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Overview

2

I.  Motivation and a simple model for reheating
   What do we know about the Universe prior to Big Bang Nucleosynthesis?

II.  The evolution of perturbations during reheating
    What do the perturbations in the decay products “remember” ?
     How does reheating change the small-scale matter power spectrum?

III.  Microhalos from reheating
 What substructures should we be looking for?
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What Happened Before BBN?
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The (mostly) successful prediction of the primordial abundances of 
light elements is one of cosmology’s crowning achievements.  

•The elements produced during Big Bang Nucleosynthesis are our first 
window on the Universe.

•They tell us that the Universe was radiation dominated during BBN.

But we have good reasons to think that the Universe was not 
radiation dominated before BBN!
•Primordial density fluctuations point to inflation.

•During inflation, the Universe was scalar dominated.

•Other scalar fields may dominate the Universe after the 
inflaton decays. 

•The string moduli problem: scalars with gravitational 
couplings come to dominate the Universe before BBN.

Carlos, Casas, Quevedo, Roulet 1993
Banks, Kaplan, Nelson 1994
Acharya, Kane, Kuflik 2010
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Don’t Mess with BBN

4

Reheat Temperature = Temperature at Radiation Domination

C. Light element abundances

We now investigate how the big bang nucleosynthesis is
affected by the nonthermal neutrino distributions and/or
the neutrino oscillations. We calculate the light element (D,
4He, and 7Li) abundances as functions of TR, again with
and without the neutrino oscillations. The cosmological
effects of incomplete neutrino thermalization are most
strikingly seen in 4He abundance since electron-type neu-
trinos play a special role in determining the rate of neutron-
proton conversion during BBN. This has been already
known from the previous papers, Refs. [21,22], in which
the oscillations are neglected, but we find that the neutrino
oscillations prominently matter in regard to the TR depen-
dence of 4He abundance.

We show how Yp varies with respect to TR in Fig. 4. This
is calculated by plugging the solutions of the evolution
equations derived in Sec. II into the Kawano BBN code
[45] (with updated reaction rates compiled by Angulo et al.
[46]). Required modifications are the temperature depen-
dence of the neutron-proton conversion rates, !n!p and
!p!n, and the evolution equation for the photon tempera-
ture. The calculation of !n$p (see e.g. Ref. [47]) involves
the integration of the electron neutrino distribution func-
tion f!e

which does not necessarily take the Fermi distri-
bution form in our case. For the photon temperature
evolution, the contributions from " and neutrinos are
supplemented in the same way as Eq. (23).

There are two effects caused by incomplete thermaliza-
tion of neutrinos competing to make up the dependence of
Yp on TR as shown in Fig. 4: slowing down of the expan-
sion rate and decreasing in !n$p. The former is just a result
of the decrease in the neutrino energy density (of all

species). The latter is due to the deficit in f!e
. They com-

pete in a sense that they work in opposite ways to deter-
mine the epoch of neutron-to-proton ratio freeze-out: the
former makes it later and the latter makes it earlier. Then,
the competition fixes the n-p ratio at the beginning of
nucleosynthesis and eventually determines Yp. Roughly
speaking, for larger TR, the former dominates to decrease
Yp but, for smaller TR, the latter dominates and increases
Yp. This is clearly seen in the case without the oscillations
but not for the case including the oscillations because the
incompleteness in the !e thermalization is made severer by
the mixing [see panels (c) and (d) in Fig. 1] and this effect
dominates already at high TR.

Before going forward, it may be worthwhile to look
slightly more into the explanation of the TR dependence
of Yp. First, let us forget about modifying !n$p or tem-
perature evolution and just calculate 4He abundance using
thermally distributed neutrinos with N!’s indicated in
Fig. 3 for each value of TR. This corresponds to including
the effect of slowing down the expansion rate due to the
incomplete thermalization but neglecting the electron neu-
trino deficiency. Accordingly, lowering TR only acts to
delay the n-p ratio freeze-out and decrease Yp (shown by
the thinner curves in Fig. 4). In an actual low reheating
temperature scenario, a lack of !e reduces !n$p. This
counterbalances the effect of slowing down expansion
and boosts Yp in total at lower TR. To see this is really
the case, we plot !n!p for some values of TR in Fig. 5. We

 0.23

 0.24

 0.25

 0.26

 1  10

 10  100

Γ (s   )−1

TR (MeV)

Y p

No oscillation

Including oscillation

FIG. 4 (color online). The 4He abundance (mass fraction) Yp
as a function of the reheating temperature TR (shown on the
bottom abscissa) or the decay width ! (shown on the top
abscissa). The cases with and without the oscillations are drawn,
respectively, by the solid and dashed curves. Thinner curves are
calculated with Fermi distributed neutrinos with N! of Fig. 3
(namely, only the change in the expansion rate due to the
incomplete thermalization is taken into account). The horizontal
line represents ‘‘standard’’ Yp calculated by BBN with neutrinos
obeying the Fermi distribution and N! ! 3:04. The baryon-to-
photon ratio is fixed at # ! 5" 10#10.

 0

 1

 2

 3

 1  10

 10  100

3.04

TR (MeV)

N
ν

Γ (s   )−1

No oscillation

Including oscillation

FIG. 3 (color online). The effective neutrino number N! as a
function of the reheating temperature TR (shown on the bottom
abscissa) or the decay width ! (shown on the top abscissa). The
cases with and without the oscillations are drawn, respectively,
by the solid and dashed lines. The horizontal line denotes N! !
3:04 with which N! for high TR should coincide (see the text).
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Lowering the reheat temperature results in fewer neutrinos.

•slower expansion rate during BBN

•earlier neutron freeze-out; more helium

•earlier matter-radiation equality

TRH ∼> 3 MeV
Ichikawa, Kawasaki, Takahashi 2005; 2007

de Bernardis, Pagano, Melchiorri 2008



Adrienne Erickcek; Unravelling Dark Matter; September 22, 2011

Scalar Domination after Inflation

5

V (φ)

φ

The Universe was once dominated by an oscillating scalar field.
•reheating after inflation

•curvaton domination

•string moduli
Scalar domination ended when 
the scalar decayed into radiation, 
reheating the Universe.
•assume perturbative decay; requires small decay rate

•scalar decays can also produce dark matter 

•unknown reheat temperature: TRH ∼> 3 MeV
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Scalar Domination after Inflation

5

V (φ)

φ

The Universe was once dominated by an oscillating scalar field.
•reheating after inflation

•curvaton domination

•string moduli
Scalar domination ended when 
the scalar decayed into radiation, 
reheating the Universe.

For            ,  oscillating scalar field    matter. V ∝ φ2 !
•over many oscillations, average pressure is zero.

•density in scalar field evolves as

•scalar field density perturbations grow as 
Jedamzik, Lemoine, Martin 2010; 

Easther, Flauger, Gilmore 2010δφ ∝ a
ρφ ∝ a−3

What happens to these perturbations after reheating?

•assume perturbative decay; requires small decay rate

•scalar decays can also produce dark matter 

•unknown reheat temperature: TRH ∼> 3 MeV
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Scalar Field Decay
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d
dt

ρφ + 3Hρφ = −Γφρφ

d
dt

ρr + 4Hρr = (1− f)Γφρφ

d
dt

ρdm + 3Hρdm = fΓφρφ

φ
Matter

Radiation
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Scalar Field Decay

6

d
dt

ρφ + 3Hρφ = −Γφρφ

d
dt

ρr + 4Hρr = (1− f)Γφρφ

d
dt

ρdm + 3Hρdm = fΓφρφ

φ
Matter

Radiation

•Matter-Radiation Equality

f ! 0.43(Teq/TRH)

•Scale factor at decay
H(a = 1) ≡ H1

aRH !
(

Γφ

H1

)−2/3
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Scalar Field Decay

6

d
dt

ρφ + 3Hρφ = −Γφρφ

d
dt

ρr + 4Hρr = (1− f)Γφρφ

d
dt

ρdm + 3Hρdm = fΓφρφ

φ
Matter

Radiation

•Matter-Radiation Equality

f ! 0.43(Teq/TRH)

•Scale factor at decay
H(a = 1) ≡ H1

aRH !
(
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•During Scalar Domination

T ∝ a−3/8

ρr ∝ a−3/2



Part II
Evolution of Perturbations 

during Reheating
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The Radiation Perturbation
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During radiation domination, 
the radiation density 

perturbation oscillates.

δ̇r ! −θr

θ̇r ! k2δr
horizon entry

Radiation 
Domination
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θr / (H1 Φ0)

Φ / Φ0

δmax = 6Φ0
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The Radiation Perturbation

8

During radiation domination, 
the radiation density 

perturbation oscillates.

δ̇r ! −θr

θ̇r ! k2δr
horizon entry

Radiation 
Domination
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Adding a period of scalar domination
dramatically alters the evolution!

δmax = 6Φ0

Grows during 
scalar

domination
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The Radiation Perturbation
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During radiation domination, 
the radiation density 

perturbation oscillates.

δ̇r ! −θr

θ̇r ! k2δr
horizon entry

Radiation 
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Adding a period of scalar domination
dramatically alters the evolution!

δmax = 6Φ0
k/kRH = 11

δmax = 0.085Φ0 for
k

kRH
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Grows during 
scalar

domination
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The Radiation Perturbation
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of growth in the scalar perturbation.

δmax = 0.0007Φ0δmax = 0.085Φ0
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The Radiation Perturbation
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Φ0 → Tr(k)Φ0Impact of Scalar Domination:

Tr ! 1.5 2 ∼< k/kRH ∼< 4
Tr = 10/9 k/kRH ∼< 0.1

Suppression if dark 
matter couples to 

radiation after 
reheating.

kRH = 35 (TRH/3 MeV) kpc−1

k/kRH ∼> 20Tr ∼< 10−3
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The Matter Perturbation
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•dark matter produced in scalar decays

•the dark matter perturbation is sensitive 
only to the background expansion
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δ d
m

/Φ
0

The Matter Perturbation

10

 1

 10

 100

 1000

10000

100 101 102 103 104 105 106 107

scale factor (a)

Evolution of the Matter Density Perturbation

horizon 
entry

linear growth logarithmic
growth

scalar domination

radiation 
domination

•dark matter produced in scalar decays
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only to the background expansion
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During Scalar Domination:

δdm = Φ0

(
1 +

2
3

a

ahor

)

linear growth

After reheating:

aδ′(a) = const.

•During radiation domination, 
matter density perturbation 
grows logarithmically.

•Impose                               
after reheating to get

 
δdm =

2
3
Φ0

aRH

ahor

[
1 + ln

(
a

aRH

)]

logarithmic growth
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The Matter Perturbation
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The Matter Density Perturbation during Radiation Domination

standard 
evolution

Φ→ (10/9)Φ0

δr → 2Φ = (20/9)Φ0 δdm → (5/3)Φ0 = (3/4)δr

Superhorizon modes evolve at reheating:
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The Matter Perturbation
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The Matter Density Perturbation during Radiation Domination

δdm ∝
aRH

ahor
∝ k2

k2
RH

=⇒ δdm =
2
3
Φ0

k2

k2
RH

[
1 + ln

(
a

aRH

)]

standard 
evolution
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The Matter Transfer Function
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Transfer function definition: δdm ∝ k2Φ0(k)T (k)D(a)

T (k) =
3
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keq
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ln

[
4
√

2
e2

(
kRH

keq

)]Subhorizon modes at reheating: δdm ∝ k2Φ0 ⇒ T (k) = const.
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The Matter Transfer Function
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•Linear growth after 
horizon entry, except 
during radiation 
domination

•T(k) depends only on 
duration of radiation 
domination

For modes that enter 
the horizon during 
scalar domination 
(              ):k > kRH

Subhorizon modes at reheating: δdm ∝ k2Φ0 ⇒ T (k) = const.
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RMS Density Fluctuation 
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•Altered transfer function 
affects scales with 

•Define          to be mass 
within this comoving 
radius.

R ∼< k−1
RH

MRH
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RMS Density Fluctuation 
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•Altered transfer function 
affects scales with 

•Define          to be mass 
within this comoving 
radius.

R ∼< k−1
RH

MRH

P (k) ∝ knk > kRH•For               ,                  

•Since the power spectrum 
is a power law, 

σ(M) ∝M−n+3
6

for
M < MRH

∝M−n+3
6
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What about free-streaming?
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Free-streaming will exponentially suppress power on 
scales smaller than the free-streaming horizon: λfsh(t) =

∫ t

tRH

〈v〉
a

dt

Specify average particle 
velocity at reheating:

〈v〉 = 〈vRH〉 (aRH/a)

Modify transfer function: T (k) = exp
[
− k2

2k2
fsh

]
T0(k)

kRH

kfsh
! 〈vRH〉

0.06

For range of reheat 
temperatures, 

Structures grown during reheating only survive if                     〈vRH〉 ∼< 0.001c
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Structures grown during reheating only survive if                     〈vRH〉 ∼< 0.001c



Part III
Microhalos from Reheating
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From Perturbations to Microhalos

16

To estimate the abundance of halos, we used the Press-Schechter 
mass function to calculate the fraction of dark matter contained in 
halos of mass M.

df

d lnM
=

√
2
π

∣∣∣∣
d lnσ

d lnM

∣∣∣∣
δc

σ(M, z)
exp

[
−1

2
δ2
c
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From Microhalos to Subhalos

20

After                   , standard structure growth takes over, and 
larger-mass halos begin to form.  The microhalos are absorbed.
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Since these microhalos formed at high redshift, they are far 
denser than standard microhalos and are more likely to survive.

Berezinsky,  et al. 2010
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Detection Prospects
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The only guaranteed signatures are gravitational.

•Astrometric Microlensing

•Photometric Microlensing
•Pulsar Timing Residuals

Erickcek & Law 2011

Baghram, Afshordi, Zurek 2011

Ricotti & Gould 2009
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WIMP Dark Matter?
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Summary: A New Window on Reheating
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Perturbations that enter the horizon prior to reheating are 
very different from larger perturbations.

•The radiation perturbation on subhorizon scales is suppressed 
relative to superhorizon modes. 

•If the scalar decays into cold dark matter, the matter directly inherits 
the scalar’s enhanced inhomogeneity on subhorizon scales.

The enhancement in the dark matter power spectrum on 
small scales leads to an abundance of microhalos.

•At high redshift, half of the dark matter is bound into microhalos with 
masses smaller than the horizon mass at reheating. 

•These microhalos might be detectable through gravitational lensing.

•Indirect detection can probe reheat history and origin of dark matter.
The enhancement in STAY TUNEDarXiv: 1106.0536


