of Xo. Stated another way, the lapse does not
determine the shape of the initial time slice, only the separation of
subsequent slices. In the same way, the shift vector does not fix the
spatial coordinates on the initial slice, only their propagation from
slice to slice.

Insight to the structure of the IVP and dynamical problem
of general relativity can be obtained by count1ng1 the dynamical
degrees of freedom in the gravitational field. fhe ADM method has
resulted in a first order description of general relativity in terms
of the twelve functions (Yij,Kij). In fact, these equations of motion
(1176,77) are derived equally well from the variation of a properly
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defined‘Hamﬂtonian.2 The fields 15 and K1j are thus considered
independent. The three-metric Yij represents "configuration variables"
canonically conjugate3 to the "momenta" K!J in this Hamiltonian picture.
The constraints (1174,75) then reduce the freedom in Yy and Kij from
six degrees each. The momentum constraints (II75) remove three degrees
of freedom in the extrinsic curvature (exactly what part of K1J is

fixed will be taken up below). The Hamiltonian constraint (1174)
determines one part of the three-metric i namely the scale of the
three-space.

The remaining reductions follow from the need to impose con-
ditions to fix the initial coordinates of the hypersurface Z, within
the full spacetime. Choosing the initial simultaneity (the shape of
the hypersurface) is equivalent to picking the initial time coordinate.
York and UMurchadha4’5 have identified the trace, K, as naturally
related to the choice of initial time coordinate. Specifying K
initially leaves just two degrees of freedom in Kij. Analogously, the
three-fold spatial coordinate freedom in L, can be removed by imposing
three conditions on the components of y1J. This leaves two dynamical
degrees of freedom in both Yij and KiJ, which represents precisely the
two independent polarization states of gravity.

In passing, we note that when gauge conditions are considered,
the kinematical degrees of freedom (a and Bi) will be fixed by setting
four conditions on the "velocities" atK and 3tYij' It is clear that
such gauge conditions do not interfere with the choice of initial

coordinates on zo.
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We proceed to describe a technique to solve the IVP. In one
sense, finding solutions to the IVP presents no problem. We can, for
example, specify the entire three-metric Yij and extrinsic curvature
Ki‘j and then use equations (1174,75) to deduce the required matter
fields Py and Si. For reasonable choices of Yij and K1j (ones which
lead to matter fields satisfying the dominant energy condition for
example), this procedure should work in providing initial data.
Unfortunately, we would have 1ittle control over, or understanding of,
the physical conditions of the source, which is of great importance
in astrophysical applications. Additionally, there would be no
control on the amount of gravitational radiation contained in the
fnitial data. The problem then is to find a procedure which yields
physically sensible solutions.

A fruitful technique for solving the constraints, the con-
formal approach, will be described. The pioneering application of
conformal transformations to the IVP was made by Lichnerowicz.6 This
early work was restricted to only vacuum spacetimes with a particular
(maximal) time slicing. In the past decade, fargely through the
efforts of York and his coworkers, the technique has been extended
to include sourcess'7 (through conformal scalings of oy Si). use of
more arbitrary, nonmaximal (K # 0) time chings,4 and a covariant
decomposition of the extrinsic curvature tensor.8 In this last
aspect, a natural constrained part of the extrinsic curvature is

identified in the form of a vector potential Hi. Along with the
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conformal factor ¢ (the scale function) providing the transformation,
these form four "generalized potentials"5 which are determined by the
constraints, The remaining parts of yfj and K1j are freely specifiable
and fix both the initial coordinates and the "dynamical” part of the
gravitational field.

A conformal transformation of the metric is introduced by
Yij = ¢4?1j ’ (1)

where ¢ is a pos1t1ve9

scalar function, Yij is the physical metric
and §1J is a conformally related metric. Our notation is that
quantities appearing with a circumflex are. conformally related while
those without are physical quantities. We have referred to ¢ as a
scale factor because it alters the scale of distances between the two
manifolds but leaves unchanged distance ratios and angles.

1,5 that the transformation (1) serves

York has emphasized
to define an equivalence class of manifolds and metrics all related by

the conformal metric

;1J - Y-]/3Y1j » (2)

which is conformally invariant. We regard ;ij as carrying the
dynamical information. Later, we define the conformal factor used in
(1) in such a way that the conformally related metric, ?ij. has
properties similar to ?1J' The resulting conformally related metric

plays a central part in our method.
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The rule (1) immediately gives the transformation of the
connection,

i _ Al =Tfed 4 i s aitn

and curvature quantities, of which the scalar curvature is,

R=0"R - 80"58 . (4)

A A

Here ﬁk, R, and 4 = ?”010J are compatible with the metric 91J‘ How-
ever, the transformation of the metric does not tell us how Kij, Si’
Py» etc., are to be treated. This is where the method gains its
utility, since we are free, in many situations, to make up their
conformal transformation rules. The guiding principle in inventing
these rules is to facilitate the solution of the constraint equations.

We consider the extrinsic curvature tensor first. It has
already been indicated that the trace K plays a special role in fixing
the time coordinate. The trace-free part of K‘J is split off

(irreducibly decomposed):

PRSI %YUK' ) (5)

From a group theoretic standpoint, this is the spin-2 part of Ki‘j

under rotations. We are particularly interested in how the divergence

term of (I175) transforms. For a traceless tensor, use of (3) gives

0,a1 = 4710, (o108 1) . (6)
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If we assign to Aij the conformal scaling rule

Aij -lORij

=¢ (7)

(6) obtains the simple form

1§ _ =108 A1
DiAJ=o p AN . (8)

Note that if a tensor is transverse-traceless (TT), i.e. Wii =0

and Diwij = 0, and transforms by (7) this TT property is preserved.
We next consider how the trace, K, is to be transformed.

One obvious choice is to transform the entire extrinsic curvature as

was done for Ai‘j (7), i.e.

kI = o 101 (9)

Contracting with Yij and using (1) gives
k= 5% (10)

for the transformation of the trace. Using (10) and (8), the trans-

formed momentum constraint (1175) becomes
bJA’J = 3101 4 %?‘ijk - ke DYy . ()

Momentarily ignoring the momentum density term oIOSi

» the remaining
parts of the equation would be independent of ¢ were it not for the

last term. It is somewhat convenient to eliminate this form of the
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coupling, which involves the value of R. particularly if time slicing
conditions with K # 0 are used.

To this end, we treat the trace as a conformal invariant
instead, i.e. K = K. The momentum constraints then become modified
to read

FUBR Y S (12)

The coupling with the conformal factor has reappeared in the last
term, However, in many problems one may choose to assume ﬁjk =0,
f.e. constant mean curvature, on the initial time slice. A special
case is the "maximal slicing" condition, K = 0, utilized in a number
of applications including our own (discussed below). Leaping ahead
somewhat, we note that it is possible to treat the momentum density
term in (12) so that, when combined with constant mean curvature
slicing, the momentum constraints become independent of ¢. Thus,
(12) can be decoupled from the Hamiltonian constraint, which is used
to determine the conformal factor. This is somewhat useful though not

strictly necessary in a numerical application.

The intent in so writing the transformed momentum constraints

(12) is to allow the terms on the right-hand-side to be specified and
thereby constrain the tracefree part of the extrinsic curvature. By
removing the trace, R‘j contains only five independent components.
The constraints (12) can fix only three, so a further splitting of

8

ﬁij s required. We apply York's™ decomposition to the conformally
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related extrinsic curvature. This decomposition is covariant,

orthogonal and splits ﬁij into transverse and longitudinal parts:

4l ~.1 ~ 1

ald . Kr I, K i (13)
Here, by definition the transverse part satisfies

bk M0, (14)

and the Tongitudinal part is derived from the gradient of a vector
potential (properly symmetrized)
Mt s ot e B - 25Uk (15)
The covariant nature of the splitting is obvious. The orthogonality
will be demonstrated below.
Substituting (13) and (15) in (12) produces a second order
operator defined by

@’ = ﬁj(tw)“ = (au)! + ;_B‘(iji) + ﬁ‘dwi , (16)

where A = ?zmbzﬁm and ﬁ‘j is the Ricci tensor constructed from ?11.
This operator, called the "vector Laplacian," is elliptic and maps
vectors to vectors. A number of its other properties will be dis-
cussed shortly. The momentum constraints become

Ayt o 210c1 L 2 6aidn o
(A W) = ¢S IOV DK (17)
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The transverse part RTij, which is TT, does not appear and is taken as
the freely specifiable part of Rij containing the two dynamical degrees
of freedom. The trace, R, is specified to fix the time slicing. The
remaining three degrees are determined by solving (17) for the vector
potential and using (15) to compute §L1j = (tw)ij.

We must now determine how the sources, oy and Si, are to be
transformed. If these sources arise from another field theory, which
is coupled to the gravitational field through the stress-energy tensor
(such as the electromagnetic field), then it is likely that the
scalings of Py and S1 are predetermined.7']° This is not the case for
a hydrodynamic source (i.e. a fluid) and we will consider here only
this situation. We are free then to pick the conformal scalings to
aid in simplifying the transformed constraints.

For the momentum density, Si, the scaling
51 . ¢-10§1 (18)

is an obvious choice since, as has been noted before, the momentum
constraints (17) decouple from ¢ for constant mean curvature slicing.
Similar power-law scalings for Py can be considered. It 1s important
to note that, with constant mean curvature slicing, all the non-
linearity of the IVP has been lumped into the Hamiltonian constraint
(aé can be seen in (22) below). The nonlinearities produced by a
scaling Py = ¢'n6H will only allow solutions pr‘ovided]0 n>5. The

case n = 8 has been argued for by OMurchadha and York.s’]0 This
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scaling is most natural on dimensional grounds and because it guaran-

tees that the local dominance-of-energy condition,

8% - ?wgigj 20, (19)

satisfied on the conformal manifold, continues to be satisfied by the

physical source. Wilson and Dykema]] and Yor-k]0 have pointed out that
for the scaling,
= -6"
PH = By (20)

a "conservation of mass" results of the form
3 A
[y = [ 3%, @)

since from (1) y& = ¢67%. This can be advantageous in astrophysical
applications since 1t provides a finer control over specifying the
initial energy content of the source. In sufficiently relativistic
conditions, care must be exercised so as to not violate the energy
condition (19) on the physical space. In our application, a more
detailed description of the energy density N is made in terms of the
rest energy density D and internal energy density E as discussed in
Chapter II. As will be described in Chapter IV, we use different
power-law scalings for D and E, thus obviating use of a power-law
scaling for PR For the purposes of discussion we will, however,

assume the scaling (20) for the remainder of this chapter.
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With the source scalings now determined, the Hamiltonian
constraint can be rewritten in terms of conformally related quantities

and the conformal factor. Using (4), (5) and (20), (I174) becomes
A1 s A =2 4 21,8 202 4]
Ap = E tb[R - 20H¢ AUA ¢ + 3 K™ ¢ o (22)

The equation is regarded as a quasilinear elliptic equation for the
conformal factor. Given a solution, the Hamiltonian constraint has
been used to fix the scale of the three-geometry.

Similarly, the momentum constraints become

(don" = 81+ 2451k (23)

This system, (22) and (23), is a set of coupled elliptic equations
for the conformal factor ¢ and vector potential Ni. Beyond the
appearance of ¢ and wi. their sources are entirely derived from con-
formally related data. The procedure for the IVP is as follows.
First, specify the free data §, 3, ;ij’ ﬁTij and K. Then solve
the coupled system (22) and (23) for ¢ and w‘ (decoupled equations
if the coordinate condition 512 = 0 is imposed). Finally, w' is

used with (15), (13) and (5) to give
3= 0l e kM) L Lk (24
which along with the transforms (18), (20) and (1) give a proper

data set satisfying (I174,75). The IVP has been solved, provided

adequate conditions are placed on the freely specifiable data
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(BH, 8!, ?1j’ RT1J, K), 1.e. sufficiently strong fall-off conditions
for asymptotically flat spacetimes, and proper boundary conditions are
imposed so that (22) and (23) yield unique solutions.

This method of solving the IVP has produced four "generalized

potentials" ¢ and H1

. They are the general relativistic generalization
of the single gravitational potential of Newtonian gravity. Just as
the Newtonian potential carries information about the mass of {its
source into the distant, vacuum field, so the conformal factor ¢
carries information on the total emergy of an isolated source in an
asymptotically flat spacetime. Additionally, the vector potential
now asymptotically supplies information about the linear and angular
momentum of the source.'

A set of standard two-surface integrals is given in
Appendix A which compute the asymptotic energy-momentum four vector
and angular momentum vector. These prove useful in deriving boundary
conditions for (22) and (23) to be used in numerical applications.
We consider next how such boundary conditions are obtained, examine
the properties of the York decomposition, and discuss what fall-off
conditions are required on the sources to provide unique solutions
representing asymptotically flat spacetimes.

We consider the momentum constraints (23) first and assume
in this discussion that ﬁjk = 0 slicing is used and that the manifold
is topologically R3. A number of the properties given here will hold

in any case. The momentum constraints are then a separate linear
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system for Ni,

A i 21

(a W) =5 . (25)
The vector Laplacian, KL. has several interesting features which

guarantee that (25) may be uniquely 1nverted.8 To display these, we

form the invariant function space inner product
A A 'l
[ dv V(B W) (26)

i

between two vectors V1 and W' on the conformally related manifold.

Here, d? is the invariant volume element on this space. Recalling the

definition of ZL (16) and using the identity
DoV, = LTy, # B yViq + L5000 (27)
iy 2 ij [1°31 3 "ii7k
integration by parts yields the first form of a vector Greens theorem
awt =L [ gecd A”+§‘vtw”. 28
]dv Vi (A W) —-ZJdQ(LV)U(Lw) dA; V(LW (28)

The invariant surface element of the bounding two-surface is dAJ.

The second form of the vector Greens theorem can be obtained as well:
e PO | 4 yyiq - n rny il tyyid
J aotv, (Bt - w0 = { A @™ N L @)
Though we have kept the surface integral terms 1in (28) and (29), for

asymptotically flat manifolds these will vanish in the 1imit r +
i -1
given sufficiently fast fall-off for solutions of (25): W' =o0(r")
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and (T.w)ij = U(r'z). These rates of fall-off will in turn depend on the
the rates assumed for the source.

To show that KL is elliptic, or has negative-definite eigen-
values, we use (28) with V1 ] N1 to obtain the inequality

f dv W AW = -;—J do(l W <o . (30)

With (29), the vector Laplacian can be shown to be a symmetric, or

self-adjoint, operator,
~ ~ i a " i
[ v’ - [@wan' (31)

in the same way as the ordinary scalar Laplacian A.

The boundedness condition (30) contains (CH)iJ =0as a
potential special case with vanishing eigenvalue. The trivial
solution, Ni = 0, is no problem, but it is necessary to examine the
case (Elrl)i‘j =0, Hi # 0. Such vectors, if they exist, are called
conformal Killing vectors (CKV). The reason for this term is that

C1 is a CKV if along it the metric satisfies a conformal isometry
£¥4y = ﬁicj + bjci =Xy - (32)

This is the conformal Killing equation. Here, A is not arbitrary,
but follows from the trace of (32): 2\ = % Bkck. Hence a CKV satis-
fies (f.C)ij = 0. Using the conformal invariance of 71j in (2) gives

?11 s ?’1/3?1j which allows (32) to be rewritten in terms of the



67

conformal metric:

chij =0 (33)

Conformal Killing vectors represent coordinate transformations which
preserve the conformal three-geometry.

Just as Killing vectors do not always exist, CKV's will
only be obtained for sufficiently special metrics. If they exist, the
Kernel of KL is nontrivial and the solution of (25) will be unique
only up to the addition of CKV's.

However if CKV's exist, they contribute nothing to the
longitudinal part of the extrinsic curvature, since (EC)1j = 0. This
might however pose a problem in a numerical application where one must
find a unique vector potential that is a solution to (25). This is
similar to the uniqueness problem of the ordinary Poisson equation
when a Neumann boundary condition is used exclusively. The scalar
solution is unique only up to an additive constant, which can be
fixed by applying a Dirichlet condition at one point on the boundary.
In any case, CKV's are not a concern in the asymptotically flat IVP,
since, if they exist they do not vanish5'12'14 at spatial infinity
and are eliminated by the boundary condition N1 +0asr+ow

It is important to note, however, that in spatially closed
applications (numerical cosmologies) CKV's may exist and, while again

not contributing to the extrinsic curvature, they then represent the
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existence of important integrabiljty conditionss’8 on allowable
sources to (25) or (23).

Another result of (30) is that if a vector, V‘, exists such
that (ZLV)1 = ﬁd(tV)1J = 0, then it follows (EV)U = 0. A corollary
is that if M1J is a TT tensor, i.e. 51M1j = 0 and Mi1 = 0, then it
cannot be represented by ('i.v)1J for some vector V'. Stated more
completely, arbitrary longitudinal tensors (T.w)-tJ and transverse

tensors iT‘J are orthogonal in the global scalar product
@ & H(twy, . = 0

as can be demonstrated by integration by pafts. This is the
orthogonality of the York decomposition we have mentioned before.
It must be noted, however, that this orthogonality exists only on
the conformally related manifold. This can be seen by using the
transformation (7) for RTiJ and (T.w)1J and transforming the volume

eIE||le'|t tO S'low

in general,

We have already shown the TT property of RTiJ is preserved
under conformal transformation. The implication of (35) is that the
"longitudinal" part of pld on the physical space, KLij = ¢']°(fw)ij.
cannot be written as (LV)“j for some vector V' with L the operator

compatible with Yij' Therefore KL1j contains some TT part, in
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general, and the conformal transformation has mixed the components of
the decomposition.

This has the unfortunate, though perhaps unavoidable,
consequence that if one assumes, as is most natural, initial data
with ?1J = fyj (flat metric) and kTij = 0, the physical data will
still contain preexisting gravitational radiation. This has been

15

vividly demonstrated in a numerical calculation'® of moving black

hole initial data. It also seems apparent in calculations of two

16,17 though in our application for hydrodynamic

black hole collisions
core collapse (see Chapter VI) the York decomposition minimizes to a
great extent the initial radiation content. This is probably due to
the fact that our configurations do not begin as extremely relativistic
objects while black holes can hardly be considered anything else.

It has been indicated that the proper condition at sbatial

s 0. However in most numerical

infinity for (23) and (25) is W
applications for asymptotically flat systems, we will need to apply a
condition on a finite radius boundary. This is true unless compacti-
fying spatial coordinates are used, which, to my knowledge, has not

18

been done in spacelike numerical calculations. Applying w1 = 0 on

a finite radius boundary would introduce large local errors in the
solution.

‘ In Appendix B we derive a new vacuum multipole moment
expansion for the flat space vector Laplacian. The form of the

expansion should be valid also for the non-flat RL at large radii.
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This expansion, through the first two orders, is given by

nn)P. o+ —]_2' (s*nd - es"jn’)diJ

16mr
] 3 ki i.kj ko 1j ij
+W[3(n5 +ng§v)-n(s -3nn)]nU , (36)

in asymptotic cartesian coordinates with n1 = r']xi. Here P1 and ij

are constant moments representing, respectively, the isolated system's
linear momentum vector and angular momentum tensor. The 01j are
symmetric moments related (in the weak field approximation) to 3t11J
where Iij is the second moment of the mass distribution.

For systems with nonvanishing linear momentum P1, York and

15,14

Piran have given a Robin boundary condition

()<n (s, - Lnlny) + ﬁ;wk(s‘k -Entn) =0l L (an)
suitable for obtaining unique (Appendix B) solutions for large radius
"o’ This Robin conq1t1on utilizes a linear combination of wk(rm) and
(tw)ij(rm) to eliminate the explicit appearance of P1 from (36).

However, most numerical calculations will generally be done
in the center of momentum frame. An exception is, of course, the

15 referred to earlier. For these systems,

moving black hole problem,
(37) cannot provide an accurate boundary condition. The task of

finding a new boundary condition is complicated by the appearance of
the two sets of moments (antisymmetric and symmetric) at order U(r'z)

in (36). If JiJ # 0 and, in addition, |J1jl >> IDiJI (e.g., a slowly
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collapsing rotating object), then we have found a new Robin condition
ki 3 sk k - -4
(LW) j + P W(s j +n nj) O(rm ) B (38)

which can be imposed to obtain unique solutions (see Appendix B for
derivation and proof).

However a number of nontrivial problems can be posed
(including our own application) for which both P1 = 0 and in = 0.
In these cases, the lowest order nonvanishing moments will be Dij
from (36). Because these are nonstationary moments, unlike P1 and
J‘J which are conserved, we cannot find a corresponding Robin-type
boundary condition. Instead, we propose using an approximate
Dirichlet condition imposed by directly calculating the moments (in

cartesian coordinates)
Dy = -2 I dv S ixg) (39)

as if the conformal manifold were flat. To serve as a good approxima-
tion, it must be true that l?ij - fijl << lffj' globally. In our
application of the ADM method to axisymmetric, nonrotating gravita-
tional collapse, this condition has always been well satisfied even
for extremely relativistic configurations. Use of this boundary
condition will be demonstrated in Chapter IV.

We must next consider the Hamiltonian constraint equation
(22) for the conformal factor. To do so, we first note some of the

properties of ¢. The condition that is required for asymptotically
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flat slices is ¢ + 1 as r+ ». In fact, the condition is more com-
pletely stated as ¢ = 1 + O(r']). which along with the asymptotic

condition

- k ’\k ~ -

Tig = Flsy £ 8 L B = o (40)
on the conformally related metric, guarantees the same approach

Yig = Fly 05wk o0 (e

- to flat space by the physical metric.

The monopole part of ¢ is identified in many situations with
the total energy E of the isolated system:

o=+ v o(r?) (42)

Recall our units are G = (8n)']. ¢ =1. In order for ¢ to have this
physical association, several conditions are required on the initial
data 913 (or equivalently on Rij)‘ The first is that the trace of
hy (with respect to fij) must satisfy

E(f) = f”ﬁ” = 0(r %) . (43)

This is always possible. Recall that the conformal technique is used
to split the metric into two parts: ¢ and §1J' This is actually an
entire class of splittings. Which element of the class is employed

s only uniquely determined once a single condition is placed on §1J'
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Suppose data has been chosen such that ﬁ(f) = 0(r'1). Using (1) and

(40), we write
4 A
Y'IJ = ¢ (f'lj + hiJ) ’ (44)
which has trace

Y(f) = 34 + ¢43(f) . (45)

We can then, for example, split (44) into its trace and tracefree

parts:
CTRRU U LT LPERY PR L st
A redefinition of the conformal factor and aij by
oot = ieghg)

Bij ” ﬁ;j . [1 " %-ﬁ(f)]"[ﬁ1j - %—ﬂ(f)fijl , (47)

then gives ﬁzf) = 0, which is clearly sufficient. This question of
defining the splitting and the conformal factor is really most
important at subsequent times during an evolution, so that the
interpretation of (42) can be maintained.

The second requirement needed to place ¢ in the form (42) is
that the tracefree part of Yije

= 1
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satisfy the asymptotic divergence condition
Cj(k)oi‘l’” = 0(?‘-3) . (49)

Here cJ(k) are the three asymptotic translational K111ing vectors
(Ki11ing vector of fiJ) introduced so that the fall-off can be made
basis independent. For this same reason, we used the mixed-form
tensors in (40) and (41). This condition, (49), can always be imposed
on the initial data by employing the freedom to fix the three initial
spatial coordinate conditions. We may then derive (Appendix A) the
two-surface integral

E= lim (-4) { wloe (A7)

r-+ o

involving just the conformal factor, from the more general ADM2 mass-
energy integral (A2). For (A7) to remain valid throughout the
evolution requires gauge conditions for the lapse and shift which
maintain (49) in time. York has called these (49) quasi-isotropic
coordinateslo since they go over to the isotropic coordinates for
Schwarzschild geometry. In our application, we use a gauge condition
which maintains (49), as will be demonstrated in Chapter IV, and so
(A7) remains applicable.

We maintain (43) by defining ¢ with the condition

dgt(?ij) = det(fij) =f |, (50)

on the conformally related metric. To see (43), use the matrix
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identity

sanldet(M)] = tr(M 1sM) (51)

with (40), ?11 = fit EU, and, notice from (50), that Gdetﬁ”) = 0.
This is the special nature of our definition of the conformally
related metric alluded to at the beginning of the chapter.

The energy so defined, along with the asymptotic linear
momentum ci(J)Pi (see Appendix A), forms a Lorentz covariant four
vector with respect to asymptotic boosts.m‘]9 One can define an

invariant masss’]4 of the configuration, M2 = E2 - P P1. which is a

i
constant of the motion as are E and Ci(j)Pi' If coordinates are
chosen which maintain P‘ = 0, then the mass and energy are synonymous.
This is the case in our application and we will often refer to them
interchangeably.

As was the case with the momentum constraints, in numerical
applications we often will require a boundary condition on ¢ for (22)
at finite, but large radius. York and Piran]s have shown that (42)

can be used to derive a Robin boundary condition

a0 + ;l-(¢ - 1) = O(rm'3) (52)
m

which eliminates the explicit appearance of the energy.
Proving existence and uniqueness of solutions to (22) is
much more difficult owing to the nonlinearity of the equation. None-

theless, the equation is quasilinear (deriyatives appearing linearly)
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which has allowed a great deal of progress to be made. Powerful

attacks on (22) have been made employing techniques of weighted
12,13,20

q13:21

Sobolev spaces introduced by Cantor to general relativity.

A number of results have been achieve for asymptotically flat

14 has extended the

7

slices using the maximal slicing condition. York
arguments to nonmaximal slices. OMurchadha and York’ have also
examined compact slices.

At minimum, our initial data is required to satisfy
acceptable fa]f-dff rates to be admissible as representing a proper
asymptotically flat slice and an embedding. Again, the metric is

required to have the fall-off

h‘J =o(r )y (53)

and successively higher powers for its derivatives,
i . -2 i -3
£y =0(r%) , .‘f’:‘tchd o(r) , (54)

etc. Here, Lie derivatives along the asymptotic Killing vectors are
used to state the conditions in a basis independent manner again.
This is completely compatible with the usual notions of fall-off of
cartesian components. These conditions apply at distances beyond
any radiation wavefronts, which is necessary in writing (54).

Minimum rates of decay for the extrinsic curvature are

Ky=or?),  £Ky =007y (55)
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etc. The sources, as can be seen from (22) and (23), must satisfy

T I I (56)

Finally, the gauge variables must satisfy conditions such that

a=1vor) gl gy o) (57)

in order to maintain the initial asymptotic flatness throughout an
evolution. Obviously, faster rates of fall-off will occur for certain

coordinate choices and source symmetries.

b) Fully Constrained Evolution

In solving the IVP, one often assumes for starting values
?11 = f1J and ﬁTij =0 (i.e. no wavelike momentum in the initial
conformal gravitational field). Such an assumption is made for
simplicity and the desire to minimize the amount of initial gravita-
tional radiation in the problem; though recall there will still be
transverse momentum in the physical initial data.

Equations (22) and (23) are in a form, however, that allows
them to be solved in situations in which ?1j # fij'and ﬁrij #0.
This will arise on subsequent slices during the evolution, so (22)
and (23) provide the meanslto resolve the constraints on each slice

and hereby construct a fully constrained evolution algorithm.
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We have already indicated in Chapter II one reason for
pursuing this method; that a free evolution will not in general main-
tain satisfaction of the constraints. It is not absolutely clear what
difficulties may be encountered by evolving improper Einstein data.
We may perhaps take a clue from the electromagnetic analogy. Solving
that dynamical problem involves finding initial data to satisfy the
single constraint, G-E = 4npc, and then evolving the dynamical equa-
tions for f. (e and the vector potential, as well as fixing the
scalar gauge field ¢. Analytically, the constraint condition is
preserved during an evolution; the conservation law (atpC equation)
and field equations (atf equation) guarantee it. Numerically evolving
the charge density and electric field will involve a drift out of the
constraint surface in general. One immediate physical effect is that
the charge measured by a distant observer examining the stationary
part of the electric field will differ from the charge obtained by
volume integrating the charge density.

It is clear that a similar problem can arise in general
relativity. Here, the stationary multipoles of the gravitational
field (yielding E, Pi, Ji) may not agree with the interna! sources,
which ostensibly conserve them. This may be a significant problem in
numerical relativity since the stationary (and gauge) parts of the
field are often much larger than the dynamical (wave) parts we are

so interested in calculating.
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We use a fully constrained evolution method to avoid many of
the problems that may occur with improper Cauchy data. Similar

schemes, though different in detail, were used by Dykema and wilson]]

22 in earlier versions of the code. An added

and Wilson and Smarr
feature of this method is that fewer evolution equations are integrated
in time. This may be advantageous in reducing numerical high wave-
number noise on the finite difference mesh.

When one adopts this approach and uses (22) and (23) on
subsequent slices, then, of course, the sources ;13, RTij. SH' and 31
are no longer freely specifiable but rather follow from the evolution.
Leaving kTij aside for the moment, how are ?1j' 6H, and 31 to be
obtained on a new slice when we have only derived evolution equations,
(1177) and (11101-103), for Yij» Pye and Si and have yet to determine
¢? The answer lies in using the definition (50), which fixes the

relationship between ¢ and Yij; i.e.,

[det(y; ;)17 = v = o°F% . (58)

Taking the trace of (1177) and using (51) yields

1
3pan(y?) = -aK + 0131 , (59)

which, using (58), gives an evolution equation for ¢:

2 an(¢%) = -ak + 0,8 . (60)

Equations (1177), (60), and (1) then produce an equation for ?1j:
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a3 = -20A' + (TILP (61)
Note that (60) and (61) represent the York-Lichnerowicz splitting of
the metric; their sources involve, respectively, the trace and trace-
free parts of KiJ.

Consider next the hydrodynamic equations (II101-103). If the
scaling laws (18) and (20) are adopted, then (58) shows that these are
evolution equations for aH and §1. If different scalings had been
chosen (for D and E for example), then use of (60) will allow (II101,
102) to be rewritten for 5 and E. So, we will have these conformally
related functions as input to (22) and (23) on a new time slice.

But what about RTij? The transverse extrinsic curvature
forms part of the source for (22) and the solution of the momentum
constraints (23) yields only the longitudinal part of A 40 the
decomposition (13): (tw)ij. What we need are evolution equations for
the transverse momentum. Unfortunately, no such equations exist. The

decomposition (13) - (15) is nonlocal; one derives the transverse

part from
R = AN - (i (62)

only after having integrated the elliptic system (23) for w‘.

In a way similar to the splitting of (II177) into (60) and
(61), we may also obtain dynamical equations for the conformally

related trace, K, and tracefree part, ﬁij, from (I1176) using (60) and
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the scalings (7) and K = ﬁ We can thu§ integrate /A\1J forward in time,
solve (23) for w‘, and use (62) to read off the new values of ﬁT*J.
However, this violates one of the aims of solving the constraints on
successive time slices, which is to avoid having to evolve the full
extrinsic curvature. What we are after is a reduced evolution scheme
that involves just dynamically evolving two of the components of the
extrinsic curvature (representing the two "dynamical" degrees of
freedom). The trace, ﬁ, will be used to fix the time gauge and the
remaining three components will come from solving (23).

The idea 1is then to use the evolution equations for Ald to
propagate forward two (specific) components. This may reduce to only
one component 1f symmetries restrict the dynamical freedom (which is

i and

the case in our application). Then (23) is solved to obtain W
the entire longitudinal part of ﬁiJ. The transverse part is calcu-
lated for the two chesen dynamical components by using (62). Finally,
these transverse components are used, along with solving the other
half of the decomposed momentum constraints (14), to find the remain-
ing transverse components and reconstruct the entire new A'J.

In practice, solving the first order system (14) proves
numerically and conceptually difficult. The questions of how to pose
proper boundary conditions and find convergent iterative finite dif-
ference algorithms are most naturally discussed in terms of second

order equations. Fortunately, there exists8 a means of finding a

second order elliptic system for RT1J.
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Recalling the d1scussion before, if V1 and MU are a vector
and a symmetric tracefree tensor with sufficient rates of fall-off,

then the integral relation can be written,
&b M (M =2 [ g5 v, 5,M1 (63)
ij 3 ’

with neglect of the surface terms (again with the assumption that the
manifold is topologically R3). Equation (63) implies that the operators
Land D are in adjoint relation.8'23 Two adjoint operators, applied
successively, produce a self-adjoint operator, as is the case with the
vector Laplacian EL = 0L (31). The same is true of the dual operator,
KT = fﬁ, formed by reversing the order, which takes symmetric trace-
free (STF) two-tensors to STF two-tensors. This operator is called
the tengor Laplacian and it is strongly elliptic.

We may work out the properties of this tensor Laplacian as
was done for the vector Laplacian. Of primary importance will be the

first form of the tensor Greens identity
o NEILL 2 4 kI N tkiy i
[ @@ sy(3m " =2 fals ptd 2 [ @@, L (e

found with the use of (27) and application of Gauss' theorem. Here
both SiJ and Tij must be STF tensors. Before proceeding to apply
(64), we give for completeness the second form of the tensor Greens

theorem also:

[ dits;jBm Y - 1 (B Y - 2 § Altsy Btk - 1B L (6s)
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The result we desire comes from the use of S1j = T1j "Rij in

(64) as well as the divergence-free condition (14) on Bkﬁkj =0 on
the boundary to produce the inequality
a® oA AqY A ~kdy Ain
[ 60 &y 5(ai" = -2 [ @R BR <0 (66)

It is immediately apparent from the form of the operator 8T = LD
(where D here implies the divergence) that if Eij is transverse (i.e.
satisfies equation (14)), then it also satisfies (KTR)1J = 0. Con-
versely, the inequality (66) implies that if (KTR)iJ = 0, then PRT
transverse everywhere (1f it is on the boundary). Thus the tensor

Laplacian has the remarkable property that the solutions to

(b =0 (67)

are identically the solutions to (14), the first order transverse

part of the decomposed momentum constraints.

Using the transverse components which are known from the
evolution, (67) provides a system of second order elliptic equations
for the remaining transverse parts. The proper boundary conditions to
be imposed on this second order system are precisely the transverse
(radiation) conditions (14). A specific example of this method will
be displayed in Chapter IV. To be used in the next chapter, the
lsystem (67) is simplified from the more explicit form

(BTRT)iJ = p'9 kA + DD,k - %—?1jﬁ D,k A =0 . (68)
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Before closing out this section, the above function space
decomposition gives rise to an 1n£erest1ng global test of the orthogo-
nality of the splitting, (34), which can be used in numerical applica-
tions. Defining the notation

(5,7) = J dv EU?” , (69)

for the global inner product, the orthogonality of the longitudinal

and transverse tensors in (34) 1s expressed simply as

(Rpa (@) =0 . (70)

" Now in a numerical setting} it can be expected that these quantities

will not precisely satisfy (70). A global test of the degree of
orthogonality can be made by calculating the function space angle Dy

from

(Kpa (LW))
cos|T - ¢,| = , (71)
2+ (RpoKp) *((TH) , (W)

and requiring ¢, to be sufficiently small.

c) Kinematical Conditions

We consider in this section the kinematical conditions
which must be imposed to determine the lapse, a, and shift, 81.

These thereby define the spatial time slices (the foliation) and a
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coordinate congruence in the future of g along which our initial

data are propagated. We cannot improve here much upon the discussions

of coordinate conditions in the ADM scheme previously given”'"s’zz’m'28
in the literature. The gauge employed in the current code remains the

n This particular gauge will

same as that used by Wilson and Dykema.
be fully described in Chapter IV, so the comments here will be of a

more general nature to serve to highlight the advantages and limita-
tions of our choice.

We have expressed the Einstein equations in the previous
chapter in terms of the coordinate congruence, whose tangent vector
is td (I149) and which depends on the lapse and shift, without yet
discussing the geometrical significance of these quantities or how
they are determined. The lapse determines the local orthogonal

interval of proper time, dr, between adjacent slices, with coordinate

time separation dt, by
dt = adt . (72)

The lapse function therefore determines the location of the "next"
slice in the future of 20, i.e, £(t0 + dt), and the normal vector
field n? on this new slice as well. From (II148), it is clear that
an® is the vector field that orthogonally "connects" the slices Z(t)
and £(t + dt). Any spatial "shift" vector, g2, defined by (1150)
then defines an equivalent, though nonorthogonal, vector field t?
given by (I1149). The observers carfied along the worldlines with t2

as tangents are coordinate observers. Observers transported along
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the curves with n? as tangents are termed Eulerian observers; they are
at rest relative to the time slices. The shift vector corresponds to
a relative velocity between the coordinate observers and Eulerian

observers given by

(73)

Since we will only consider asymptotically flat spacetimes, the lapse
will be conventionally taken to satisfy a + 1 as r + « and the shift
B >0asr+w (57). This identifies asymptotic coordinate time with
proper time and assumes the source is in the asymptotic rest frame.
The ability to choose a and B1 (since 80 = 0) quite arbitrarily other-
wise reflects the coordinate freedom of general relativity.

In any constructive calculation, conditions must be imposed
to determine the lapse and shift. The choice of the lapse function
is of fundamental importance in calculations involving strong fields.
If singularities arise (i.e. black holes), an improper choice for a
may cause the time slices to advance into the singular region and
terminate the calculation long before the effects of the strong-field
dynamics (gravitational waves) can reach the weak-field regibn and
be studied. Instead, the lapse can be reduced in strong-field regions
to slow the advance of proper time there (72), while allowing a
significant Cauchy development in the weak exterior.

How is the lapse to be determined? We can of course

directly specify a; say by setting a = 1 everywhere. This particular
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choice is called geodesic slicing, since from (II33) the acceleration

24,29 that

of the Eulerian observers vanishes. It is well known
geodesic slicing fails to provide a significant development of the
initial data in many strong-field problems. We can demonstrate the
problem by calculating the rate of change of the trace of K1j along

an® using (1158) with (1146) and (1152):
£ K=-ta +alk KW+ 1 (o +5) (74)
an 13 2 Py ’
and assuming geodesic slicing to obtain,

LK K”K” + ;_- (oy +9) - (75)

The right-hand-side is positive (or zero) if the strong energy condi-
tion29 is satisfied and K will tend to grow without bound. From (59)
using (1152) we find

oo anrt= ok, (76)

and so, again given o = 1, if K diverggs then y + 0 implying a coordi-
nate singularity. What has happened is that the Eulerian observers
Tie on geodesics in this gauge and these tend to focus upon encounter-
ing non-vanishing sources in (75) and subsequently cross (form
caustics).

0f course, other direct specifications of the lapse may be
better suited to avoiding coordinate singularities and real physical

curvature singularities. The lapse might be. controlled by monitoring
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Y and some number of the Riemann curvature invariants. From the stand-
point of exploring the structure 6f general relativity, this might
provide a productive means of pushing the slicing ahead, arbitrarily
close to the singularities that form from gravitational collapse, to
achieve a maximal development .of the initial data. The singularity
structures that arise from nonspherical gravitational collapse could
then be studied.3® The mazimal slicing condition, described below and
used in our application, is known to halt the development in the
interior of a black hole (at least in spherical symmetry) well short
of the singularity, though it does provide a complete foliation of
the exterior,24»30-32

A different route, which has been most fruitful in numerical
applications and is by now fairly well explored, is to treat the gauge
fixing in a way that is similar to the initial value problem. The
lapse and shift in this method are determined indirectly by specifying
conditions on components of the "velocities" £tK1j (for the time
slicing and lapse) and LtYij or £tiij (for the spatial coordinates
and shift). Initial values of these chosen components are given on
EO to fix the kinematical degrees there. For whichever component of
Kij and Y4 (or ;11) are employed in the gauge conditions, the effect
is to turn the corresponding equations of (1177,78) from a hyperbolic
character to eliiptic or parabolic for a and Bi.

We can consider examples of this approach for finding the
lapse by treating the trace K as the kinematical part determining the
time slicing. Then, using (5), (74) becomes the elliptic equation
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- ij,1,2.,1 i -
Aa—a[AUA +§-K +2(pH+S)]+BDiK K, (77)

for a, dependent on K and its rate of change atK. On any subsequent
slice, (77) requires that atK = f(x1,t) be specified; the value of

K = g(xi,t) will itself have followed from the evolution of its initial
value on £y The initial value of K on Ly will fix the initial time
coordinate.

One example of such slicing conditions 1s constant-mean-
curvature slices, K = K(t). These have the immediate advantage that
the equation (77) for the lapse decouples from the shift vector,
though this is only of secondary importance in a numerical calculation.
Constant-mean-curvature slices however fail to satisfy our assumed
fall-off conditions (86). This has the consequence that, though
everywhere spacelike, these slices interact null infinity 1nstea§ of

spatial infinity, 1°.

These spacelike slices are asymptotic to null
slices. Slices with K < 0 intersect future null infinity, 1+, while
those with K > 0 intersect past null infinity, I". This property of
constant-mean-curvature slices may eventually be used to great
advantage to allow the spacelike ADM §cheme to incorporate the
standard theory33’34 of gravitationg] radiation and mass-energy at
null infinity. One potential problem with this approach30'35 is the
question of whether these slices intersect null infinity in a good

cut, i.e., whether the two-surface of intersection is sufficiently

smooth.
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The maximal slicing condition, which we employ, results in

an equation for the lapse from (77)‘by demanding 3K = K = 0:
i
b = a[A”AJ ¢ 1oy + s)] . (78)

Again, assuming the strong energy condition, 1.e. DH +S 20, the
term multiplying o on the right-hand-side is positive definite and so
the standard maximum-minimum arguments on elliptic systems apply.

Maximal slices intersect 10. The maximal slicing condition was

originally discussed and suggested by Lichnerowicz.6

Its geometrical
significance can be seen by considering the trace of equation (1132)
giving Vana = 0. This result implies that the convergence of the
Eulerian observers vanishes, i.e. the Eulerian observers behave 1ike
an incompressible fluid in this gauge.

While this property does not guarantee that maximal slices
will always avoid physical curvature singularities that result from
black hole formation, it has worked well in practice in a number of

applications]1']6'22’36’37

to date. The effect of maximal slicing
when a black hole forms (event horizon appears) is to decrease the
lapse exponentially in the interior, thus forming a Zimit slice which,
presumably, has some finite proper time interval away from the singu-
larities. Proper energy densities will "freeze" in the interior.

An example of the collapse of the lapse function from our
own calculations is given in Figures la,b. These are plots of the

central value of the lapse during a spherical core collapse to a black
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Figures la,b. Data from a spherical collapse to a black hole.
Figure 1a gives the central value of the lapse function plotted
versus coordinate time in units of M. An apparent horizon formed
at roughly t = 52 M. The logarithm of the central value of a is
shown in Figure 1b. The calculation proceeded for times in excess

of 100 M past horizon formation. The exponential braking of the

lapse is evident.

Lapée function

Figure la
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hole. An apparent horizon was observed to form at approximately

t = 52M where M is the mass of the system. In Figure 1b, at late
times after horizon formation, the exponential decrease, e't/te, is
clearly evident. This behavior confirms simplified arguments of Smarr
and York,24 results from maximally slicing vacuum Schwarzschild

24,31 and calculations of Shapiro and Teukolsky.37 Inter-

geometry,
estingly, the heasured e-folding rate for our matter-filled collapse
is te = 1.80M; exceedingly close to the rate, te = 1.82M, obtained
from maximally slicing a Schwarzschild black hole.24 This 1s added
confirmation of the conJecture24 that the decrease of o is largely
independent of the details of the strong field region during black
hole formation.

We note also in Figure 1b that the calculation continued
tong after horizon formation (approximately 100M). This is the
desired property of our time slicing when a black hole forms. From
perturbation studies38 of black holes and the two black hole colli-

16 it is known that the characteristic wavelength of gravita-

sion,
tional radiation from black hole formation is Tikely to be roughly
17M.  We will thus require our calculation to be able to continue for
times on the order of hundreds of M after horiion formation. This
allows the gravitational radiation pulse to propagate out into the
wave-zone and to be measured as it passes through an edit two-surface
at the edge of our mesh.
Finally before leaving the lapse, we point out that one

need not restrict attention to K and (78) 1in using this method to
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also. Bardeen and Piran26'39 and Eardley40 have advanced the polar
glicing condition

B L, by 0 ¢ =
at(K ot K ¢) 0 and K ot K 0 o , (79)

in spherical coordinates, which has similar "singularity avoidance"
properties. This condition results in a parabolic equation for the
lapse, a, with significant computational speed advantages over (78).
However, the condition (79) results in regularity problems at r = 0,
which require modification of (79)26'39 in practice.

Compared to the lapse, the specification of the shift vector
is of less fundamental importance, since its use only amounts to a
relabeling of the spatial coordinates on the time slices. Of course,
the flow of the spatial coordinates from slice to slice must proceed
in a sufficiently smooth manner or coordinate singularities can again
arise. -

We can take similar approaches to the shift as we did for
the lapse. The shift vector components can be directly specified, as
the case of geodesic slicing demonstrated for the lapse. The most
obvious choice of this type is to take B' = 0 (normal coordinates).
There is no fundamental objection to this particular choice and it
has been successfully applied in several problems including the calcu-
16

lation of the collision of two black holes. This spatial gauge

leads to a degree of simplification of the Einstein equations, by

9% “\“

eliminating terms in the evolution equations (1176-78). However, from
the standpoint of achieving the greatest degree of simplification,
there is a better course involving the use of a nonvanishing shift
vector, as will be shown below.

Another useful example of directly specifying the shift is

ol Here the idea is to choose the shift vector

the Lagrangian gauge.
so that the spatial coordinates comove with the matter. This route
leaves the lapse free to determine a smooth time slicing. In the

Lagrangian gauge, the hydrodynamic equations (I1I1101-103) then obtain
a simplified form (Vi = 0). This technique has so far been used in’

spherical collapse ca]culations,27’42

though it is also amenable to
nonspherical situations.
It is important to distinguish this approach to constructing

a Lagrangian gauge from a more commonly employed,“‘45

though less
satisfactory, method. This older approach takes Bi = 0 and uses the
lapse to distort the time slices in such a way that the matter
velocity corresponds in direction with the surface normal, na. and
therefore with the flow of the Eulerian and coordinate observers,
This is only possible, however, if the fluid flow is irrotational
since n? is surface-forming only if condition (119.29) is satisfied.
The technique is therefore restricted to use only in spherical
systems. Even in spherical collapse calculations however, this gauge

45

breaks down™~ shortly after a black hole forms as the time slices

intersect the singularity.
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We can also indirectly specify the shift vector by setting
conditions on components of the velocity of tﬁe three-metric, atyij’
or the velocity of the conformal metric, at?ij, in analogy to the time
slicing conditions just discussed. These gauge conditions split into
two types, which we call differential and simplifying (or algebraic).
The attempt with these gauge conditions is to use the shift vector to,
respectively, either minimize coordinate excitation in the presence of
gravitational waves or to simplify the form of the three-metric in
order to reduce the complexity of the Einstein equations.

The former coupse 1s most naturally pursued by use of the

24,25 minimal distortion shift vector condition in conjunc-

Smarr-York
tion with the maximal slicing condition on o. Minimal distortion
shift vector is an attempt to separate out and minimize the coordinate
waves (coordinate shear) that appear in the presence of "true" gravi-
tational waves. The idea is to use 81 to remove the longitudinal

part of the time raFe of change of the conformal three-metric, vij'

Using (59) and (1177), we obtain the evolution equation

V3,5 L .
Y atyij ZaAiJ + (LB)1J =2 zij , (80)
with the definition (2) employed. zij is a shear-1like quantity called
the distortion tensor. It is obviously tracefree. Assuming our
manifold is topologically R3, the covariant orthogonal decomposition,

utilized previously, can be applied to Eij giving

gyt Wy (81)
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where D zij = 0. So ziJ is TT. Note also that this decomposition
is orthogonal on the physical manifold, as opposed to the earlier
application on the conformally related manifold.
The longitudinal part of £1J in (81) is, recalling the
arguments of (32) and (33), also given by
W 7
(Lv)ij Y Linj s (82)
which hence represents the part of at?ij affected by coordinate
changes. The minimal distortion shift vector gauge results from
requiring this part of Eij to vanish, thus making the time rate of
change of 711 pure TT:
14 =
D (atyij) =0 s (83)
From (80), this condition results in the system of second order
elliptic equations on Bi.
- nl = onl
(8,8); = D'(L8)y = 20'(ah5) (84)

which involves the use of the previously described vector Laplacian.
The term differential shift condition comes from the use in (83) of
the divergence operator on the velocity of the conformal metric.

This radiation gauge25 (including the use of maximal
slicing) has the nice property of maintaining throughout the evolu-
tion the initial fall-off rates (53) -(56). The shift condition (84)

is also three-covariant. allowing freedom to specify the initial
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spatial coordinates on Zo as desired (recall that Bi only propagates
spatial coordinates from slice to slice). This gauge gives a much
cleaner asymptotic separation between the radiative and nonradiative
parts of the gravitational field. However, it has yet to be employed
in a multi-dimensional code. This fact owes much to the complexity
of the Einstein equations in multi-dimensional problems and that the
minimal distortion shift condition adds to this complexity, through
the use of nonvanishing 8‘. while making no corresponding simplifica-
tion in the rest of the metric. It is likely that symbolic manipula-
tion languages (such as MACSYMA, SHEEP, etc.) will have to be employed
to derive and check the differential equations resulting from these
"general metric" gauges.

Algebraic shift conditions are similar in type to the
maximal and polar time slicing conditions. Conditions are directly
placed on some number of components (up to three) of the velocity of
the three-metric or on some number of time independent linear combina-
tions of components of atYij' Such conditions can be symbolically

represented as

™ (x1)ay. =2 My =il (85)
oLy Cpal* P2eYpq = 3 pgq pa* Mpq

where m labels the gauge conditions imposed and cgq(xi) are spatial
cbordinate dependent functions. These gauge conditions must be

supplemented by initial values on ZO:
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oo Bax g = "x) - (86)

Note that these conditions are no Tonger three-covariant in contrast
to the minimal distortion gauge.

Assuming the number of equations represented by (85) is
equal to the number of nonvanishing shift vector components (or if
less, then additional conditions are imposed on ei). then (85)
results in the equations

I ™ (pg + D8

- 20k ) = f™(x},t) (87)
P,q Pq pq Pq

P
for 81 using (I177).  This will be a system, in general, of first
order PDE's.

The purpose behind these conditions is to simplify the dif-
ferential equations in the algorithm. This is accomplished, even
though nonvanishing 31 contributes kinematical terms to the evolution
equations (I177,78), by reducing the number of independent components
of iy Recall that the kinematical quantities a and 81 do not
appear in the IVP, while Yij appears in both the evolution equations
and the IVP equations as complicated second order covariant deriva-
tives and Ricci tensor terms. The most general metric with six
components can be reduced to three independent components using
the full shift vector. Of the remaining three, one is determined

by the Hamiltonian constraint (¢) and the last two represent the
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two dynamical degrees of freedom. In certain problems with symmetry,
the number of degrees of freedom may be ‘reduced (as with our
application).

Typically, for reasonable simplifications to result we take
" = 0, gm = 0. A number of these conditions are discussed in the
literature,]]']6‘26’36’37'39 but they are usually tailored to the
particular coordinates and symmetries of the problem. We therefore

defer further discussion until considering in Chapter IV the specific

gauge we employ in our code.
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17.
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19.
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APPENDIX A

The fall-off conditions (41), (53), (54), and (55) guarantee
that our slices intersect spatial infinity, 10, and that a unique,
well defined asymptotic energy-momentum four vector for our isolated

system can be found there. Writing the metric (as in (41))

Yij = fik(ékj + hkj) s (A1)

where fik is the corresponding flat metric, allows the ADM energy
ener‘gyz'w']9 to be expressed in terms of the two-surface integral by
(recalling our units G = (8n)'], c=1)

lim l} ad Di(hij - G‘Jhkk) ) (A2)

E =
aom = o

Here, the full D1 can be replaced by its flat space counterpart

relative to fij'
Using the assumptions (43) and (49) discussed in the text,

we can proceed to show the reduction of (A2) in terms of only the

conformal factor ¢. From (40) and (41),
ho = (6% - 1)f,, + o%h (A3)
ij ij iji
with trace (relative to fij)

hK = 3(e" - 1)+ oMRE (A4)
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We can write

ik et 1 k)
'y - atgs oy - 3ty

win

i 2

42k
viyg-g3éh

using the definition (48) for the tracefree part. Then combining (AS)
and (A4) gives

which with assumptions (43) and (49) allows (A2) to be rewritten as

B = 1m (-0) f e 0o (A7)
r -+ o

In the same way, the linear momentum of the system has a
two-surface integral definition. Letting ‘i(k) be the kth asymptotic
translational Killing vector of f1j, the component of the momentum
along this direction is

[

r <+ o

§ o cdyy -t (A8)

These results, (A2) and (A8), are asymptotically invariant under
gauge changes that do not produce asymptotic Lorentz boosts (i.e.
the allowed asymptotic coordinate changes are of the form

a a' a

x2 + x2 = x? + e£? where abga =()(r"). acabga =(7(r'2), etc.lo).

An expression for the angular momentum of the system can

also be produced by replacing the ci(k) in (A8) by rotational Killing
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3 ot Jin } a0y - 0 . (A9)
However, this result is asymptotically gauge invariant only if the
relevant cirot(k) are exact rotational Killing vectors of the full
spacetime. If exact symmetries do not exist and the rotational Killing
vectors of fU are used, the values produced by (A9) are ambiguous
unless suitable further restrictions are made on the gauge and allow-
able gauge changes. Sufficient conditions on the asymptotic gauge are

(49) (on the spatial coordinates) and

K=o(r3) (A10)

(asymptotically maximal slicing for the time coordinate), however
further physical restrictions may also be necessar‘y.]9
The ADM surface integrals given above are defined at

spatial infinity. In a typical numerical calculation, however, these
quantities must be evaluated at the edge of a grid at a finite radius.
Therefore, they will only approximate the ADM values at lo. We can
add to this list other quasilocal indicators that formally approach
their ADM analogs as r + =, One such indicator of the energy (or

mass with mass-centered coordinates) is the Hawking mass”'30’36‘46

My(r) = 3n[%(g}]}i [1 . I %up] , (A1)
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where A(r) = I dA is the proper area of a coordinate two-surface and

u and p are the Newman-Penrose spin coefficients”'47
b= Py, k (A12)
b*a °*
a-b
poEmMmVL . (A13)

Here ka and La are, respectively, the ingoing and outgoing future
directed null vectors orthogonal to the coordinate two-sphere of radius
r. The interpretation of (A12) and (A13) is that -u and p are the
convergences of the null congruences associated with ka and za.
respectively. Hence, p and p measure the focussing of null rays due
to the curvature of the two-surface and the presence of mass-energy.
The surface integral in (Al1) encompassing the isolated system
attempts to remove the focussing due to just the two-surface curva-
ture (on a metric sphere in flat space, p = Z% and p = %ﬂ.

This points to one of the properties of MH(r); it vanishes
in flat space on a sphere. The Hawking mass has several other nice
features.30 One property is that lim MH(r) = MADM as r+© on a
spatial slice. Secondly, it also gives lim MH(r) = MBONDI33'34 as
v==t+r+eo (i.e. ona cut of future null infinity). Thus, the
radiation reaction effect on the mass of a system is potentially
measurable using MH’ This indicator has worked well in our applica-
tion, as will be demonstrated in Chapter VI.

We will also be interested in measuring the flux of gravi-

tational radiation emitted during our calculations. This too must be
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done at a finite radius as opposed to future null infinity I+, where

it is more rigorously defined.33’34 To this end, we use the asymptotic

expression for the rate of change of MH with retarded time.46

dMH 1 |12
ol SO A T IdA UL (A14)
r oo
where X' is the Newman-Penrose coefficient]]’47
A = -y, k (A15)
b™a °

equivalent to the Bondi news function.33 It is clear from (A14) that
a nonvanishing news function can only lead to a decrease in the Bondi
mass with time. Expression (A14) for the flux is calculated in our
applications at a large, but finite radius. Its value will therefore
not be unique and will only approximate that which one would obtain
at 15, Mo rigorous error bounds are available, but it is expected
that (A14) can be evaluated on a sufficiently large coordinate two-
sphere to make such errors comparable to the truncation errors

associated with the finite difference approximation.
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APPENDIX B

48,49

Bowen and York have derived a monopole (r']) singular

solution to the vacuum, flat space vector Laplace equation
)y 1
(0, Pwt=0 (81)

given by

W(x) = - gl [Gij + ;—n‘nj]»vj . (82)
Here Pj is a constant vector and n1 = % xi. Flat space cartesian
coordinates are used throughout this discussion unless otherwise noted.
There are three independent solutions of (B2) corresponding to
linearly independent Pi(k).
We can use these monopole solutions to produce a basis of
vector Greens functions (bivectors) gi(k)(x - x') of AL(f). Taking

for Pi(k) the cartesian coordinate basis
i i
e (k) = § K ’ (83)

i

and replacing xi - xi - x" yields

i i
i W 7 i (x" ~-x"")(x, -x"',)
g (k)(x -x') = - 32X -x"] [% k* % s _x,:2 % » (B4)

from (B2). The L operator (15) applied to (B4) gives



m

; i i i
(Lg(k))]j B T%F (x -x')72 [gik Tx -;'I ¥ ij Tx -i'l
M [ o0 0l -xJ')l] L)
]X -X I [6 (X -x')
Computing AL(f) (16) of gi(k)(x -x"') from (BS) produces
(AL(f)g(k))1 = 6“‘63()( - X') » (86)

where the coefficient of 63(x - x') is found by evaluating (28) using
(85) and Vi = € (k) (B3). This justifies the use of the term vector

Greens function. In evaluating (BS) and (B6) we have used

J
ar _ 1 an' _ 1,7 J
= —~%x, 3N 5w ——v-’—(6 -nn) » (87)
axi r i i ' " i i

where n1 should not be confused with the time slice normals, and the

surface integrals

[a=a . [anid-tged
and
I o . for odd m . (88)

We are now in a position to calculate an integral solution

of the flat space version of (25):

(AL(f)w)‘ « s u (89)

Using (B9) in (29) with vi- gi(k)(x - x') gives

112

W = [ e o™i xs, ) (810)

where the surface terms vanish since gi(k) = a(r']) and WK = o(r']).
The solution (B10) can now be employed to obtain a vacuum

multipole moment expansion of wk. valid for asymptotically flat mani-

folds as well, by expanding the vector Greens functions. Taking

r=|x| > |x'| = r' gives

9“”U-w)=-3ﬁ;[b“+%n%q

L4
XX
+ —rz& [Gki + % nfni] - 7]? (nixk' + nkxi')] » (B11)

1 2

through orders r”' and r~*¢.

Then using (B11) in (B10) we obtain the

expansion (36):

Nk(x) e 3?%? [551 + ;-n'(n"]P,I + ;gi:z (GkinJ - GkJni)J1J
+ ——l—? [é(njski + nickj) - nk(6iJ - 3n1nj)]01J . (B12)

64nr

where the moments Pi' Jij’ and Dij are given by

P, = [ s (x') (813)
3y = -2 f a3x Sp(x)xtyy (814)
035 = -2 [ & sy, (815)
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In a sufficiently flat spacetime, (B13) - (B15) can be directly inter-
preted, with Pi being the linear momentum of the system, Jij being
the angular momentum tensor giving an angular momentum vector

= %-emijdij, and symmetric moments Dij representing some non-
stationarity of the system.

The linear and angular momentum terms of (B12) continue to
have the same interpretation for P1 and J1J on an asymptotically flat
space, as can be verified by calculation of Kij = (LH)‘j from (B12)
and substitution in (A8) and (A9). We have not yet found an inter-
pretation of D1J on a non-flat manifold. However, in flat space, Dij
is the time rate of change of the quadrupole moment tensor. This

can be shown by use of the conservation law Tab b= 0:
,
- 3, 00 o 3, [00
81‘,111‘j at I dx T x1xJ I d'x T ,0 xixJ

- J d3x 1ok

ok X%y

I d3x(T°1x‘j + T°Jx1)

3

where S, = -T°, from (1179) if a = 1, g' = 0.

Finally, we use (B12) to consider boundary conditions for
(25) at finite radius. Assuming P, #0, (B12) can be used to derive
the York-Piran Robin condition (37) for a moving source. We proceed
to show the uniqueness of the solution to (25) using (37). By taking

(37) and multiplying by (6"'1 + nmni) we obtain
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(Ew)”nJ . 7"ij[6” +g-nin‘j] ) (817)

We assume two solutions, N]i and Hzi, exist to (25). Their differ-

i i

ence, U’ = N21 - w] , satisfies (Z\LU)1 = 0. Using this with (B17)

i

in (28) with v} = w! = o1 gives

V[ oty sondd L 6 5,3 14 .
EJdv(LU)”(LU) +7§dnru1uj[a +4—nn] 0 .  (818)

The first term is positive definite and, since the eigenvalues of
(Gij + %-ninj] are (7/4,1,1), so is the second term. Therefore,
(fU)1J = 0 everywhere interior and U1 = 0 on the boundary. The

former condition allows the possibility that Ui is a CKV. The CKV's

of three-dimensional flat space are®0

(o)°1 «als b”xJ rext 4 deJx’ 5 ;—d1 xjxj , (819)

in cartesian coordinates, where bU = -in. The constants give the
ten parameter conformal group. None of these vanish on a spheroidal
boundary of nonzero radius, as required by the surface integral (B18).
Suppose on an asymptotically flat manifold CKV's C'(k) exist,
differing from (o)c‘(k) by

i i i
Ctk) " (¢ (k) * € (k) (820)

Taking the metric in the form (41), with asymptotically cartesian

coordinates (f,,‘j = Gij)' we obtain
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T Gij + wij s (B21)

where Wij' the tracefree part of iy is defined in (48). Then using
the defining relations, £cY1J = 0 and L(O)Cfij = 0, we find
asymptotically that ei(k) satisfies

(f) s .. L o Y o
(L7edy = £ e T @2~ W 0)G T Vo) 0 (B2)
where the k subscript has been dropped. Since we require

i -1 i i - -1
v j O(r "), (B22) implies ¢ (k)/(o)c (k) O(r™") as well. Thus on
at sufficiently large radius, (B18) implies Ui = 0 everywhere and
therefore uniqueness.

The new Robin boundary condition (38) is applicable to
problems involving rotation and which employ center-of-momentum
coordinates, P1 = 0. Additionally, it must be true that the

symmetric moments, Dij' are such that
loijl << |J13| . (B23)
This condition should apply to slowly collapsing, rotating configura-

tions; say, for example, initial data for rotating stellar collapse.

If P' = 0 and Dij = 0 are assumed, (B12) becomes

wh(x) = Loy (6K1nd - 6"%').1iJ +o(r

16mr

1 Jk -3
= Y R v v B2
ar? 4T e
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From this is obtained

(Lw)kl = E;%g (nknjajz + nzanJk) + O(r'4) , (B25)

which, using (B24) and contracting with Ny gives (38):

ke, 4 3 gk -
(L) g + 2 (8% + nkabyw, = oty . (826)

Assuming again two solutions, w]k and wzk, to (25) using
boundary condition (38; B26), with difference UX = Nzk - N]k
satisfying (KLU){ = 0, (B26) in (28) gives

%—J dV(tu)”(Eu)” +3 § dar U U (8% +nknty =0 . (se7)

The eigenvalues of (sk2 + nknz) are (2,1,1) and the same arguments

apply showing uniqueness.



CHAPTER IV

Having discussed in Chapters II and III many of the general
aspects of how general relativity is treated as an initial value and
dynamical problem, we are now in a position to apply these techniques
to model axisymmetric, nonrotating gravitational collapse. This chap-
ter is devoted in large part to obtaining the partial differential
equations to be solved through finite differencing (see Chapter V).
Our particular spatial and time gauge conditions are implemented along
with applying the assumed symmetries and reducing covariant to partial
derivatives. We evaluate expressions for mass-energy and energy flux
(Chapter I1I) that are used to obtain results on gravitational

radiation from our calculations.

Boundary conditions are formulated for the derived equations.

These include physical conditions at large but finite radius, as well
as conditions produced by the symmetry assumptions at the origin,
along the symmetry axis, and on the equatorial plane. To aid in
understanding the physical conditions at large radius, expansions are
given for some of the longitudinal, gauge, and radiative parts of the
gravitational field. Symmetry conditions follow from a thorough
examination of the regularity of geometrical quantities near the
‘singular points (r = 0, @ = 0) of our spherical polar coordinates.
These considerations also help to determine a pair of variables formed

from combinations of the coordinate components of Yij and Ki‘j which
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have particularly nice radiative features. Using the simplifying
gauge approach and fully constrained evolution, these are the only
components of the gravitational field, representing the single
dynamical degree of freedom allowed by our symmetry assumptions, that

need to be evolved using (1177,78).

a) Spatial Gauge, Shift, and Metric

Axisymmetry implies that the metric admits a rotational

Killing vector $a. We assume in addition that the space has equa-
torial plane reflection symmetry. It is possible therefore to choose
the computational frame that is momentum and mass centered. Assuming
no axial rotation leads to vanishing angular momentum at infinity,
Ji$1 = 0, from (IIIA9). Even if the technique is extended to allow
axial rotation, the calculation of (IIIA9) will be unambiguous owing
to the exact rotational Killing vector. In this case, the boundary
condition (I1I38) can be used to determine a precise value (to lowest

order) of J, at large radius.

Tt proceed much further, we must make a specification of
the spatial basis {ei}. As mentioned in Chapter II, it is most
practical to take a holonomic, or coordinate, basis. We produce this
basis by taking the tangent vectors of the topological spherical polar
coordinates (r,8,4). The Killing vector is identified with ¢ = 3y
while the symmetry axis is at 8 = 0, m and the equatorial plane is at
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8 = n/2. We assume r = 0 has the topology of a point (the three-
manifold is diffeomorphic to R3) and that the center of mass is
located there.

The Killing vector generates isometry in the metric and
other geometrical quantities under the action of £¢. Hence, with our
coordinates defined as above, ¢ is an ignorable coordinate. The
resulting two-dimensionality is the primary reason the problem is
numerically tractable using current resources. The assumption of no
axial rotation implies that the gravitational and matter fields are
invariant under the change ¢ + b9 = ¢ for arbitrary ¢g. In our
coordinate basis, this results in the vanishing of any tensor compo-

nent having an odd number of ¢ indices. In particular, we have
B¢=Yr¢=Ye¢=0 . (])

This initial reduction of the metric gives the 1ine element
ds2 = - azdt2 + Yrr(dr + s"dt)2 + yee(de + sedt)2

+ Ywd¢2 + 2y, (dr + g"dt)(de + g%t) (2)

from (1173).
We must next impose our spatial gauge conditions. Qur

gauge is the same as the last one of several tried by Wilson and

1

Dykema.  The two conditions

2 0 and 3 rfy - vy) =0, (3a,b)

tVrg ©
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" of the simplifying type (11185), are introduced. In addition initial

values

2
Ypg =0 and "Ypp = Ygg =0, (4a,b)

are taken on zo (Ir1186) leading to a greatly simplified line element

2--u%¥+Aﬁw+s%nz+¥ﬂwe+§uﬂ

ds
+ Bzrzsinzo d¢2 , (5)

where we have introduced Yyp ® A2 and y¢¢ = Bzrzsinze. The three-

metric is

Yij ® diag(Az.Azrz.Bzrzsinze) s (6)

In writing down (3) and (4), we have used the freedom embodied in the
two nonvanishing shift components, Br and Be. These gauge conditions

result in equations for the shift vector from (11187). Using
Loy:s = D8 +Ds=ekay + aek+ 3,8¢ 7
gYij = DiBy *+ D;8; KYig * YikdgB t g8t (7)

in the coordinate basis gives

8 g" KlPe
ra8” + 3, (5] =24 == (8)
for (3a) and
8" 0 ro, b
P, [5] - 38" = a(2K p 2K ¢) s (5)
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from (3b). Note that the extrinsic curvature is used in mixed form
throughout our discussion.

Equation (8) and (9) form a first order system for the two
shift components. This system is elliptic as can be shown by calcu-
lating the symbol of the differential operator. We take 3. + kr and
% 9 * ke to replace derivatives in (8) and (9) giving a symbol matrix

operating on 81. The determinant

+k 2, o , (10)

is positive (nonvanishing 1s sufficient) for all nonvanishing ki,
indicating that the system admits no real characteristics. We will
consider at a later point how this system is to be solved for the
shift vector.

This gauge, giving three-metric (6), is called quasi-
isotropic because in static spherical symmetry it reduces to the
isotropic coordinates for Schwarzschild geometry. It has also been
referred to as the Zsothermal gauge.]'3 There appears to be one
other two component choice for the three-metric with these sym-
metries.3 The radial gauge, which reduces to Schwarzschild coordi-
3-5

nates, has been recommended by Bardeen and Piran. Gauge conditions

of this type were first considered, in this context, by Wilson and

6

Smarr.2’6 An earlier version~ of this work used the quasi-isotropic
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form of the metric but in topological cylindrical coordinates. Wilson

and Dykema]

examined several other choices, radial-cylindrical and
radial-spherical polar, before settling on the current gauge: quasi-
isotropic-spherical polar. As pointed out by N'Hson,6 the use of
cylindrical coordinates is satisfactory for core bounce calculations
but very zone !pefficient if a black hole forms. This is due to the
“grid-sucking" effect produced by use of these gauges when a hole
forms.7 Spherical polar‘coordinhtes are much better numgr}cal1y
suited in this regard. .

The connection associated with-(6) is

rrrr = %'arA ’ ' rrre = r‘rer N %‘aeA ’

Moo = - £ op(A0) M = - %} sin%e 2 _(Br)

rerr T Al % rere N reer : K% 3.(Ar)

¥ = }\— I r%<p - - EZ’"—G 29(Bsine)

g = P = gr 0, (B) 1 = 1 e s (asing) (1)

where all other coefficients vanish. The orthonormal and coordinate

Riemann tensor components are
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r
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giving
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Rrere .. .A_;: {ar[i- ar(Ar)] + ;'-' 39[7]\' aeA]} ’

1 1 1
Rr¢r¢ s o KB—F {BP[K ar(Br)] + T—- (aeA)'ae(BSine)} )

A"rsind
86 ] { [1_ ] sin® .
R el lowe. Tt 9,(Bsing)| + e (Br)-3_(Ar) .
8¢ ABr-sin® 6la "o A ¢ v
1 ,re 1 { [sine ] A .
=R " - 9 3.(Br) 3.(Ar)-d,(Bsing)} ,
Z f¢ ABrzsine oL A r ;\-2- £ 8

(12)
hers found from algebraic symmetry. The Ricci tensor becomes

= - ;‘z; {ar]]f 3r(Ar)] * ?]" 39[1]\' 39"]}

ar} ar(Br)] + —2_]_ (%A)'ae(Bsine)} ,

e | Vi
» - = {ar[konan)] + g 200,00}
oldiod sl
.- Kzg—rz{ar[rar(er)] * 57 0 (Bsin0)}
- st (P[22 280 - F o (n)ag(Bste)} L (13)

the Ricci scalar
2 r 1 1
S A DU RSN )

- ;’22—7 {ar[rar(sr)] + s—f]Fe' aez(Bsine)} : (14)
r
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Armed with the orthonormal curvature components (12), we can
now examine the boundary conditions and regularity of the metric func-
tions (6) on the symmetry axis. From examination of (12), for Rra;a

oro
to be finite across the axis requires A to be an even function there:

ghA=0 . (15)

Similarly Ra$§$ leads to the same condition on B at 6 = 0, m. The
component Rraga taken along 8 = 0 gives

A

r 1 A
R 5% - m cote Br 1n[§] ’ (16)

so, for the metric to be regular, requires g= constant on axis. From
(6), for our gauge to go over to isotropic coordinates in spherical

symmetry and asymptotically to spherical polar coordinates necessitates

%-]' for 06=0,m . (17)

Reflection symmetry across g = T2’-r'equhr*es
aeA = aeB =0 , (18)

there. Reflection symmetry of the metric (6 + g - 0) combined with
axisymmetry, ¢ + ¢ + m, is equivalent to isometry under r + -r. So

P #
at the origin, in order for R 676 and R o8 to be finite, we have

dA=03B=0 . (19)
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These considerations lead to the recognition of Therefore (11143), which is one of the assumptions necessary to

A associate the monopole part of ¢ with the energy, holds.
T== ) (20)
8 Our simplifying three-gauge conditions have reduced the

metric do . 5 i -
as an alternate metric variable with the important property that T = 1 ric down to two functions. One, ¢, glves the scale of the three

everywhere is spherical symmetry from (17). Therefore, gnT can be used geometry and is determined by the Hamiltonian constraint (11122). The

as a measure of the anisotropy of space and the deviation from other, T, is the single variable entering the conformally related

metric y 23) and re resents the single dynamical degree of freedom
spherical symmetry. Yij (23) P gle dyn 9 e

We define the conformal factor ¢, a second alternate metric operative in our problem. (If rotation had been allowed, the metric,
’ =~ .

variable, by demanding the condition (II150) on the conformally of necessity, would contain an off-diagonal component representing

the second polarization state.) Since anT provides a measure of the
related metric. This gives p ) P

deviation of ?id relative to fij’ we might expect it to have nice
6 2
¢ = AB , (21) properties as a radiative variable. That this is the case is shown

1 later when the radiation flux indicators are considered.
since

v? = AZersing . (22)
b) Time Slicing, Extrinsic Curvature, and Field Evolution

These definitions allow the metric (6) to be rewritten as
We now turn to the implications of the choice for the

2 2/3.2 +-4/3. 2 . 2.\ _ ,4a ;
Yij = o% diag(12/3,12/3,2 1-8/3.2¢4, 8) = ¢ Yij (23) remaining kinematical freedom: the time slicing. We employ the

maximal slicing condition described in Chapter III. The condition

d T satisfying the same symmetry conditions as A and B, with
EKD ¢ 2 v ymerry K= 0 allows one of the diagonal components of Kij to be eliminated:

the additional knowledge that T =1 for 6 = 0, m and r = 0.
With the definition (21) for the conformal factor, the Kee = ’Krr - K°¢ . (25)

conformally related metric §1j (23) satisfies (I11I50), since

The only remaining independent components are Krr. K¢ , and Kre.

[
o 2
dEt(Yij) =r-sine . (24) Using (25), the first order momentum constraints (I1112) become
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— 9 (r M)+ K° *3,, tnT +-—2————ae(sineK ) =S, (26a)
r-sing

2
- sin“0 ¢ 1 25r y _ @
7w (s inek"y) - Sin? e{ . ¢] * 7 (K g) = 5 - {8b}
Here we have also employed (III18), S¢ = 0, and make no distinction

between A'J and KiJ since K = 0. Examination of (26a) leads to the

condition
K. =0, for 8 =0,m , (27)

for regularity on the axis. In fact, axisymmetry implies isometry
under 8 + -6 at 6 = 0 leading to the vanishing of any tensor component
on axis having an odd number of ¢ indices. Such components are odd
functions across the axis. With Kre odd, equation (26a) implies Sr'
- K¢’¢ are even functions across the axis. Evaluation of (26b)

requires Krr and K"’cb to be differentiable at 6 = 0, m. Hence

Kr
23Ky = :;e|<°¢ =35, =0 (28)

for 9 = 0, m.

Consideration of (26b) results in a second condition as well:

A= K'”r + 2K¢¢ =0 for 8 =01 . (29)

Since this new variable vanishes on axis, it vanishes identically in

spherical symmetry, even though Krr and K¢¢ do not typically.
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Therefore, X shares this feature with 2nT and, we will show, it has
similar good properties in describing gravitational radiation.
The conditions resulting from equatorial plane reflection
symmetry follow in 1ike fashion:
r = = In
K 8 Se 0 at ] 7 (30)
and
r = ¢ = = =
36Ky = 9gK%, = 9gA = 3gS_ =0 at e-% . (31)

The symmetry conditions at the origin will be considered momentarily.
The new variable A is adopted in place of Krr in most of what

follows. Hence, the rewritten momentum constraints (26a,b) are

21% Ry .
= —-2-3 [?; ¢:| +~T—a [sine ] =rS. :lz-ar(rax) »  (322)

1 . b 1 3 Ky
T ae(TK ¢) + ;2-3 r -~—— S + —T——-a (sine %) . (32b)

However, as we discussed in Chapter III, these constraints are not
solved in first order form.

The evolution equations for the metric, (1177,78) and
(I1160,61) can be evaluated:

6 . 1, [2,65] , 1 6,0
2,(45) ?ar[rw]»fmae[smew] : (33)

r
3, anT = 8" anT + % anT + 3,8% - gfcoto + ax (34)
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and
sl 0 ro_ b
3A = B A+ B3 A+ A B - AN - 2K ¢) ’ (35)
2.8 = g8 + 8% 8 + B[BL] + Be%coto - aBK? (36)
t r (] r SNE

We note that the right-hand-side of (33) is in divergence form from
(I1160) and that the right-hand-side of (34) contains only A from
the extrinsic curvature. The latter again indicates that A and nT
are related in a fairly deep fashion. We have given the evolution
equations for both metric components, as well as their alternate forms,
for completeness evep theugh with the fully constrained approach only
(34) need be evolved.

The evolytion equations for the mixed form of the extrinsic

curvature (1178) are

LU P 0, I r r
3Ky = B ALKt Ak, - %-a(o *pe - p)-S.(V +8)

r

+ aR"r o %— ar[k ara] - ;‘3]7 (3gA) (34a)
r

i} [ra,6° - ae[L:]] , (37)

+ 8% K - %-a(o +pe - p) + oR?

b = gl y?
9K ¢ B 3,.K ® ok's

¢

1

1
R =—) (Br)a. o - o (Bsing)«3,a (38)
A%gr T r A"Br~sing o C
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LN U 0, 1 r r r
9,K'g = B3 Kg + 83Ky - S(V +8") +aR g
r 8 r r ¢ r

+ K e(368 -93.8) + (2K rtK ¢)368

- %— 36[%- ar(x] + ;\%— ar(Ar)'aeu s (39)
r

where we have retained momentarily the component Krr. In (37) - (39),
the energy densities and stresses follow from (1181,84-86,90) and
could, alternatively, be given by D and E (II99). The equation for
Kee is superfluous from (25) and is not given here (see however
Dykema]).

Combining (37) and (38) with the definition (29) of A and
using (33) allows us to write an equation for the conformally related
A &= oBa

2
Bgh = :]Z ar(,rzs"i) + §'1'Jn—§ 2g(sinog®t) + :(:is)ez—-——%w
K"

r
9 1 2
+ 2 [rare = ae[%-]] t 3, LaBra . £nT)

2. 2
AB"sing 1 aB”sind 1

M ae[luasine 3e°‘]+ 2 3e[ABsine aeA] - (40)
Again, if the fully constrained approach is adopted, (40) is the only
evolution equation for the extrinsic curvature that need be employed.
In (37) - (40), we have used whichever metric variables provide the

simplest expressions. The terms in the right-hand-side of (40) have
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been carefully chosen so that each vanishes separately in spherical
symmetry. This is an important consideration in numerical applications.

The maximal slicing condition results in the linear elliptic
equation (II178) for the lapse, which reduces in our model to

| 2 1
3.(Br°3 a) + g3 (Bsinea, a)
;Z 5 v r-sine o ®

K" )2
. a¢6{2A2 - AP, + 6K¢¢2 + 2[-;9—]
Floe o) - ep? e p) (an)

Here, the reductions (1184,90) and (25) have been employed. The
symmetry boundary conditions for a across the axis and equator and at
the origin are the same as those for A and B. We defer until later,
when the lapse equation is written in a different form, the question

of an asymptotic boundary condition for a.

c) Regularity

Before discussing the constraints and the initial value
equations, we first consider regularity. By regular, we mean here that
a scalar or tensor is sufficiently differentiable at each point in the
manifold in locally cartesian coordinates. To avoid discussing degrees
6f continuity, we simply take regular tensors to mean those whose
cartesian components are analytic, i.e. expandable in a Taylor series

in the neighborhood of each point. We define as our cartesian

132

- coordinates those related to our gauge by

X = rcos¢sing , Yy = rsingsing , Z =2 rcos (42)

The idea is first to express the tensor components in the cartesian
system as Taylor series in (x,y,z) and eliminate certain coefficients
in the series by enforcing the symmetry conditions, then to transform
back to spherical polar coordinates to uncover the functional depen-
dence near the singular points, r = 0 and 6 = 0, of the coordinate
system.

We first examine scalars. Upon application of the symmetry
conditions, a scalar, b, is expandable in powers of

pz = x2 + y2 = rzsinze and z2 = rzcosze, or,

b = b(p?,2%) . (43)

We refer to such a function as being an even function. Use of these
even functions will form the basis for considering higher rank tensors.
Note in particular that from (I17) the lapse, a scalar, is of the
form (43).

We consider vectors next. Each cartesian component 1is
Taylor expanded about r = Q. Axisymmetry and vanishing rotation

require Wo = 0, so transforming,
.02 X
Wt =0 7sing [sTnoW” - cosgw’] (44)

X
shows W* and W related by ywx = xw, Upon reflection, it is clear
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that the general form of w’, consistent with the symmetries, is

wX = Xf] (pzozz) ’ wy = yfl(pz;zz) s wZ - Zfz(pznzz) . (45)

As expected there are only two independent components. The spherical

polar components become

W= r(sinzef] + coszefz) s W = sinecose(f1 - fz) . (46)

after transforming (45). Note that H; and w® typically have angular
dependence at the point r = 0. This is an example of the peculiar
functional behavior in tenser components due to the coordinate singu-
larity at the origin of spherical polar coordinates. A numerically
generated example of this multi-valued behavior at r = 0 is shown in
Figure 1a,b.

T

Axisymmetry and vanishing rotation imply T =0 for

re ~ o¢
a second rank tensor TiJ' If we transform these to cartesian compo-

nents we obtain

2 2
rTr¢ 2 0=(x° -y )Txy - xy(Txx - )

Tyy

+alxTy, - 97,1 (47)

XZ

2D = 2 _ 2
Teo 0 z[xy(Tyy - Txx) + (x y )Txy]

+ 08+ T, - T (48)

Tyz
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Figures la,b. The local behavior near r = 0 for !;- is shown in
Figure 1a. This is a projected plot of the functional surface,
represented by the numerical mesh, over the polar coordinate
quadrant. The equatorial plane is to the left; the symmetry axis
to the right. The multivalued behavior a + bcos26, with a and b
constants, is evident at r = 0. Figure 1b gives the local

appearance of w° near r = 0. Ne behaves like -2b sinfcose at r = (.



135

e
et
e ke T O

Figure la

/4
sV
Vi

4%%%Mﬂm& - R
I =

Il
o

////////1 L \\

l|||\\\\ \\\\\\\\\\ )
[
\\ /2

Figure 1b

136

Only one of these is needed to show that the cartesian coordinate

tensor has the general form in the vicinity of the origin,

T g](pz.zz) + gJ(pz,zz) <, (49a)
Ty ® 9, (e%,2%) + 93(92.22) ¥ s (49b)
Toe® G525 o (49¢)
Ty = 552 (499)
sz = 94(p2.zz) Xz (49e)
Mg = 98h vz (49f)

1f 1t is to satisfy the symmetries. We recover four independent

functions. Transforming back to spherical polar coordinates gives

29 + g3r251n4e + 294r2coszesinze s (50a)

Trr = g]sinza + g,cos

Tee = rz(g‘cosza + gzsinze) + (g3 - 294)r4coszesinze N (50b)
o on 2einl

T¢¢ gyr sine (50c)

2
Tog = (9) -9, + g3r251n20 *+ g,r-cos2e) rcosesing . (50d)

This latter form can be used to reexamine the regularity of
the metric components A and B. Before using (50a-d) however, we note
that our gauge conditions (3) and (4) interrelate the functions, 9(1);
Applying (3) and (4) to (50a-d) gives
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g, =0 and g rzsinze = -
4 ’ 3 9 9] . (51)
These, in turn, lead to the consistent identification of
2 . 2
A 95 » B™ = 9 ’ (52)
and the immediate demonstration of regularity of our quasi-isotropic
gauge. The alternate variable T has the form
2 293
T -1= =
p g, (53)
found from (51) and (52). Provided limo 9y # 0, which would other-
r -
wise produce a pathology in the metric, then
T=1+ gsrzsinze ’ (54)

is also regular, where g]gs(gsp2 +2) = 93
Finally, let us apply equations (50a-d) to the extrinsic

curvature. We first convert these equations to mixed form,

Krr = h]sinze + hzcosze + h3r251n46 + 2h4r2coszesin29 5 (55a)
K% = hycos® + hysins + (hy - 2n,)rlcos?esin®s | (55b)
Ky = m2 (55¢)
Kre = [h](T2 +2) + 2h3r251n29 + h4r2c0520]réosesine . (55d)

where A2 has been absorbed into the definition of h(i)‘ The time

/
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slicing condition will typically interrelate these components. Applying
the maximal slicing condition, K = 0, leads to the elimination of one

even function in terms of the others:

2
hy = <hy (12 +1) - hyrPsin?s . (56)
The right-hand-side is separately made up of even, analytic functions,
so we conclude that maximal slicing 1s consistent with regularity.

Consider, instead, the polar time slicing condition (11179).

This leads to

‘hzsinze + h](l + cosze) . (57)

The explicit angular dependence appearing above cannot be written in

2

terms of an expansion in p“ and zz. Hence this gauge produces an

irregular extrinsic curvature at r = 0. The lapse function determined
by this gauge will be irregular as well.3
Making use of the maximal slicing condition (56) alters

only K'r in (55):

Krr = ~h](c0526 + Tzcosze) - harzsinzecosze + 2h4r2coszesinze , (58)

and (55b) for Kee is superfluous. Combining (58) and (55c) yields

A= h][TZ(Z -COSZG) - c0s20] - h3r251n26c0529 + 2h4r2coszesinze . (59)

Considering the components of K1j as expanded in powers of rz, the
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lowest order radial terms are
Ky« n @ soe?) (60a)
x = 3n Osine + 00r?) (60b)
K
—;9-= 3h](0)sinecose + d(rz) 5 (60c)

where h](o) = 1im h] and A and Kre/r display angular dependence at
r+0

the origin (are multivalued). The local behavior near r = 0 for A,

K°o and Kre/r is shown in Figs. 2a,b,c constructed on a finite

difference mesh.

d) Constraints and Initial Value Equations

We solve the Hamiltonian constraint in a form somewhat dif-
ferent than that given by (I1122). This equation is rewritten so that
the solution obtains the variable ¢ = BB instead of ¢. The connection

between the two quantities is
peor 3 (61)

The reason for this change is that the differential operators
involving ¢ and T have a simpler form as we will show below.
In retrospect, it would perhaps be better to solve for yet

a different variable:
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Figures 2a,b,c. The local behavior near r = 0 for extrinsic curva-
ture quantities A, K¢¢, and Kre/r are shown in Figures 2a,b,c,
respectively. In Figure 2a, A has the multivalued behavior 3asin29
at r = 0. Figure 2b shows K¢¢ to be an analytic function at the
origin and it has_the value a at r = 0 related to A and Kre/r. The
multivalued behavior 3a sinfcosd in Kre/r at the origin is

displayed in Figure 2c.
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Figure 2a

Figure 2b
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vo= ey - g1 (62)

As the results of Appendix B show, for a weak-field transverse-~
traceless gravitational wave transformed into our gauge, the combina-
tion (62) is the only one Tinear in the conformal factor and for which
the wave vanishes to linear order. In contrast, the leading spherical
wave term shows up in both ¢ and 8. This renders somewhat inaccurate,
or complicates, the solution of (I1122) when a gravitational wave
reaches the edge of the mesh. OQur numerical method will 1ikely undergo
refinement in this area.

The Hamiltonian constraint equation using (61) 1s reduced to
-,lr ar(rzarw) + -2'— ae(sineaew)
r r-sine
S L 3.(ra,. 2nT) + ] 9,3, nT
7 Y[y 3p(ro, ;? 0%
2 -8[a2 S ¢ 2 Ere “
+ T [A - 3M<¢¢ SR [TTJ J

v 42y + 1200-1) 46T E[ru . LU_PJ] , (63)

where, unlike (I1120), the rest energy density and internal energy

density have separate conformal scalings:
0=¢% |, (64)

E=¢5TF | (65)
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Here I' is the adiabatic index (11105) and the scalings (64) and (65)

are chosen under the assumption that such an adiabatic equation of state
s employed. The reasons for these choices will be more fully discussed
as we consider the hydrodynamic equations below. Notice that the use

of ¢ in (61) has produced flat space three- and two-dimensional
Laplacians in (63) operating on y and 2nT, respectively.

When (63) is used in the initial value problem, as was dis-
cussed in Chapter III, tﬁe terms appearing in' the right-hand-side are
all freely specifiable data or conformally related quantities. For
use on subsequent slices in a fully constrained method, the source
terms must follow from the evolution. In either case, once the
solution of (63) is obtained, (61) gives ¢ and the physical values
can be produced.

The symmetry boundary conditions for ¥ are the same as (15),
(18), and (19) for A. The physical condition at large }adius is the
York-Piran® Robin condition (I1152) applied to y

arw+%(w~l)-0 . (66)

at r = o The same condition applies to y because the asymptotic
expansions of ¢ (II142) and y differ only at d(r'z). This is
demonstrated below in Section IVe.

We now proceed to write down the longitudinal part of the
momentum constraints (II125). 1In our model W® = S¢ =0, so (II125)

ylelds only two equations for the components W' and we. These are
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4o ] - stenfom (5] « ()

2 4. [ J1 2 1 - -
+§rTar[Taewa:| 3Trs1neae[marvﬁ] +FM =08, (67a)

—%ar[r“arw"] + %;{L—e- ae[sineaew"] + F
St -E ] nf -5 e

where the functions F(‘) are curvature terms:

2 .4
2271 r 68
F] 3 ';2- ar[?z ar znT] , (68a)
3
T
Fa= 5 [ rdg AT + 3, zn[#-ae zn[s ne] , (68b)
3
2 Tz sin“e [ T (68C)
F, = 3 3 Wn »
33 5indo e[ T?’ sinej]
Fo=lp —TTZ 2 --7—51" a_ anT| . (68d)
43 sin“e

i

The symmetry boundary conditions for W' derive from consideration of

(46). We see that both componeﬁts satisfy

1 Y- 69
] =M =0, (69)

at r = 0. In addition, W is an even function across the axis and
equator,

W =0, for 8 =0, (70)

0
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and W is odd,
wW=0, for 0=0,3% . (n)

These conditions on %; and W8 hold even though both are multivalued at
the origin (46). The boundary condition applied at large, but finite
r is the (approximate) Dirichlet condition (11136,39) discussed before.
In our model the symmetric moment tensor Dij has only two independent
components. We form from these two 1inear combinations, D0 and D,, as

shown in Appendix A. These are related to the trace part and tracefree

part of Dij' respectively. In sufficiently special circumstances

" (Chapter 111, Appendix B), these can be related to the decomposition

of the time rate of change of the second moment of the mass distribu-

tion. These are given by the integrals

"0 ms2 3
Dy = - L L dr dosingr 3r . (72)

0 (/2
D, = - I L dr dgsing(sin - 2cos2p)r? Sr
0

Yo /2 2 2a ’
-3 L j dr docosesin“e r Se s (73)

0

where ro encompasses the support of 51. The Dirichlet condition

(II136) at large r = rn then becomes

W ] 9 2
[_r] = — [(200 - 30,) + 5 Dysin e] ’ (74)
T Brm
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(He)r = ——§3-02 sinfcosd . (75)
m .8r
m .
These moments and boundary values are shown derived from (11136,39) in
Appendix A and the longitudinal contributions to other parts of the
gravitational field are shown. Once the solution for the vector
potential has been obtained, equation (III15) gives the conformally

related, longitudinal components of KiJ

. r
A= - Zr[w—] 3 T - 2 ﬂ,'rlfl e[’ﬁ% He] . (76)
o 2 2(W" 2 51n2 T2
KL¢0 = . T '_r% ar[T [—J] T —2— 39[_2— N] » (77)
LR o =ra Wl 4 [ﬁl | (78)
r " Le r oL r *

If only the solution of the IVP is desired, i.e. if an
unconstrained approach to the extrinsic curvature evolution is adopted,
then the solution of (67a,b) and (76) - (78) suffices to produce a
physically reasonable initial Rij leading to a small initial radiation
content, when the free data is faken to be ﬁTij =0 and ?15 = fiJ‘ In
model1ling stellar core collapse, however, we typically attempt to
pick up the collapse just prior to the relativistic regime or to the
bounce phase. What is missing in this approach to the initial data
is a way to input the small, but noticeable amount of radiation that
would have been produced during the infall prior to this time. This

is likely to be a fruitful area for further work.
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If (67a,b) and (76) - (78) are to be used in the fully con-
strained approach to the extrinsic curvature, then the second step is
to find the transverse part of kij. Use of the longitudinal part from
(76) - (78) then allows the entire extrinsic curvature to be recon-
structed on each successive slice. Since X is evolved using (40), the
Tongitudinal result (76) can be used to calculate the transverse part
of A, RT = X - iL' This then serves as the source with which to solve
(11168) for the remaining two transverse components RT¢ and KT 0
Then (77) and (78) give the entire K jon the new slice.

The second-order tensor Laplacian can be reduced to a pair
of coupled equations for RT¢¢ and RTre by taking the (r,r) and (r,g)
components of (I1168):

4T2/3 [—27-3-3 kT {' +—Tl’ﬁa [—59%3 RT (»] + G'IK'T¢

Rr xr
5/3 Te Te| -
m 9 [sineT [—4] + [7 + 3% arT]ae[—r] + GZ(_I‘—]

= 21'/6, 3] s 22, [sinde +6, 4 (792)
’176"’1 s—mTBW""e*T < L 2
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r ~p or
23, [r? Rt LT [sing 2 [“1]] . o [K To
r T273 rl r sing % T273 of r 41 r
7/3 -7/3, % r ~ ¢ ~ ¢
- T rae[T arKT%]- + [-8 + ST"rTJaeKT s * Sk’
. 2/3y . & 2r A a :
mae(sinﬂ )-a,.AT - [5 3T a,.T]-aeAT + GG)‘T . (79b)
Here KT acts as the source and the functions G(i) are
5/3
2 19n371/6 1 r T sing
G] 12r°T 3 [:2- ar[mzﬂ + sThe %[;87—3- BBT] ’ (80a)
G, = [7 + e d TJcote -3, (80b)
2 3T °p T % :
5/3
- 6 2:1/6 T €0so
637 - ;;mrar[" ] *mae[;m] ' (80c)
- 6 1/3 2/3, [cote
64 - ?I/T ar[Y‘T ] +T 30[}'27-3] ’ (80d)
2/3 2
- 372/3 _3r 1 r
GS r°T 3,,[;2;%7-3- aeT] S 39[;173- Br[;mJJ 5 (80e)
=2 . o cote 1/3
6 = 20,7 - 2 ;T7§-ar[rT ] . (80f)
The symmetry conditions for this elliptic system comes from (55c,d).
These 1imply that
K"
b .4 |_8f .
MO ar[r] o, (81)

at r = 0, that K% is even, so

150

3.k =0,  for e=0, 7 , (82)
and that Kre is odd,

K"e =0, for g=0,1 . (83)

N

Both A and Kre/r are multivalued at the origin from (60b,c) while K¢¢
is single-valued and analytic (60a). This latter point forms an
important test of the numerical regularity of the finite difference
equations used for (79a,b) and (80a,f). This will be an important
topic of Chapter V.

The asymptotic boundary condition for KTij is the radfation,
or transverse condition (III14). At large radii this can be replaced

by

nik” =0 , (84)

where ny is the outward directed coordinate two-sphere normal. This

produces the conditions

~ ¢ - lz\

N S (85)
gr

T o?) (86)

which result when wr >> 1, where » is the characteristic frequency.

Asymptotically, (85) and (86) can be verified by the structure of the
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radiation field in our gauge disblayed in Appendix B. Alternatively,
these results can be used to improve the boundary values applied to

(79a,b).

e) Shift and Lapse Revisited

The numerical treatment of elliptic systems 1s generally
simpler in terms of second order equations which admit iterative
numerical solution algorithms. Hence to solve the first order system

(8) and (9) for the shift vector, potentials yx and ¢ are introduced by

r
B_ =

S rarx + aeo ' (87&)
8% = ra,0 - agx . (87b)

Writing the right-hand-sides appearing in (8) and (9) as
P=a(2r - 3:(%) ; ‘ (88a)

Kf‘

Q=22 (88b)

and using (87a,b) produces the second order equations
’ (893)

Az(f)o =r2q , (89b)
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where Az(f) = r']ar(rar) +p2

aeae is the flat space two-dimensional
Laplacian. The potentials have decoupled in.(89a,b). The behavior of

P and Q near r = 0 can be found from (60a-c):
P = -3a{%h () cos26 + o(r?) (90a)

Q= 5u(°)h](°’ sinocoso + 0(r%) . (90b)

Despite the singular nature of the sources (89a,b) implied by
(90a,b), solutions appear obtainable (we have not proven existence,
except through direct numerical construction). v 4

The local behavior of the sourq§.(90a.§).1mp11es the shift

vector components satisfy locally

B a+ 3000 (0 gin2g 4 g(r?) (91a)
89 a 3a(0)h](°) sinecose + d(fz) . ' (91b)
Here a(o) = Hm0 a. This multivalued dependence is completely con-
r -+

sistent with the expected form (46) of a regular vector field near
r = 0. The constant a is only determined once the global integration
of (8) and (9) is performed. The definitions (87a,b) for the poten-

tials then give a local dependence for y and ¢ of
X = {a + g-a(o)h](o)lznr + %-a(o)h](o) cos20 + d(rz) . (92a)

o= - %-u(o)h](o) sindcosd + O(rz) » (92b)
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with similar multivaluedness and a singularity in x. This singularity
is, however, in a potential, with no intrinsic physical meaning. Pro-
vided the numerical treatment of this term is appropriately careful,
we see nothing to impede the solution of (89a,b). The reason for
using potentials of the form (87a,b) is that, not on{y do the poten-
tials separate in the resulting equations (89a,b), but the flat space
two-dimensional Laplacians allow the second order equations to be
decomposed with the finite Faurier transform. This makes possible a
very fast numerical solution (see Chapter V).

Symmetry considerations show that x is an even angular

function,

aex"D. at 930:12'[' ’ (93)
and that ¢ is odd,

$=0, at e=0,’2—‘ . (94)
Assuming the singular (gnp) part of x is removed, leaving X(reg)' the
radial boundary conditions are .

arx(reg) =3.9=0, at r=0 . (95)

Again, the details of how this is accomplished are dealt with in
Chapter V as a numerical technique.

We next consider the asymptotic form of the shift and, in

turn, the potentials y and ®. First, since KiJ is the source for
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(8) and (9), the dominant longitudinal asymptotic term (II1136) in the

extrinsic curvature a(r"3) shows up in 3i also at a(r'a):

T
B) - 1 M(lo -30) +2 i
[ rJL ;y [[2 Do i D,| + 5 D,sin q] N (96a)
g% = 3.0, s
L 2;3- , singcose (96b)

in terms of the moments Dy and 0, (72), (73). The corresponding
behavior in x and ¢ is

o 1 1 3 2
XL :3- [[— 3 00 + Iy 02] °8 DZS'“\ 9] » (97a)
o =o(rh) . (97b)

However, (96a,b) is not the dominant asymptotic part of sf. Rather,
we note that the operator for the system (8) and (9) admits homo-

geneous solutions, which vanish at infinity, of the form

r
Ba () L eyt ":ﬂe : (98)

With the required angular symmetries on the shift, a lowest order gauge

term multipole of the form

.
B = hplt) S22 g0 g (p) sinZe (99)
r r

can be excited by the sources P and Q.
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Before considering how this term is calculated, we first show
fts effect on the asymptotic structure of the rest of the gravitational
field. It is assumed in what follows that all radi{ considered are
beyond any gravitational wavefronts, so that only gauge and longitudinal
dependence is present in the field. Hence, we have K1j = 01r'3) and

the evolution equations (35) and (36) give

3y A = - A(t) ;’2- cos20 + 0(r73) (100)
9 B = - 1, (t) ;; +o(rd) . (101)
Integrating we find
A=+l ;]z [;} W - n, cosZe] so(rdy (102)
B=1+ My ;"z [% M - "z] +o(rd)  (109)

where the static terms (constants of integration) are chosen to match
static 1sotropic coordinates. From the definitions (20) and (21), we

in turn find asymptotically

M M2 -3
o= 1 450 o2 (1 + 2cos20) + o(r™") , (104)
r
T=1+2m, ;]Z sin + o(r-3) . (105)

Note that the monopole term does not arise in T (105). We can see in
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(104) that the conformal factor actually has a static monopole term,
apparently related to the mass. Indeed, we will show below that the
dependence in T (105) indicates that condition (I1149) 1s satisfied,
guaranteeing the interpretation made in (I1142). This gauge piece,
produced by Nas shows up as an immediate correction to the metric at
the next order of g . For precise measurements of mass and energy flux,
1t is likely that this term will have to be taken into account.

To obtain ﬁz(t). we see that (89a,b) allow separate homo-

geneous solutions of the form
—_ (1) cosme (106)

m m ’

¢ = g (2) simo (107)
Combining these in the definitions of the potentials (87a,b) gives
Ny = m(om(z) - om(1)) : (108)
The Greens function for Az(f) in (89a,b) in polar coordinates is
' 1 1% 1 (e)® )
g(x - x') = 77 Anr - ii.mzl = L;% cosfm(e - 6')] , (109)
for r > r'. This splits into even and odd angular parts

geven(x -x') = f% gnr - - ) %-[ElJm cosmocosme’ (110)

2 even m E



157

' s 1 (rm
godd(x -x') = %evgn . = [EF] sinmésinme' (111)

using cos[m(6 - 8')] = cosmecosmg' - sinmésinm@'. The expansions of
the Greens functions, (110) and (111), can be used in integral solu-

tions of (89a,b)

o«

1 1 1 (r!)m
oA - 5= f -[——} cosmecosmg'| ,(112)
[%" 2™ aven n® LT ] '

% = J dr' do'r' —?%

r

X = f dr' do'r' —E%

L

"ym
[_l) ! %-[E%J sinmesinme' ,  (113)
even m

to obtain multipole solutions for x and ¢. However, P and Q will not
have compact support ang s, far sufficiently large m, the radial
integrals will diverge (the solution 1s no Tonger a vacuum multipole
moment). Since KiJ s O(r'a). with the same dependence for P and Q,
the integrals converge for m < 2. But this is sufficient to calculate

n, and hence using (106) - (108), (112), and (113)

r
62 = 5%'[ dr! de'r'[}osZe'-§-(2A - 3K¢¢) + sin29"' 20 E;%] . (Ma)
Since P and Q do not have finite suppo;;, if the radial integration
in (114) extends from r' = 0 to pr' = r, r some large but finite
radius, the result will be in error by an U(r']) residual.
Note that had we relaxed the equatorial plane symmetry
requirement, the m = 1 multipole would no Tonger be ruled out by

angular symmetry. From (98), this would lead to an asymptotic shift
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vector dependence
oWl =0y, (115)

in violation of the assumptions (III57). This may either indicate the
quasi-isotropic gauge is inappropriate for systems with mass dipole
moments and axial 1inear momentum or that we have neglected terms, in
writing these solutions, 1in previously applying equatorial plane
symmetry,

The gnr part of (112) is related to the singular part of y
already described (92a). How this is handled 1s discussed in Chapter V.

We have indicated previously that we use a different form of
the lapse equation than (41). This new equation is found by combining
(41) and the Hamiltonian constraint equation (63). After some amount

of calculation, we find

1 [ 2 1
3.|r% (mp)] * g [sinea (ap)
w2l rsing © 5 ]
= l-aw[} 1-3 (ra,. 2nT) - —%-a 3, anT
4 rrY pc 08
K" )2
2 2 ¢ ¢ 2 ]
+A{7[A LA +[T]]

(o + pe) (302 - 2) + p(3u? + 3)}] . (116)

which is an equation for op = uB%. This equation for the lapse is
used in our code. Again the reason for this choice (116) 1s the

simple flat space form of the three-dimensional Laplacian.
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The symmetry conditions on aBls are the same as mentioned
before for a. With the lowest order gauge dependence in B (103) and

T (105) known, we can examine the asymptotic form of the lapse. Using

(105), we find

8,{) onT = an, J + oS (117)
r

for the source term in (116). The other source terms in (116) are

01r'6) or less. Then, taking as an ansatz the expression

oB* = 1 +%+;"z+a(r’3) . (118)
we find >
b=-in (119)

z2N2

and the monopole term is, of course, a homogeneous solution. Then

using (103) gives

B-%=]--2£::+—]2-[%'M2+%'n2] ’ (]20)
r

and substituting in (118) impliés a=- g to give the correct monopole

term in o and hence we obtain,
2
M M
uz]-—+——2- " (]2])
T2

which is consistent with the first two leading terms for the lapse

in static isotropic coordinates. We see that for maximal slicing the
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asymptotic form of a 1s insensitive to both the gauge terms in lowest
order and, as shown in Appendix B, to the gravitational wave to 1inear

order. The boundary condition on aB& can be taken from
S N ¥

which is the form eliminating the explicit appearance of the monopole

term.

f) Hydrodynamics -

The 1inviscid hydrodynamic equations (I11101-103) can

now be obtained in our gauge. The equation for rest mass conservation
(Imon) is

6 1 2,601 1
24(0°D) + . 3p(re°0V") + = 9, (stneg®V®) = 0 (123)
where % 2 30 2
Y*®=¢ r-sing is used. The internal energy equation (I11102)

can also be immediately written down,
6 1 2 6.0
34(6°E) + 3 3, (r4°EV") + gis 3y (sinogV?)
- 6 1 2
-p[at(sv U+ = 3l %0V") + = ae(sineqﬁuve)] . (124)

In order to write the momentum transport equations, (11103), the
coordinate and gravitational acceleration terms, Uanaj(gab), must

be evaluated. These two components are
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% Uaubar(gab) = Uzar Lha + (1 - Uz)ar LnA - ;;;%
B g'(urarﬁr * UearBe) ’ (125)
% Uanae(gab) " Uzae gna + (1 - Uz)ae onA
N g (Udg8" + Uy2,8%) . (126)

With these, equations (I11103) become
6 1 2. 6. r 1 6. 0
34(07S,) + Z 0p(r707S V1) + gy 9 (sinee’s V)

= ~a¢~6[arp +(D+E+ pU) (U3, 2no + (]U - U)a,, &nA)

2

S
0 6 r ]
- t¢(S3.8 +50.8°) , (127)
(D +F +pu)Ur~3-A3_,] $ (5P or

2 (6%55) + F 2, (rP450") + 7l 0y (stnoas V)
= -a®[ogn + (0 + E + pU) (U3 ana + (- W), )|
+ 08(5,208" + 5,289) (128)

where in (123) - (128) we use the definitions (1199,100). The implicit

equation (I1104) for U becomes

s+ p0)P? - 1) =52+ Ls? . (129)
r
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The transport terms in equations (123), (127) and (128) are
in the form of the divergence of a flux. This allows these terms to be
conservatively differenced (see Dykema]). The implication in the

case of equation (123) is that the total particle number
I dr derz sine¢60 = constant , (130)

can be globally conserved throughout a numerical evolution. This

identifies the natural conformal scaling for the rest energy density
b=¢50 |, (131)

shown before (64). Equations (127) and (128) in the same way strongly

suggest using
6
S;=08; (132)

which has already been chosen (II1118) in any case in order to help
deeouple the constraints (11122,23).

The internal energy equation (124) is handled differently.
Since E appears implicitly through the pressure, p, we cannot preserve

1

E as was done with D in (130). However, we note' that with an

adiabatic equation of state
puU=(Tr - 1)E , (133)

equation (124) can be rewritten in the conservative form
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l/r 1- I/F) + 2 (r 2.6 1/F 1- l/Pvr)

2, (0%

+ ks 9,(sin6g E‘/ru‘ Vrey g, (134)

in the absence of shocks. Where shocks are present, an artificial
viscosity (Dykema') is added in the numerical algorithm, altering
(134). As we did before, the conservative form (134) indicates the

natural conformal transformation of E to be

E=0Te

VS

(135)

IS TONETR

r“l\v"\'l—\';v_

which was USéd:BEfore'(65)‘A§Jtﬁei§ca11ng“ih‘fﬁe”ﬁém1ltehf§h“caﬁ-’

straint, The combination of the scaiinggj(151$”acd‘(135)'héi%;idVvah

maintain motion along the adiabat in regions free of shocks byjehfccci‘

fng (I1110) under compression. This is the source of the separate’

power law scalings for D and E. P TR ek R e 2
To complete the specification of the hydrodynamic equations’

we need to give thé expressfons for the coordinate’velocitj compoﬁenés'

V" and V8. These are ' ' RE e

r_ a Sy r

R B O ) [ B

S

v 22 0+ E+ pu)u B (137)
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g) Mass and Flux Indicators

We next consider the form of the mass and flux indicators,
described in general terms in Chapter III (Appendix A), in our gauge
and with the assumed symmetries. As was discussed in Chapter III,
several assumptions are necessary for the validity of the simplified
ADM mass integral (IIIA7) written in terms of the conformal factor.

The first, (11143), depends upon the definition of the conformal
splitting (IIII) of the metric. Our choice of defining ¢ and YiJ’ (21)
and (24). is sufficient to guarantee (III43) The second condition ‘
(11!49) 1s relaced to the choice of spat1a1 coordinates on Eo. but e
the gauge cond1t1ons that are.used'must also maintain 111149) in time.

Using the definition (6) of the metric, (III41) ‘and (11148) we find the

tracefree part of Y1J is SOM T St LD e
v - %_ (A2 - 8%)diagl1,1,-2] . (138)

b ER £ JRE e

So ¢ j 15 uniquely characterized by (A - Bz). This reduces to

2 2

[ N T IR DI S/ 7E SR TYE SR D
=2 anT(1 + d(r'])] - (139)

and using (105),

A% - g2 = an, - sine + o(r™3) . (140)
r
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Equations (138) and (140) then imply the maintenance of (11149),
Hence, the ADM mass integral (ITIA7) can be written as
2
Myoy = - rlimwj do rsino AB 3.9 (141)

so that (141) expresses the gravitational mass (this differs from
(ITIA7) by a factor 87 due to our choice of units.) Since in our
numerical calculations the mass-energy must be evéluated on a finite ..
radius mesh, we can expect the integral in (141), expressed as MA(r),
to differ from MADM asymptotically by terms of order 0(r71). Fortu-
nately, the analysis of the gauge effects in Section IVe allows the
next order correction terms to be explicitly calculated.
Using (102) and (103), we obtain

AB =1 + gg-+ ;% [% M - np - nzcosze] + 01r'3) . (142)

which is expressed. in terms of the gravitational mass as well. Cal-

culating 9, from (104) and substituting (142) in (141) gives

My(r) = M[l +1 [ZM ” g—%” , (143)

to lowest order. In the limit

Hm Ma(r) = M= My : (144)

r - o

Hence, errors in using (141) at finite radius are formally of order

g. It should be possible to correct the finite radius result of (141)
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to calculate M accurate to order g; - This might be accomplished by
explicitly integrating (115) for ﬁz and time integrating to produce ny
to be used in (143). Conversely, one might consider evaluating (I11A7)
on a different coordinate two-sphere related by an asymptotic infini-
tesimal gauge transformation. The idea would be to use some geometric
condition in constructing the new two-surface which eliminates to
lowest order the built-up distortion, Nys resulting from our quasi-
isotropic gauge. These issues are under active consideration.

In order to express the Hawking mass (IIIA11) in our gauge
and with our symmetries, the Newman-Penrose coefficients (I11A12, A13)

must be evaluated. These have been calculated by Dykena]:

w o= wnlok, = [;2;‘37 2,(r2AB) - x"r] , (145)
a-b 1 1 2 r
p=Emm Vbla = 7 [XZE;:Z- ar(l" AB) + K 'J - (]46)

and we note that 1in axisymmetry the Newman-Penrose coefficients are

all real. Equations (145) and (146) when combined give
1 { 1 [ 2 2 r?2
o = +{% o an(r AB)] - K . (147)
8 ;2' r r
which can be used in (IIIA11) for the Hawking mass,

nor = R (- [ ) 18)
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Here the gravitational mass is calculated by (148) and
A(r) = J e I da r2AB (149)

fs used in (148).

In the same way as with the ADM mass above, the lowest order
gauge effects in MH(r) can be derived. From (145) and (146), we see
that

wego+ord) . (150)
Using (142) and (102) we obtain
or g [1- B e g (B g - angswndo) w00 L s
which used with (150) in (148), after some calculation, gives

My(r) = M[l -3%] , (152)

for the deviations at finite r from the ADM mass at 10. Interestingly
the Hawking mass suffers only a’static (constant) lowest order
correction.

The Bondi-Sachs flux (II1IA14) uses the Newman-Penrose

coefficient! (I11A15):

' -a-b 1
A= -mlm kaa =7 [A- 3', anT - X] ’ (153)
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here expressed in our variables. This asymptotically gives the Bondi
news function and the outgoing waveform at future null infinity, 1t

The flux becomes

%..&?jmr% [}\-arm-x]z . (154)
giving a negative rate of change of the configuration mass if the
outgoing waves are nonvanishing. Note the very clear appearance of
the components nT and A which we chose as our dynamical variables in
the fully censtrained, simplifying gauge approach.

The calculation of the Bondi-Sachs flux (154) at a finite
radius will result in an approximaté value for the radiated mass-
energy. Asymptotically vanishing correction terms to (154) will exist.
These will include for example corrections to the spherical wave, due
to measuring at a finite distance into the wave zone, of order UE%
where A 1s a characteristic wavelength. We can also expect gauge
terms due to the appearance of np in (102), (103) and (105). At the
time of this writing, these terms have not yet been calculated,
though, this surely can be done using the results of Section IVe and
Appendix B.

Examination of the results of Appendix B shows that (154)
responds only to the outgoing wave amplitude (r'] part). Appendix B
also indicates, that using the simplifying gauge conditions, &nT is
asymptotically directly related to the usual transverse-traceless,

weak-field gravitational wave amplitude h+TT by
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et =0, 1T+ o(r?) . (155)
This can be used to derive the usual TT radiation flux'®
. TT.2
S M- T%?I darfasa? (156)

using (34). However, as can be verified by reference to Appendix B,

equation (156) responds both to outgoing and incoming radiation.

o co ~ [=3] 3] S
. . . . .

10.
1.
12.
13,
14,
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APPENDIX A

We derive here the lowest order asymptotic dependence in the
vector potential compatible with our model assumptions. The corre-
sponding longitudinal dependence in the extrinsic curvature is shown
as well as the longitudinal effects in other parts of the gravitational
field.

Our starting point is the symmetric oKr'z) vacuum multipole
solution (I1136)

k 1[“1 i.kj ke 13 13
W = —— 3(ns" +n'6™Y) -n (8 - 3n'n i]D , (A1)
64mr 13
given in asymptotic cartesian coordinates. Under axisymmetry, we have

from (49a-f):

ny = sz = Dyz =0 (A2)
and
D Z 00y (A3)

since DiJ are constants. This leaves only Dzz and Dxx independent.

The trace of Dij is

Dy = Dy = 0y + 20, - (A4)

The tracefree part of Dij is

-1 - 11 1
035 - 3 813% 2(°xx’°zz)d‘°9[§-€"§] -

and we define a second linear combination

D, = 2(D,, - D,,)

In terms of D0 and DZ‘ we have

We also have use for the intermediate result

iJ =1 1 3 2 1
nnD” '3'00"3'02[7‘:059'2'] »

al 1
3 0p - 3 0.P2(0)

appearing in (A1). These result in the cartesian components

Woe X [200 + 0,(1 - "2(9))] .

X
8r

W : [200 + 0,01 - Pz(e))] :

o]

¢ (20, - 20,1 + } Pz(e))]

Using the transformation from (45) to (46) we obtain

W 9 2
= [(200 - 302) + 7 02 sin 8] ’

cLJ
=2
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(As)

(A6)

(A7)

(A8)

(A9a)

(A9b)

(A9c)

(A10a)
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W = 8—35 D, sinocoss (A10b)
r

with W = 0, These are the results (74) and (75) given before.

In the same way, if the integrals (IT1I39) are used to
approximate the moments Dij' we can express Do and D2 in terms of
spherical polar coordinate quantities. Using (42), (45) and (46) pro-
duces in (A4) and (A6)

Dy = - ;—J dr dor> sing %r . (A1)

D2 = - %—j dr der3 sine(sinze - 2cosze) §r

2

= %-I dr dor? cospsin ) §e . (A12)

which have been given in (72) and (73).
Using (76), (77) and (78), the longitudinal dependence in

the extrinsic curvature is found to be

A= 20, sin% (A13a)
4r~
¢ _ 1 [1 9 2]
K = (D, - D,) + % D, sin‘s . A13b
Lo ™3 (2% - D) +5 0 {A13b}
KY‘
L T (A13c)

r

from (Al0a,b). Here, the lTongitudinal dependence in Kre/r vanishes
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at 0(r'3). From (A13a,b,c), we can derive the asymptotic longitudinal
dependence in the functions P and Q (88a,b) used in the spatial gauge
equations (8) and (9). We find

P = - :}r B (Dy - Dy) + lg- Dzsinze] : (A14a)
o =o' (A14b)

the latter following from (A13c). The subscripts on P and Q remind us
there are only the longitudinal parts of these functions. From the
spatial gauge equations (8) and (9), (Al4a,b) give the longitudinal
part of the shift

r
8 = 1N 3 9 2
[ r]L Tr [[2' DO -7 02] + g DZS"!\ 9] ’ (A15a)
Be s —15 D, sinBcoso (A15b)
L 4r 2 '

which have previously appeared in (96a,b). With the definitions
(87a,b) of the shift potentials, equations (A15a,b) require the
asymptotic longitudinal dependence:

e[ F0% ] D) - 3 Dpsin’e] (Al6a)

r

o =ort) (A16b)

where, again, ¢ vanishes at 0(r'3).
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As ‘we have done with the gauge term in Section IVe, the
lTongitudinal effects in the metric can be uncovered by using the
evolution equatfons (33) and (34). We find the longitudinal effects
cancel in &nT at 0(r'3). However, using (33), they do contribute to
the conformal factor:

at[¢6L] - 525 D,Py(8) . (A17)

Integrating, and using the notation

o, M) = [ D, dt (A18)

for the time integral, gives the longitudinal contribution

o =1+ —x 0,0 py(0) . (A19)
4r
This is the form of a vacuum quadrupole moment and should be expected
to appear in ¢ from the analysis of (IIIB16). However, (A19) will
not express the total O(r"a) dependence in ¢, since the static (r'])

.and gauge (r'z) terms in (104) will likely mix at order Gﬁr'a).
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APPENDIX B

We present here the properties of a weak-field quadrupole
gravitational wave in our gauge and which obeys our symmetry conditions.
Such an analytic solution is useful both for testing our computer code
as well as deriving proper wave boundary conditions. Our starting
point is the quadrupole solution to the linearized theory worked out
in spherical polar coordinates by Teukolsky.]] The transverse-
traceless gauge, in which the wave is described, has four-metric

components, g,

a1, gT-0 . (81)
With the three-metric perturbation expressed by
Y'J - fiJ + h"J » (82)

with fij the flat spherical coordinate metric, the spatial metric

perturbation satisfies

h"k =0 , (83)

oo, (84)

where D1 is the flat space covariant derivative compatible with fij'

The field equations, in vacuum, in the transverse-traceless gauge are
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a
0 Dahij =0 . (B5)

In spherical coordinates, hU is decomposed in terms of
tensor spherical hanmmics.lz-‘4 For 2 = 2 (quadrupole), m = 0
(axisymmetric), and even parity (vanishing current modes from no

rotation), we have the line element
ds? = -dt? + [1 + (2 - 3sin%0)6]dr2

+ 6Hr cos6sing drde + [1 + 3sinzel - G] rzde2

+ [1 - 3sin] + (3sine - 1)6Iré sin26d¢2 (86)
where
(2) 1)
G = 3[5;§~ 3 Eér‘ +3 ;gJ , (87a)
f3) @)l
H = g—-2—+3—3—+6e7~+6—5 ’ (B7b)
r r r r
(4) (3) (2) (1)
I=%[FT_+2€F—"2—+QE;T+ZIEE:4—+2‘?’}] N (B7C)
F=F(t-er), fln) . 92% g (87d)
dx

and where x = t - er and ¢ = +1,-] representing outgoing and incoming
waves, respectively. F(t - er) is a general function of retarded or
advanced time; the solution is not Fourier transformed in time. The

spatial TT components written out are
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O | =1+ (2 - 3sin%0)e : (88a)
%o | = (1+3sin% 1 - ) (88b)
9y | = [1 - 3sin% I + (3sin%s - 1)a) rsins (B8c)
greTT = 3H rsing cose : (B8d)

which along with the shift and lapse (B1) give the entire metric.
Equations (B1) and (B8a-d) dp not however represent the

gravitational wave in our metric since the gauge conditions differ. To

obtain the form of the quadrupole gravitational wave in our gauge we

need to find the infinitesimal gauge transformation linking TT gauge

to our maximal slicing and quasi-isotropic gauge. This infinitesimal

gauge transformation has generators Ea such that

1T |
9ab 9ab * Daab + Dbga J (89)

where 9,p represents the metric in our gauge. Taking the properties

(B1) and (6), Equations (B9) reduce to

2 2

-1 = ¢ + 2Dk = " + Zatgt . (B10a)
0By * Difo + Doy = By + 248, + 0,8y, {§100)
O = v 20 = a2 (810c)
9o | = A2r? + 20,6, = AZr? + 2008, + 205, (B10d)
T _ 22,2 L o222 2
950 B r"sin“e + 2%5¢ B"r®sine + g.rsin®e + Egsindcose , (B10e)
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1T _ _ 2
99 = Dby * Dg8. =38y + gL - FEy - (810f)
Combining (B10c) and (B10d) to eliminate A2 (fixing this
gauge condition) gives
r
E] _ 0.1 m_ 1 T
rar[ r] %S =7 [grr' ;2'968 ) Ll
Rewriting (B10f),
rag® 49 |o] = 1g TT (812)
ré oL r r Ire )

Equations (BI1) and (B12) are of the same form as our spatial gauge
equations (8) and (9). Taking the known forms of the right-hand-side
in (B11) and (B12) and using (B8a,b,d) produces solutions

.9 1) g gb
r ¢ NURY I B 77
(3) (1) b
+51n28[-g-eF—z—+gg7-e%r+g§7-~§-+—§] . (813)
r r
(2) .o (1) b
Ee=smecose[.g£;r-gef.r-g;g+.,§]. (s14)
r r

after some amount of calculation. The terms with bz(t) represent the
homogeneous solution of (B11) and (B12) with quadrupolar angular
dependence and this is related to the term (99) in the shift vector

involving ﬁz.
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We next consider (B10a) to derive gt. Since a 1, we obtain
a=1+36 (815)

to linear order. The lapse must satisfy the (vacuum) maximal slicing

condition, or

o = B3yE, = dhE, =0 . (816)

This yields for Et, up to quadrupole angular dependence,

g = °°£t) + az(t)ga(e) : (817)
r
These are just the vacuum monopole and quadrupole solutions of the
Laplace equation. Equations (B13), (B14), and (B17) specify com-
pletely the infinitesimal coordinate transformation.
These generators can now be used to obtain the structure of
the wave in our metric in maximal slicing, quasi-isotropic gauge.
From (B15),

a,  a,P,(0)
0, %72

(!'14'-';- ’ (818)

r

and we see that the maximal slicing condition leaves the lapse
insensitive to the wave in linear order. Using (B10b), we find that

the shift components are
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H2) g (D)

9 B
et st
r

3,
+ 4+ 3
r3 r5

[
ENTY)

r

(4) (2) (1 b a l

2,13 _F 2] F 27 F 2 9 "2
+ sin|-2 - - » (B19
e [Be rZ 8¢ 7 8 r5 "7 )

| —
s [=ad
n

r

(3 (2) (1) b a
e"=sinecose[%%—+%e"—r4—+§%3—-;§+ar2 . (820)

We see from these last results that, with (99),

The perturbation in A is

2 b (4) (3) g(2) b
-]"Iijl —22-+an29[8-F +§-€T B'—T —'§E| » (B21) -

found from (B10c). The corresponding result in B using (B10e) is

(2) b 2 [ 38 o () 9 r(2)
B e T

We can now calculate the amplitude present in nT:

(4) (3) b
nT = sinze[%F—r-—+g-e F—r2—+;§J . (823)

and in ¢:
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(2) ,b
S1.3F 1%
¢ ]+§'—r3—'3';2

[ LE 1 pB) g (2 b
*S‘"e[n' PO ety - (82)
Note that the radiative part of the wave (F(4)/r) appears in the
conformal factor. The combination AB however gives
(2) »b (3) (2) b
3 F 2 2 3 _F 9F 2
AB = 1 + - + sin"0|- 3 ¢ il S + » (B25)
- Z r ;Z i r 7 r ;?J

and here the radiative part of the solution vanishes.

Finally, we also obtain the wave dependence in A using (34):

S s S -0 LY LUDSL Y
with comparable results obtainable for the other components of K’J.
Clearly using (B23) and (B26), the higher order terms correcting the
leading spherical wave dependence can be obtained in the Bondi-Sachs
flux integral evaluated at finite radius. Noting that h+TT = heeTT.
from (B8b) and (B23) we obtain the connection

T =hT+o(r?) (827)

for our radiative variable &nT.



CHAPTER V

In this chapter, we will discuss some of the numerical aspects
of treating the equations derived in the previous chapters. Our numer-
ical approach can be generally described as two-dimensional time
explicit, Eulerian finite differencing with an adaptive mesh. By the
usual fdeas of considering truncated Taylor expansions, the differencing
of spatfal derfvatives in the elliptic equations we solve (IV63, 67a,b,
79a,b, 89a,b, 116) is typically second order accurate through the use of
a five point coupling (i.e. differences are computed using adjacent,
neighboring values, in each spatial direction). Some deviation from
second order accuracy will occur due to the use of nonuniform zoning on
the spatial mesh typically. Such grid stretching is employed to
increase the span of physical length scales that can be covered by a
mesh using a fixed number of zones. However, for the sake of numerical
accuracy there is some bound to the degree of stretching of the mesh
that can be tolerated. Ultimately, there is no substitute for a suf-
ficient number of zones when attempting to simulate a problem with
several disparate length scales; This question of adequate resolution
has been at least in part responsible for the slow rate of progress on
this project heretofore.

The time integration is typically first order accurate. In

the important area of numerical transport, these terms involving
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spatial derivatives are treated so as to be usually second order
accurate. More specifically, the transport terms.in the hydrodynamic
equations (IV123, 124, 127, 128) are given mixed first order (Donor
cell) -~second order interpolative differencing. A weight s chosen

to make the scheme generally second order accurate in the smooth regions
of the flow with transition to first order transport in regions that are
forming shotts. The evolution equations for the gravitational field are
handled in the same way though the transport terms in this case will
nearly always be second order since.these quantities show no tendency

to steepen into "shock-1ike" structures.

We use conservative differencing for the hydrodynamic equa-
tions. In the case of the continuity equation (Iv123), this allows the
total baryon number computed by (IV130) to remain constant throughout
the numerical evolution to within computer roundoff. The same tech-
nique is used where possible for the evolution of the gravitational
field variables, though it is less clear in this case what physical
object one is conserving. General techniques for numerical topics such
as conservative differencing, numerical transport, artificial vis-
cosity, and the solution of elliptic equations are given by Roache]

(see also the text by Amesz). However in most cases the discussion in
such texts is limited to model partial differential equations. Hence,
in n number of instances, these numerical techniques have required
modification for use in our code.

A number of the aspects of our numerical method are the same

as those reported by Dykema.3 This is particularly true of the finite
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difference treatment of the hydrodynamic equations and, by extension,
the evolution equations for our dynamical gravitational field variables,
A and #nT. There have been significant recent refinements for treating
explicit Eulerian numerical transport.4’5 Though the exact techniques
vary, these methods are generally called monotone transport, or mono-
tonioity (see Hawley, Smarr and wilson4 for comparisons). Since

these new techniques will soon be used in our numerical algorithm

and because the older method of numerical transport has worked well and
has not been changed, we do not review this topic here. The reader is
referred instead to the complete and up-to-date discussion by Dykema3
on our approach to numerical transport, conservative differencing, and
artificial viscosity (see also Crowley5 and Leith7).

Just as we have emphasized in the previous chapters areas
where our analytic method has undergone significant refinement, we con-
centrate here on those aspects of our numerical treatment which have
recently changed. These numerical refinements include the identifica-
tion of a momerical regulariaation technique to allow proper finite
differencing of coupled elliptic systems near the singular points of
the coordinate system (r = 0 an& ® = 0 in our case, though the tech-
nique appears applicable to other curvilinear coordinate systems).

This scheme has allowed the elimination of the anomalous behavior in
the gravitational field quantities near these singular points, that
has plagued a number of past multi-dimensional numerical relativity

effortsa'9 including our own.:”]0 We have also found a method to
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produce convergence to solutions of the nonlinear Hamiltonian constraint
equation (IV63) even in situations (once a black hole has formed) where
the solution is in a very nonlinear regime. Finally we will also
describe an improved adaptive mesh positioning criterion which has
allowed fairly zone-efficient calculations to be made of the dynamics
of collapse, whether to a hydrodynamic bounce or to the formation of a
black hole, as well as following the radiation field out into the wave

zone.

a) Adaptive Mesh, Centering, and Boundary Conditions

From the symmetry assumptions discussed in Chapter IV and
with the symmetry boundary conditions given there, our finite differ-
ence mesh need only extend over one quadrant of the (r,0) plane. The
mesh is taken to be characterized by a discrete set of coordinate
locations (rd,ek) in the plane. It will be taken as a general conven-
tion here that a j subscript refers to a radial position, while k sub-
scripts give angular positions. The number of zones in either direc-

tion is specifiable; we take j to run over
T<icm (1)

and k between

p—

<k<KkM (2)
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The nodal positions given by (rj.ek) will be referred to as the A-mesh.
These positions are defined as follows. Define angular zone widths

Aek+& to give

ek"‘] - ek + Aek.“’ » k = 1.“‘,KM -1 . (3)

The zone widths A°k+a are to be considered centered between 6k+l and

By We take as the edges of the quadrant

(4)

roja

270, Oy

The zone widths are taken to always be positive and must be consistent
with the boundary locations (4). A dummy location exists at the

negative angle

Dummy zones are placed outside the computational quadrant to facilitate
the application of Neumann type boundary conditions. We will see more
of these momentarily.

Equations (3) and (4)‘above define the A-mesh angular posi-

tions. We take the second set of angular positions
= ] = eoe
Opasg = O + 7 MOy, k=1, KMo, ~ (8)

defined using the zone widths A°k+g to be the B-mesh angular loca-

tions. Notice that ek+& will always be exactly centered between LI
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and ek. Notice also that 93/2 is a negative location, or dummy zone,

next to the symmetry axis and that 9KM+% lies at an angle greater than

T
2
defined (6), the second set of zone widths

and so is a dummy zone for the equatorial plane. Once ek*k are

Aek s ek‘“ﬁ = ek'li » k = 20"‘.’(” » (7)

can be given. These are considered to be A-mesh quantities and are
nearly, though not necessarily exactly, centered on the locations ek'
We treéf the radial direction in 1ike fashion. The A-mesh

positions, Ty satisfy

J 2 Jyeee,dM - 1 » (8)

ERI Rt L

and the widths PJ+% are considered B-mesh quantities centered (exactly)

between rJ+1 and rj. The boundary locations are defined to be

rp=0, M T o (9)

where "m has been used in Chapter IV in defining asymptotic boundary

conditions. There 1s a dummy A-mesh radial location:

Py =< Bryp - (10)
The B-mesh locations are defined by

1 = ] aw
rj‘“ﬁ = V‘J + fArj‘Hi ’ j 1, ,'JM » (]‘)
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and the corresponding (A-mesh) zone widths ArJ by
A?‘J - rj_‘_;’ & I'J_,i » J = 2."’,\’" . (]2)

As before, ArJ and Arj+a are required to be ppsitive. B-mesh dummy
zones reside at r3/2 below the origin and r-‘],,“_;5 beyond oM (for certain
B-mesh centered quantities, rJM+k will assume the role of rm).

Nowhere in this discussion was it assumed that he A°k+a’
ArJ and Arj+a were to be independent of k and j, respectively. In fact
great computational advantages derive from taking these to be functions
of the (discrete) angular and radial coordinates, respectively. Such
a graded mesh allows more zones to be put where' they are needed and
increases the ratio of physical length scales that can be covered with
a fixed number of zones. We have thus far made great use of grading
the mesh in the radial direction. We have not as yet employed a
grading in the angular direction, though we will 1ikely do so in our
calculations in the near future. We typically use a uniformly graded

mesh defined by

Aryp, = obry, (13)

where o is a constant. The constant o is determined by specifying
the outer radial location, rgy» the size of the innermost radial zone,
ré. and the number of radial zones, JM, employed. We find o by an
iterative technique. With uniform spacing in the angular direction,

the zone widths are
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80y 4y, = 80y = g- (kM - 2)']- . (14)

If the mesh is graded, the value of ¢ can change in time.
This 1s necessary 1f for example we choose to change the size of the
innemmost radial zone, ry, or if the outer radius, rMe is changed.
We typically keep rym constant and ry is allowed to change to follow
the collapse of the material in matter-filled applications. Associated
with gradual changes, or redefinitions, of the mesh is a grid velooity,
v, (9, defined by

rj"+] = rjn + Vj(g) at (15)
where At is the coordinate time increment and the superscripts on the
zone locations refer to the time levels. In fact, equation (15) fis
used in reverse to derive the grid velocity. Hence, our nodal points
are moving with respect to the spatial coordinates. The evolution
equations that have been derived in Chapter IV, however, give the time
rate of change of a quantity at a fixed spatial coordinate location.
Since we want the new values of any given quantity, on a new time
slice, at the nodal positions, i.e. at a given (rj.ek). the grid
velocity must be used to compute a convective derivative for the

nodal locations:
Iﬁ[):';"k.j * ¥,y * V‘g)-ﬁpm (16}

where wk j represents the discrete values of any evolved quantity.
" ;
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This just represents a continuous interpolation process. The grid Figure la,b. The property of a radially graded mesh allowing both the
velocity then modifies velocities and fluxes in the transport terms of asymptotic regions (Figure la) and the interior of the core (Figure 1b)
3

the evolution equations. to remain well zoned as reflected by the numerical construction of the
We remark here that it has been extremely important to use the lapse function.
radial grid velocity judiciously so that our gravitational core collapse
calculations are followed with sufficient resolution.: This is particu-
larly true of collapse calculations which result in a black hole.
Because we wish to measure gravitational radiation from these models,
the mesh is required to extend out into the wave zone, where the outer-
most radfus will typically be on the order of hundreds of M. Then the
mesh must also become refined in size near the center to keep the
collapsing star well resolved. An example of a mesh satisfying these
purposes is shown in Figure 1. The choice of a grid velocity which
appears to work well is to redefine ry on each time slice so that the
radial grid velocity at this innermost zone equals the radial material
velocity, vj'. The mesh in the innermost zones therefore moves so
that the flow is locally nearly Lagrangian with respect to the nodal
points. We call this a quasi-Lagrangian grid velocity. If the collapse
of the core is nearly homologous, then this choice for the grid velocity
keeps roughly the initial number of radial zones within the core. The
remarkable feature of this choice, given our maximal time slicing,
quasi-isotropic gauge, is that even when a black hole forms the
collapsed core and the vacuum throat region that forms remain well

zoned. (For a discussion of this throat region and a demonstration of
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Figure 1b

. Figure 1la
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the geometry resulting from a black hole collapse calculation see
Chapter VI.) These calculations only break down once the grid stretch,
defined as the quantity o, becomes so large that the finite differencing
ceases to be accurate.

In the preceding discussion we had set up two separate meshes.
The reason this 1s done is so that different state variablés can be
centered in ways that make the implementation of finite differences and
averages most natural. Most quantities are zone-centered (with respect
to the A-mesh) at locations (ek+&’rj+%)‘ The exceptions are velocity-
like quantities, V‘. V(g)i. 81. S1 (with radial components centered at
the radial faces (ek+k’”1)’ angular componénts centered at the angular
faces (ek’rj+%))’ and Kre (which is corngr-centered, i.e. at (ek,rj)).
These definitions in particular make the differences produced by the
elliptic systems most natural. .

The angular components of velocity-1ike variables, as well

as Kre, are properly centered to directly apply their angular boundary

conditions:
8%(2,9) = 8%km,3) =0 (17a)
W(2,9) = wlmg) =0 (17b)
So(2:3) = Sy(kM, ) =0 (17¢)
K*e(z,j) = Kg(kM,§) =0, (17d)

where here parenthesis are used to avoid confusion with tensor indices.
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Radial components of velocity-like variables and zone-centered quan-
tities are correctly angular centered to apply their vanishing Neumann

conditions at g = 0 and g = %:

A(1,3) = A(2,)) , A(KM,§) A(KM - 1,4) » (18a)

B(LY) =8(2) .,  B(KMJ) =B(KM-1,9) , (18b)
0(1.3) =0(2,§) .  (KMJ) = 0(KM-1,5) , (18c)
) mE2d) L B - e~ e, (184)
ald)  =al2d) o alkMg) =a(kM-1,9)  , (18e)
Ke(1d) = KT(2,0) 0 KT(d) = KT (kM - 1,9) , (186)
KoL) = Ky(2.3) K 00n9) =k (km - 1,3) , (189)
U(1.3) = u(2,3) , U(KM,3) = U(KM - 1,j) » (18h)

r r o Vi - 3
B(LY) =823, sy ="M~ 1,3)  , (181)

WL =W(2,5) WKkM,G) = WT(KM - 1,3)  , (18§)

"

Se(1d) =5.(2,0) 0 SAKM) =S (KM - 1,4) . (18k)

The requirement that A and 2nT vanish on the symmetry axis is not
naturally produced by our centering assumptions; we typically take

them to satisfy instead

M2,3) = anT(2,§) =0, (19)
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and their boundary conditions at 8 = 7 are as in (18a-k).

The symmetry boundary conditions at the origin are in most
cases naturally applied. The exceptions are the Neumann conditions
(given in Chapter IV) for 8"/r, W'/r, and Kre/r. These are solved for
in the above forms. for numerical regularity purposes (to be discussed
below). Nonetheless, we are usually less concerned with the radial
centering problems of these Neumann conditions because the radial

resolution is usually high.

b) Elliptic Systems and Numerical Regularization

Solution of our elliptic systems can be discussed in the

context of the simple Pojsson equation
Ad = p ’ (20)

where p is to be considered constant with respect to ¢. Iterative
techniques to solve (20) generally can be represented by associating

with (20) the parabolic equation
b = nlde -p) . (21)

Given n > 0, the diffusion equation (21) has the steady-state solution
to (20). The label m is a "time" which indicates the iteration number.
Let us consider the finite difference form of (20) in cartesian

coordinates in two dimensions. If ¢ 1s considered corner-centered
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then
m+] 2 M 1 m m m+1
¢k,J ¢k’J + Am.n.{A—x{ [ok.j""] - %ktJ + ¢k,d-]
1 m m m+
+,§-‘-’ ["kﬂ 4 Byt "k-l,J) - pk,j} . (22)

Notice that when uﬁdated values are available (i.e. ¢k,J-1 and ¢k-1.J
because these nodal points have already been passed) they are
immediately used. This enhances the rate of convergence.]'2
We can extend these arguments for solutions to (20) to more
general equations than (22). A general scalar elliptic equation of
the form (20) will have an iterative finite difference representation

of

m+l m m +]
%%,3 "tk * "’{Ak.J"k,jH + By g1
m m+
* ck,J¢k+l,j : Dk,j¢k-1,3 g Ek.J = ¢E.J} . (23)

Notice in (23) that the factor w, called the relaxation factor, is
defined by requiring unit coefficient for °k i the last term within
the parentheses on the right-hand-side. This factor must 1ie in the

range
l<wc2 (24)

for (23) to converge. When w is taken to be w > 1, the iteration

method is called succeseive over relaxation (SOR). SOR produces very
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rapid convergence for optimal values of w.] For the Poisson equation
in cartesian coordinates with Dirichlet boundary conditions, this
optimal value is known to be 1.73. For other coordinate topologies
and boundary conditions it can be expected to differ from this value.
Nonetheless, our experimentation with SOR in our code with spherical
coordinates has indicated values in the range 1.7 < w < 1.75, quite
close to the optimum Poisson value.

Faster methods are known for solving these sysfems than the
SOR method. We may soon convert the code to a faster matrix solver.
However, to date the Japse equation (IV116), with Neumann conditions
at the origin, symatry a¥ls and equaterial plane and with a Dirichlet
condition at large radius, 1s.so]ved straightforwardly dsing SOR 1in
the form (23) with w = ],73,

The Hamiltanian constraint (IV63), used to obtain the metric
variable ¢ = Bk. is nonlinear. Tq find its solution, we use a best
available guess for y to evaluate the source (the right-hand-side).
Then the linear operatar {§ #0jved hby SOR to obtain a temporary func-
tion y. The next approximation-to the solution is formed by taking a
weighted 1inear combination of ¥ and the last guess. This is a modi-

fied Picard (outer) iteration. Writing equation (IV63) as Ay = N(y), where

where A is the 3-dimensional scalar Laplacian, the algorithm becomes,

AL () (25a)

L A T AL W (25b)
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During the early stages of collapse, before a black hole forms, the

value of this weight is largely unimportant and can be taken as unity.
Once a black hole forms, the solutions for the conformal factor are in
a very nonlinear regime and the use of a correct weight is crucial to
finding a solution. The optimal weight appears to be @ = 0.22 once a

~

black hole forms and values & > 0.5 appear to be divergent.

The evolution equation (IV36) for B = wz can be used to pro-
vide a good first approximation for the elliptic solver. The boundary
conditions for on axis, equator, and origin are similar to those for
the labse and are straightforwardly applied. The Robin condition
(IV66) at the outer boundary is given by

-
Ar Ar Ar
) am| , Arom am
Vamssg [wJM-&[] - Z__rJM] + rJM] {’ * r‘rJJ : (26)

The shift potential equations (IV89a,b) are decoupled with
the definitions (IVB7a,b) for the potentials x and ¢. Furthermore,
the appearance of the two-dimensional Laplacian allows these equations
to be Fourier decomposed and replaced by a set of ordinary differen-
tial equations (ODE). This avoids the use of iterative or relaxation
solution methods and significantly speeds the solution of these equa-
tions on the computer.

A finite Fourier transform of x, ¢, P = u(ZKrr + K°¢). and

Q= Za(Kre/r) gives:
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KM-3
=a.+2 a_ cos2mg ’
Xk#s %0 m§, m kg
KM-3
Qk =2 X bm S'ianrﬂk »
m=1

KM-3
pk+lﬁ = py + 2 m§1 Pn cosZmek\“i ’

Q =2 KMX q, sin 2mo, (27)

consistent with the parities of the functions under axisymmetry and

equatorial plane symmetry. The inverse transforms are
1) M5 2me
= 0s .
Pm ["‘Em - ] k§2 kg 05y
KM-1
= ] ] Q, sin2me ’ (28)
I [KM -2 k§3 k k

with identical expressions for amplitudes a, and bm. In the above
expressions the radial index is suppressed; all amplitudes are
implicitly functions of r.

The amplitudes 3 and bo are handled separately. The expected

dependence of 81 near r = 0 (see (IV46)) implies a singular dependence,.

3 v constant x gnr, for x. The angle average of
r

r KM-1 .r
L )

B w7 , is calculated directly from equation
r 4 KM' k=2 r]kﬂﬁ

(Iv9):
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.
r mp
R ) 1{lp .3 -
(&) I rdr+;3-[2-00 0 C D L, (29)
r m

. 4y k-1 r
where (gnT) = [Kﬁ':1a kgz (znT)k+%. The last two terms giving (@;;)

at r = r_ are, respectively, the longitudinal (IVA15a) and the trans-

verse, or wave, (Evans, 1984) contributions. The amplitude 3 is never

.

explicitly calculated.
Equations~(IVB9a,b) are transformed giving,

2.
ro(ro, a ) - 4m a, = p

. (30)

2 =
ra,.(rar b,) - 4m by %0 » (31)

a set of uncoupled ODE's for m = 1,..- ,KM -3, These are solved using
the tridiagonal algorithm.1 The inner boundary conditions are

dpa, = ?rbm =0 at r = 0. The conditions on the outer boundary are
given by the Fourier transform of the transverse, weak field conditions
X = E%f wnT and ¢ = 0 (bm =0) form= 2,-¢+,kM -3, For m = 1 there
is a longitudinal contribution (only the lawest order, r'3, moménfs

are calculated) in addition to the above wave condition to the boundary

condition on a (b](rm) = 0). This longitudinal contribution is

a](L) = 3% D2 ;% » a Dirichlet condition, while the transverse part

m

implies a Neumann condition
KM-1
(M .. 1
aral Z

—_—

(2nT), ., co0s28 . (32)
2arf (kM- 2) k=2 KMk

rs=
rm
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Finally we close with a discussion of the numerical problems
encountered with the accuracy of finite differencing coupled elliptic
systems near the singular points of curvilinear coordinate systems and
the techniques we have used to circumvent these numerical irregulari-
ties. MWe employ spherical coordinates in our calculations and hence
problems in the finite difference approximation appear at the origin,
r =0, and to a lesser extent on the symmetry axis, 6 = 0. Similar
numerical regularity prehlems alse occurred in an earlier version of
this code which employad-topo]ogical cylindrical coordinates.]0 In
that case the irregq]qrjtqu $howed up along the entire (coordinate
singular) symmetry axis. 8§{mi)ar numerical irregularities have long

been a source of proklems in usjng 2-dimensional numerical relativity
codes. We have deyeloped tachniques for eliminating this aberrant
behavior in our spherica) ceardinate numerical relativity code. The
general method hqwever appears immediately applicable to other coordi-
nate topologies. We have identified two causes of these numerical
irregularities near symmgtry points. The first is due to the loss of
finite difference accyraey and Increase of truncation errors near

these regions in curvilinear coordinate systems. The second is related
to the appearance of nontrivial, local homoggneous solutions to

coupled elliptic systems. '

The usual arguments on the formal size of truncation errors
in finite difference approximations are based on the use of a Taylor

expansion. For a problem in cartesian-like coordinates with zone
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increments Ax, centered spatial differences will produce truncation
errors with respect to the corresponding derivatives they replace of
order (Ax/l)z, where £ is the characteristic physical length. These
errors can be arbitrarily reduced with increase in the resolution (i.e.
Ax + 0). The problem with finite differencing in curvilinear coordi-
nates, near the special points or regions of the coordinate system, is
that Taylor series do not in general exist there. One encounters in
spherical coordinates differential operators of the form %-ar, for
example (similarly one has %-ap in cylindrical coordinates). With
this explicit appearance of the radial coordinate, attempts to produce
centered finite differences of such operators will produce truncation
errors that are the maximm of (Ar/f.)2 or (Ar/r)z, where £ is again
the characteristic physical length. Far from the origin of coordinates
these errors can be made sufficiently small. However in the vicinity
of r = 0, the errors associated with most finite difference represen-
tations will be of order unity (or worse).

We can illustrate this problem and its solution with a

specific example. Consider the radial second order operator
(P ay) (33)
r

associated with the flat space three-dimensional Laplacian (1V63).
Let us consider that this operator produces zone centered values,
i.e. located at positions rj+l§ and that y is zone centered as well:

wj+%. Using our mesh definitions, one can straightforwardly
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difference (33):
o [rzw L by = ¥y
- r)? E‘,; (V541 - wJ_,,)] : (34)
Let us also assume that ¢ has the local radial dependence
p(r) = ¢ + c]r'2 sotrhy (35)

just as we anticipate for the conformal factor. Applying (33) to (35)

gives the analytic value GCI' If on the other hand we take from (35)

by 0t gy 361
and use (34), we obtain
1 1 2
1 o KF}:; [% j+|(rjt% & r‘j+15)
ith
- l(r i] (37)
J Vit ik ’

Evaluating this at the first three radial locations, j = 2,3,4,
yields the values 8.0 s 6.22 Cps 6.08 Cyo respectively. Hence, it
can be seen that the errors near the origin in such a straightforward
finite differencing (34) of (33) are of order unity.

The solutions to these problems is to choose the specific

finite difference representation for the operator in question which
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reproduces the expected analytic result under the assumption that the
general local dependence of the function is known. This altered finite
difference operator for-(33) for example will differ from the straight-
forward one (34) away from the origin only at the level of second order,
which is already conceded to the approximation as a whole. For (33),
we would use instead
3 [2'31” - (0343 = Vyu)

Fiag * Tyng Oy 3% Vin

3 3
Tty

2r3.
which, assuming (36) as the expected form for y, reproduces:the
analytic value.
A second problem which will be typically encountered in
solving coupled elliptic systems is local homogeneous solutions. We
can illustrate why this is not normally a problem by considering the

scalar Poisson equation
Ap = 4up s (39)

The homogeneous solution for this equation is just a constant, say -
Assuming our symmetry conditions, the local dependence of ¢ near r = 0
would be ¢ = ¢ .+ ra(c] tc, sinze) + 9(r4). in spherical coordinates.
Regardless of whether this equation (39) is written in cartesian

coordinates or spherical coordinates prior to finite differencing,
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the difference representations of the partial derivatives in the
Laplacian will identically cancel off the constant Co- The finite
differencing of (39) can then concentrate on reproducing the expected
next order behavior in ¢. The value o is of course only determined
by the global solution of (39) once suitable boundary values have been
prescribed.

The situation changes drastically when one considers vector
or tensor (or in general mu]$1-component coupled) elliptic systems.

Consider a 2-tensor K’

j which exhibits our assumed symmetries including
a tracefree conditiop (1.p. ]‘Bp the extrinsic curvature tensor). The

cartesian components in the 1imit r + 0 have the form (1v49)

r!lmo “1\’ . (“49[:8].9],-29]] ’ (40)

where 9 is a constant. [f g tensor-like Laplace operator, like the
“tensor Laplacian” (JV79a,h), 1 earteeian coordinates operates on
(40), this "constant" or homogeneous solution will be annihilated.
The same is true of a finite difference representation. However, if
the tensor (40) 1s transformed to spherical coordinates, this local
homogeneous solution will he of the form (IV55,58) which has angular
dependence! If the finite difference operator is to produce accurate
results, these terms must still be identically annihilated.

To do this requires that the differential equations for the

coupled elliptic systems be written in a form first which allows the
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subsgquent finite difference equations to fdentically annihilate the
Tocal homogeneous solutions. The vector and tensor Laplacian equations,
(1V67a,b) and (1V79a,b) can easily be manipulated into this form (see
Evans, Smarr and Hilson]]). When this 1s done the results are dramatic.
Figure 2a shows the local behavior near r = 0 in the extrinsic curva-
ture component K¢¢. A large numerical anomaly 1s evident within the
first 5 to 10 radial zones. Figure 2b indicates the greatly improved
local behavior in the finite difference calculation after the technique

has been regularized.



iqures 2a,b. The local behavior near r = 0 in the extrinsic curv-

:ure component k? An anomalous numerical "spike" is evident at

e origin affecti:g the first 5-10 zones in Figure 2a. The symmetry
«is is to the right and the equatorial plane to the left. In Figure
). the same component plotted after the finite differencing has been
~eqularized." Note that the vertical scales in the two figures are
ifferent, with Figure 2a being dominated by the numerical error.

:nce, there is great improvement in Figure 2b.

AT

Figure 2a

Figure 2b
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CHAPTER VI

We present here a number of preliminary results from calcula-
tions made with the computer code that has been developed by implement-
ing the analytic and numerical techniques described in the preceding
chapters. Several test results from calculating vacuum (Brill wave)
spacetimes and matter-containing models that form black holes will be
shown. More significantly, we have produced a set of mbdel oblate core
collapse and bounce calculations. These allow a comparison of the
relativistic hydrodynamic motion and gravitational radiation production
along a sequence of successively higher maximum bounce densities. Some
of the generic features and specific results from these models will be
discussed beiow.

Several consistency checks made during these core collapse
calculations fndicate significant accuracy. These internal checks
strongly suggest that our calculation of the total emitted energy in
gravitational radiation from these collapses is fairly accurate. We
have an even higher degree of confidence in the calculation of the
longitudinal and kinematical parts of the gravitational field (¢, Nf.
O, Bi), that in our frame dominate the gravitational effects on the
fluid, and in the relativistic hydrodynamic calculation itself. This
allows us to accurately find the quadrupole moment and its time deriv-

ative for the configuration, though of course this is a completely
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gauge specific result. Nonetheless, this point will lead to an impor-
tant quantitative result on the efficacy of the quadrupole moment
formula for gravitational radiation from stellar core collapse.

We have less confidence, at present, in our ability to make
detailed predictions on the gravitational radiation waveforms,
h+TT(t - r), resulting from these aspherical core collapse calculations.
This is because of an as yet unresolved problem in an asymptotic
boundary condition. It appears that gauge effects that occur at the
outer edge of the compytationa] mesh simultaneously with the violent
near-zone dynamics (due to elliptic gauge conditions) generate small,
but noticeable amounts of spurious incoming radiation at the edge of
our mesh. From the size of these effects in the gravitational radia-
tion flux indicators, we believe the total integrated energy loss is
still fairly accurate (within 10-15%). However, because the flux
responds to sharp gradients in the waveforms, there appear to be
significant late time (and early time) deviations in the waveforms
that only minimally affect the radiation flux.

Finding the problem with the asymptotic boundary conditions
will no doubt be aided by the enhanced understanding of the asymptotic
structure of the gravitational field in our gauge, as worked out and
presented in Chapters III and IV. In any case, we do not believe this
will stand as a significant impediment to progress. We expect a
resolution of issues of accuracy to come shortly, once the boundary

problem is eliminated, after a series of code tests are performed.
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Several tests relating to wave propagation will likely be more directly
implemented using some of the analytic calculations derived during the
writing of this thesis (specifically the asymptotic form of a weak

gravitational wave in our gauge given in Chapter IV Appendix B).

a) Confidence Tests

We use the term confidence tests here because we do not mean
to imply that results from a systematic code testing program are
available. We have indicated that such a program will be conducted
soon. Rather, our intention is to present several quantitatively
accurate results which have come out of our computer calculations, but
in an unsystematic way. As such they do not nearly span the conceiv-
able range of numerical issues that should receive adequate scrutiny.

At the same time, it should not be assumed thaf the code
can be tested in all physical regimes. If this were the case, there
would hardly be reason to undertake a numerical approach in the first
place. A rigorous testing program can only nip at the edges of the
nonlinear regime that is of interest, by using exact solutions avail-
able in different perturbative regimes and comparing these with code
generated results. However, aftef any such rigorous testing program,
there will still be required a leap of faith in declaring any new
physical results accurate. Code testing is necessary but not suffi-

cient. We believe that the ultimate test of a numerical physics
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calculation, and in this regard it is similar to experimental physics,
is for several researchers or groups, working along independent 1ines
(with different gauges for example), to produce consistent answers.

The first confidence test to be discussed emerges from a
vacuum Bril1l wave calculation. Brill waves, or axisymmetric gravita-
tional waves, were considered analytically long ago (1959) by Br111.1
He demonstrated, under the restrictions of axisymmetry and time
symmetric data, that localized configurations of such wavés as initial
data have positive mass-energy at infinity (using (IIIA7)) and that
the only such spacetimes with vanishing mass are flat. Only quite
recently has the qu1tiyg sngrgy theorem peen proven for general
asymptotically flat conf1gurati6ns.a'3 Several numerical Brill space-
time evolutions haye bean reparted praviously.4’5

Brill initial data eonsists of setting to zero all hydro-
dynamic quantities, taking K‘J = ( (for time symmetry; though we note
that time asymmetric datg cgn‘pp used qlsos), and specifying some
functional dependence in T op ¢nT. From the considerations of Chapter
II, the initial data is required to satisfy only the Hamiltonian
constraint (I174), which (ar these systems is

R=0 . (1)

Writing (1) in our gauge yields
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- 2 1
3.(rfa,p) + ——— (s1ne3gy)
;F r 2 r-sine 6
= . % v E% 3,(ra, 2nT) + -%.3639 gnT] , (2)
r

from (IV63). By either assuming a larger amplitude for 2nT or a
shorter characteristic length, the strength of the gravitational field
is increased, as measured by ¥. Weak Brill waves can be considered to
be those in which 1inearized theory (Chapter IV Appendix B) {s suffi-
cient to describe the subsequent evolution. For a sufficiently strong
Brill wave, an horizon may 1ie on the initial surface or in the near
future development. Such a strong, localized initial "wave" will then
suffer gravitational collapse to a black hole with only a fraction of
the energy escaping to infinity. These systems are of considerable
interest in and of themselves and we will no doubt seek to explore
those configurations with our code.

What we wish to use here is the simple observation, that for
any Brill spacetimes which do not undergo gravitational collapse, the
total initial mass-energy will radiate through any finite radius edit
two-surface. Hence the total time-integrated gravitational radiation
flux should equal the initially computed mass if the numerical
simulation -is accurate.

We time integrate the Bondi-Sachs flux (IV154) to obtain
the total mass loss. To monitor the mass of the configuration, we

use the Brill mass 1nd1cator.]’4‘5 This can be derived by taking the
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ADM mass (IIIA7) in the equivalent form

lim szs" nk(f) my (3)

r+o

Mapm = -4

where we have used flat space derivatives, Dk(f). and surface element
and have replaced ¢ with 2ny. This has the same effect in the limit
r + o, Gauss' theorem allows us to replace (3) (on an R3 manifold)

with

me-a [ axay D am 4 (4)

Then using the identity
1 2
A3(f) Ly = %A3(f)w - (3, znw)z b (3g 2ny) » (5)

and (2) plus the fact]

lim J d3x Az(f) wT =0 (6)

r 4+ o
gives the expression for the Brill mass in vacuum:

2 2 ] 2
MB =4 I dr dod¢ r sine[(ar Y+ ;? (ae Lny) ] . (7)

The result is obviously positive definite. We use this mass indicator
in vacuum calculations because it is produced from volume integration
in;tead of a surface integral. The surface integral formulations of
mass depend for their validity on being calculated at radii beyond

all gravitational radiation wavefronts, in order to pick off the
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static monopole part of the field. Consequently, the ADM mass (IIIA7)
and Hawking mass (IIIA11) are much less well behaved as the wave passes
the finite radius edit two-surface than is the Brill mass (7).

A plot of the Brill mass and integrated Bondi-Sachs flux
versus time is shown in Figure 1 for a typical Brill wave calculation.
The initial mass and total integrated mass loss agree to within 1%.

For this balance to have been accurately achieved indicates that
several different aspects of the numerical technique are performing
well during the evolution. The Hamiltonian constraint (I1V63) must
produce an accurate conformal factor, or y, to be read as an indication
of the system mass in (7). The propagation of the gravitational wave
must proceed without spurious numerical diminution or enhancement of
the wave strength. And the Bondi-Sachs indicator must accurately read
the radiated flux.

We next show a result indicating the ability of our code to
track a solution deep into the nonlinear regime characterizing a black
hole. To simplify the analysis, we will examine this property in
spherical symmetry. In spherical symmetry, the momentum constraints
(Iv26a,b) reduce to
(8)

1 33y - _ 1,3
:gar(rAKq)) 2A Sr .

since A=8B = ¢2. This can be integrated,

"
K = - L dr(Ar)3 S . 9
’ z(Ar)s!, AN S, %
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Agure 1. The Brill mass computed for a Brill spacetime (curve A) and
he total radiated mass-energy measured by the Bondi-Sachs integral
curve B) are shown plotted versus time. The vertical scale is

ormalized to the initial mass. The expected balance between the

wo measures is evident and the agreement is within 1%.

Normalized mass-energy

Figure 1
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We assume the spherical configuration is collapsing, Sr < 0, and that
Sr has compact support (i.e. that there is a vacuum region outside the

object). Then the integral in (9) can be given by a constant

r
1 —JO 3
¢ = -5/ ) ar(an)¥s (10)
0

and the extrinsic curvature component satisfies

3% 2 ()

in the vacuum exterior.
Next, we consider the spherically symmetric, vacuum

Hamiltonian constraint found from (I1V63) with (11):
—%-ar(rzarA]/z) = - %-C04 r'BA'7/2 . (12)
r
This produces a solution for A which also holds in the vacuum exterior.
We seek a particular solution to (12) of the form
A% s e (13)

Substituting (13) in (12) yields a solution for n = - %—and k = Cok.

or

Ar = C (14)

0

This solution represents the vacuum throat region of a dynamic
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(collapsing) black hole in our gauge. For the dependence (14) to be
obtained, A must be significantly larger than its asymptotic value of
unity. Hence the association with a black hole.

Finally we use the result of Shapiro and Teuko]skys'5
r. 12 2M 2 42
[1 + K’arA] =1 - A * (Ar)© K 6 - (15)

which is a first integral describing exterior Schwarzschild geometry

in our dynamic gauge. Using (14) in (15) gives

=3
Co=5M (16)

and one can see that, after a black hole forms, the integral (10) over
the momentum density is directly related to the mass of the hole. For
the behavior of the solution, (14) and (16), to be maintained in a

numerical calculation, we believe represents a significant test of the

code. Equation (16) predicts the dependence

Ar = %M (17)

from (14) in the throat. In addition, these results give a constant
extrinsic curvature in the throat, with

K =

A . (18)
¢ 33M

We can produce an imbedding diagram by plotting Ar, or an

angle average if used for aspherical collapse, versus coordinate radius
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r. The "coordinate" Ar is an areal radius (the Schwarzschild radial
coordinate), as can be seen by inspection of the Tine element (IV6) in
spherical symmetry. At large radii r and Ar are nearly equal. Figures
2a-e show this imbedding diagram at various stages of collapse of a
spherical core. Similar calculations have been made for aspherical
collapse, but the diagrams then are more ambiguous, and we do not
present them here. Figure 2a shows the configuration with nearly flat
geometry at the start of the evolution. Figures 2b-e are snapshots at
subsequent times in the collapse. The development of the throat is
evident. Notice that even at very late times (Figure 2e) the value of
the areal radius in the throat is holding at g-M.

Finally, we.present a consistency check for a non-spherical
core collapse and bounce calculation. The mass of a configuration
computed during a nwnerical evolution is not constrained to remain
constant. Thus we regard as an important test of the accuracy of a
numerical relativistic simulation, the degree to which the correct
value of the mass is held during a calculation. This has been a
guiding consideration in the development of these codes.d‘s‘7 Figure
Ja displays, on an absolute scale, the variation of the Hawking mass
versus time for a deep hydrodynamic core bounce calculation. We will
present details of this calculation later; here we wish only to point
ouf that the variations in MH are under +0.5% throughout the calcula-
tion. Figure 3b shows for comparison the variation of the central
value of the lapse during the simulation. Notice that the bounce

occurs in a highly relativistic regime from the depth of the lapse.
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Figures 2a-e. These figures show an imbedding diagram representing
stages in the development of a throat as a black hole forms. The
initial geometry in Figure 2a is nearly flat. Even at late times,

the analytic value Ar = g-M is maintained.
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Figure 2b
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Figure 2a
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Figure 2d

Figure 2c
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Figures 3a,b. Figure 3a displays the accurate control of the Hawking
mass throughout a numerical evolutfon of nonspherical core collapse.

The mass-energy is plotted on an absolute scale. For comparison, the
highly relativistic nature of this collapse is indicated in Figure 3b

by the central value of the lapse function.
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b) Oblate Core Collapse

We next present some preliminary results from simulations of
highly oblate core collapse and hydrodynamic bounce. Earlier relativ-
istic two-dimensional hydrodynamic core bounce calculations have been
produced by N1150n7 and Smarr. A small one parameter survey has been
conducted 1n which the cores were given initial data which produced
successively deeper and more relativistic collapses. We will describe
variations in a number of the features, e.g. gravitational radiation
efficlency, lapse depth, maximum densities, quadrupole moments, mass-
energy changes, etc., across this sequence.

First however, we describe the generic collapse model. 1In
all these models, an adiabatic equation of state (I1105) was used with
I' = 2 to model a stiff fluid (see Chapter II Appendix for restrictions
on I' in relativistic regimes). The starting point for setting up a
collapsing oblate star is to produce an equilibrium spherical star,
in this case ann =1 (r = 2) polytrope, which s then altered. The
initial models are constructed assuming Newtonian gravity. (These
objects will start out fairly nonrelativistic typically, but in any
case, once the constraints (IV63, 67a,b) are solved, the data will
represent a proper relativistic configuration. Though these cores
will no longer be in equilibrium, in due course the energy balance
s even more drastically altered, so this is a somewhat minor concern.)

The density profile of the n = ] polytrope is
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sin -
p")c%» E R() (]9)

where R0 is the radius of the star. In assigning initial data, we
typically depart from the dependence (19) by beginning to taper the
density profile exponentially just prior to the first zero of (19).
This ensures that the code always has some amount of fluid to push
around. The central value, Pes is determined by integrating p and
units are chosen by setting the baryonic mass to unity. From (III21),
this will be preserved even after transforming with ¢ to obtain proper
relativistic data. However, as we describe momentarily, to this unit
baryonic mass is added kinetic energy, internal energy (pressure), and,
once the solution of the Hamiltonian constraint for the conformal
factor ¢ has been obtained, a negative contribution of gravitational
energy. In short, the total mass-energy of the-system implicit in the
asymptotic gravitational field will typically differ from unity,
indicating some amount of binding energy (positive or negative).
Before solving the constraints, however, we must conclude the specifi-
cation of the free data.

We specify the internal energy density, or equivalently the

pressure, by taking

pr) = peo " 2n(r)? (20)

which from (I11107) is consistent with I = 2, The value of P can be

chosen, based on the radius RO' to produce equilibrium. Instead, to
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produce nonequilibrium configurations, this amount of pressure is multi-
plied globally by a set factor f < 1; for the models to be described

we took f = 0.62. The densities are then ellipsoidally deformed to

give the core some large initial oblateness; for the models described
here, we took 1.5 :1 as the ratio of the equatorial to polar radii.

Considering the energy again, an equilibrium polytrope has a
positive binding energy after the solution of the Hamiltonian con-
straint for ¢ as would have been expected from the Newtonian analog.
The reduction in the préssure further increases the bihding energy.

We would 1ike, however, to model as closely as possible, under the
current circumstances, the collapse dynamics of a stellar core. The
collapse of a degenerate iron core is initiated, typically by electron
captures, at a radius on the order of a thousand times larger than the
bounce radius. Hence, barring significant dissipative processes, the
binding energy of the core will be nearly zero throughout the collapse
with the remaining energy residing in the form of kinetic energy
acquired during the infall.

Starting our calculation at such large radii would be pro-
hibitively expensive because our Courant condition is determined by
the 1ight speed, not the hydrodynamic velocity. We therefore add to
our collapse model an initial velocity field and start the calculation
much closer to bounce. The magnitude of the velocity is taken to be
proportional to ellipsoidal distance over the region of significant
density. Outside the bulk of the core (typically beyond the 1%

density contour), the velocity is tapered exponentially back toward
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zero. This velocity field therefore gives the star an initial, nearly
homologous motion. The proportionality constant between |v| and
ellipsoidal distance is chosen so that the integrated kinetic energy
(in the Newtonian set up) is sufficient to give a nearly vanishing
binding energy.

The hydrodynamic data is then determined merely by the
specification of the initial core radius. The sequence of runs to be
described 1s characterized by variations in the initial radius of the
star, which then le&ds to variations in the density at the hydrodynamic
bounce. The free gravitational field quantities, &nT and RTij, must
also be specified. In these models we have simply taken

gnT =0 , RT’J =0 , (21)

.

initially. This represents a fairly good choice to minimize the amount
of initial gravitational radiation in the problem. However, we have
essentially reached the point in these simulations where it is neces-
sary to model, in the initial data, the small amount of gravitational
radiation which would be present from the infall phase that occurs
prior to the start of our integration. This is an area we will likely
actively research soon. Finally, the constraints are solved producing
proper initial data.

' We are now in a position to describe a typical collapse
calculation. Five runs have been produced along this sequence, which

we label here as Run A through Run E in descending order of maximum
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central density; The run to be described first is Run B. This object
bounced at a central density of roughly 1.6 x 10]5 g cm'3, which is

about six times higher than nuclear densityez

oy =2.5x10%gemd (22)

Typical supernova calculations indicate bounce densities of 1.5 - 2.0
8,9

Ppe so this run produces a much more relativistic object. The
starting radius for this object is roughly 12 M. Figures 4a-f show

the hydrodynamic state, density contours and velocity field vectors,

at several stages during the collapse. Figure 4a depicts the start

of the calculation and indicates thg infall phase of the collapse. The
small circular arc is a fiducial marker at a radius of 2 M indicative
of the horizon size if the entire core forms a black hole. It there-
fore suggests the relative importance of relativistic effects. Notice
that the linear scale of the figures changes during the collapse in
order to keep the details of the core dynamics visible.

Figure 4b catches the formation of the primary recoil shock
from the oblate bounce. The velocity vectors are exaggerated in length
and most of the core remains unshocked. Hence the bounce is primarily
adiabatic. (This is largely due to the stiff E0S.) This is also
roughly the point of maximum oblateness. Figure 4c show the shock
erupting from the core. The star continues to compress though re-
expansion is occurring along the symmetry axis. In Figure 4d, the

(incomplete) primary shock front is moving out through the more
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Figures 4a-f. Rest energy density contours and velocity field vectors
are plotted for one quadrant of the r, @ plane for the core. The

vertical axis is the symmetry axis and the horizontal axis represents

the equatorial plane. The rest of the core is inferred by symmetry.
The fiducial circular arc indicates a radius r = 2M. Hydrodynamic

milestones are described in the text.

Figure 4
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tenuous material surrounding the core. The star is passing roughly
through the point of vanishing quadrupole moment and is close to
maximum compression and the minimum central value of the lapse. The
velocities in the core at this point are on the order of 0.3 -0.4 c.
The fiducial arc, though difficult to see in Figure 4d, indicates the
core radius is close to 4 M at this point. These facts reinforce the
point that a collapse in this regime is not treatable by slow-motion
or weak-field approximat{ons.

In Figure 4e, a vortex is evident in the wake of the primary
shock. In addition, prg}gtg heunee 1s occurring and a secondary shock
front is forming. Finally, 1n Figure 4f, the re-expansion phase has
begun and the secandary shack {s propagating outward.

In Figure 6a-h, we show a similar set of snapshots of the

Bondi-Sachs flux (IV]64) integrand
2
rzABB- NP Y (23)

Notice that the factor r2 has been included, which produces in (23)

an invarfant amplitude for the pulse in the wave zone. The longitudi-
nal part of the field dominates (23) in Figure 5a due to the rapid,
nonspherical motion of the core. In Figure 5b, the longitudinal
dependence is giving way to the pascent radiation pulse. The wave
continues to grow in amplitude in Figures Sc-e as it proceeds through
the induction zone: r < Awavg+ The wave has reached its invariant

amplitude in Figures 5f and 5g. The inner edge of the wave zone
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Figures 5a-h. The Bondi-Sachs flux integrand showing the formation and
propagation of the gravitational wave pulse is plotted over one quadrant
of the r, 6 plane. The equatorial plane is on the left and the symmetry
axis is to the right. Note the sinae radiation pattern.
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appears from our simulations to be at just about one XNAVE' The main
pulse has clearly propagated off the mesh in Figure 5h. It is also
important to notice the dominant quadrupolar nature of the radiation

emission as evidenced by the obvious sin4

6 radiation pattern.

We conclude this description of Run B by displaying the
lapse function as an indication of the strength of the gravitational
field. Asymptotically, or in weak field, the gravitational potential

¢ is related to the lapse by
PF1 -0 . (24)

Typical values are ¢ = 1076 on the solar surface and ¢ ~ 1073 on a
white dwarf. In Figures 6a, b, the lapse function is shown at the
beginning of the simulation and near the point'of maximum compression.
The extreme relativistic nature of the object is evident, with

1 -a~ 0.45 in Figure 6b.

Before leaving our discussion of generic features from these
calculations, mention must be made of the gravitational waveforms that
we calculate and are of so much interest to us. We have already indi-
cated that we do not as yet place a high degree of confidence in our
calculated waveforms. The waveform resulting from Run D is displayed

in Figure 7a. This run is of great interest because the maximum

14 3

density that occurred during the bounce was e ™ 5.0x 10" g cm™,
or roughly twice nuclear density (22) and therefore close to values

indicative of realistic supernova models. In Figure 7b, this waveform
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Figures 6a,b. The lapse function plotted over one quadrant of the r, 0

Figure 6a depicts the lapse at

Axes are as in Figure 5a-h.

plane.

Figure 6b represents roughly the point

the start of the calculation.

of maximum compression.

Figure 6a
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Figures 7a,b. Figure 7a depicts the gravitational waveform generated

Figure 7b shows both the

by the collapse as calculated with our code.

above waveform and the quadrupole formalism predicted waveform.

Figure 6b
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s compared to the quadrupole formalism predicted waveform given by

.085 | I 3 . 2

.050 | h, = 3y Izz°sin%0 (25)
.0us

£0%0: in axisymmetry. Here I,; is given by

.035 | 2

00 t,, = j d3x [22 s d rz]p =2m J dr d9r4sine[cosze - lJp ,» (26)
025 |- 44 3 3

.020

o018 F and this is a gauge dependent result. Hence, we only expect agreement
1910; B between the self-consistently calculated waveform produced by the code
.008 |

000 and (25) in the 1imit of weak-field and slow-motion sources. For Run D
-.008 | we do not in fact find agreement, and we will discuss this discrepancy
-mlo; e below. Nonetheless, Figure 7b indicates several concerns about the

vy R 98 W 3z g8 8 F 8 Q8
Bldie Ta t /M self-consistent waveform. First, our assumption of the initial data

given in (21) apparently depresses the early behavior of our waveform.

08 i The late ringing behavior is also suspect, relating to the gauge prob-

1 lems at the outer boundary discussed earlier in this chapter. What the
] calculation is probably getting right and what is most important for
calculating the gravitational radiation efficiency (i.e. the fractional
loss of system mass-energy to the gravitational waves), is the rapid
rise of the waveform near t = 150 M (in Figure 7a). This is because
the flux 1s dependent on the time rate of change of h,.

] Having described some details from individual collapse cal-

culations, we conclude our discussion by relating results from the

sequence of runs. We have said that the models on this sequence are

-.02 x + + -+
% 2 83 8 8 8 2 8 8 e R T 8 8 8 characterized by the initial assumed radius. The specification of
Figure 7b t/ "
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the thermodynamic state of these objects is such that different initial
radif lead to varying bounce densities. So while it is not known ahead
of time, the maximum density at bounce can also be used to characterize
the calculation. These densities are given in Table 1 in units of
nuclear density (22) for the sequence of runs. Also given there is the
minimum central value of the lapse function that occurred during the
calculation, indicating the relative strength of relativistic effects.
The total time-integrated Bondi-Sachs energy loss is tabulated as a
gravitational radiation efficiency (fraction of M radiated).

The quadrupole moment formalism predicts an angle integrated

gravitational radiation flux of

gelouad) 4,

e Wiz (27}
from (25). This is a gauge specific result, but how inaccurate is it?
It is sometimes off-handedly stated that for a supernova core bounce,
the general relativistic effects are only 15%, so general relativistic
corrections are not needed to cpmpute the gravitational radiation to
this level of accuracy. One simply calculates a Newtonian collapse
model and uses the quadrupole formula.

However, the term 15% effects usually refers to the gravita-
tional potential at the surface of the core. The "potential" in the
interior can be on the order of 40%. If this is regarded as the size

of deviations in the metric components from flat space, then it is

TABLE 1
quad quad
Run | p,™%/p, | olin a9y L ae Iym| oaE oM
A 1.2 0.46 | 0.0072 0.017 0.13
B 6.4 0.55 | 0.0023 0.014 0.046
c 4.0 0.62 | 0.0047 0.015 0.023
D 2.0 0.71 | 0.0058 0.012 0.0063
E 0.2 0.88 | 0.0030 0.0021 0.0011
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also the size of relative changes in tensors under gauge transforma-
tions. This level of uncertainty would be significant by itself.
However, inspection of (25) - (27) reveéIs that the quadrupole flux
depends upon high powers of the coordinate radius {10} and time coordi-
nate {6}. Hence, 40% effects due to gauge changes in the spatial and
time coordinates will tend to make (27) uncertain to factors of 2 to 5.
We have calculated (27) after making an approximate spatial
gauge change. This {1s done within the context of the existing collapse
calculation by computing the quadrupole moment (26) with a new radial

coordinate defined by
r=A (28)
This gives an altered quadrypole moment of

b, = 2n J d(Ar)de(Ar)4 sine[cosze - %Jp 5 (29)

This roughly mocks fhe quadrupole moment which would be calculated in
the radial gaugelu (though sti11 computing (27) with maximal time
slicing). In any case, it give; the quadrupole formula in a different
gauge.

The results of computing the quadrupole flux with these two
different expressions 1s shawn in the last two columns. The first is
the result from our gauge; the second from (29). There is significant
disagreement between the two, and with the code calculated energy

loss, even for Run D the supernova density bounce. We regard the
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difference between the two quadrupole results as evidence of inappropri-
ateness for gravitational collapse to these densities. Notice that the
second quadrupole formula predicts in Run A 13% mass loss to gravita-
tional radiation!

The quadrupole formula is suspect on yet another ground. It
depends for its validity on the slow-motion approximation. Yet even for
the Run D collapse, the velocities in the core during the bounce are of
order 0.3 c. This gives phase shifts across the core of roughly 60°.
Hence a significant amount of destructive interference is likely to
occur.

In connection with these comments on the quadrupole formula,
we show the two quadrupole waveforms (25) at ¢ = % for these runs in
Figures 8a-e. Notice the convergence in the results in progressing
toward Run E. We also show in Figures 9-13 the time variation of the
Hawking mass and the time-integrated Bondi-Sachs flux, as a function
of time, for these five runs. Notice the consistent agreement between
the final drop in the Hawking mass and the radiated energy. We see for
the first time in these calculations, due to improved accuracy in the
technique, the effect of the radiation reaction on the mass of the
system. The variations in the Hawking mass, prior to the arrival of
the radiation pulse at the edge of the mesh, are on the order of 1%.
Since the lowest order gauge effects are not present in MH at finite r
(IV152), the origin of this variation is not known. It may however be

related to the previously described boundary condition error in the



23 254

Figures Ba-e. These show the equatorial restriction of the quadrupole

.08

waveforms in our gauge (Curves A) and in the transformed, nearly radial .ov
gauge (Curves B) for Runs A through E, respectively. Note the conver- .03 F d
gence of the waveforms toward Run E. g ORI ]
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Figures 9-13. In the (a) plots are given the time variation of the
Hawking mass and the time-integrated BondiQSachs flux. Notice that
when the gravitational wave pulse reaches the edge of the mesh a
consistent drop in the Hawking mass occurs. The radiation reaction
on the mass of the source is thus visible in our calculations. The
(b) plots show the variation of the lapse on the same time scale.
Notice the correlation between the variations of the Hawking mass

in the early phase with the violence of the core.

Residual mass and energy loss

Lapse function
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wave quantities. If true and this problem is corrected, then the
static 0(?] correction to MH(r) can be accounted for and measurments
of the mass at finite radius may be extended to accuracy on the order

of 1 part in 104.
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CHAPTER VII

CONCLUSIONS

We have presented a fully constrained approach within the
ADM formalism to solving the Einstein equations of general relativity
and the relativistic hydrodynamic equations. Utilizing the maximal
time slicing condition and a simplifying spatial gauge (quasi-isotropic
coordinates), this methéd was shown reduced down to the final differ-
ential equations that are required to simulate axisymmetric nonrotating
asymptotically flat spacetimés. The method is therefore aimed toward
applications of studying issues relevant to gravitational collapse of
stellar cores and collapse of supermassive stars. Numerical techniques
and a computer code have been developed to implement this analytic
approach.

We have been able to surmount several problems that have
plagued previous efforts on this project. The York approach to
fdentifying a constrained part of the extrinsic curvature has been
used to produce much improved initial data substantially free of
spurious pre-existing gravitat{ona] radiation. A numerical regular-
ization technique has been developed to allow accurate finite differ-
encing of coupled elliptic systems near the singular points of the
coordinate system. A new adaptive mesh zoning criterion has been
used which is successful in maintaining good resolution of both the

wave zone and the core during gravitational collapse.
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Results from runs with our code indicate substantial accuracy.
For the first time we are able to hold the various quasi-local mass
indicators constant throughout the collapse to within 1% typically.
Also, for the first time we are able to see directly the radiation
reaction effect on the mass (loss) of the system. We anticipate con-
ducting a.rigorbus geries of code tests in the near future and then
producing a survey of collapse models to study gravitational collapse
issues. We believe that suffigient understanding has been developed
during the course of this work to now ai]bw the construction of a code
to simulate rotating collapse with mdgnetic fields and a realistic |
nuclear equation of state. Then realistic stellar collapse models, -
including general relativity self-consistently calculated, can be
produced on the computer to obtain astrophysically possible gravita-

tional radiation waveforms and energy loss efficiencies.
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