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Ab initio studies of the double–Gamow-Teller transition and its correlation
with neutrinoless double-β decay
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We use chiral interactions and several ab initio methods to compute the nuclear matrix elements (NMEs) for
ground-state-to-ground-state double Gamow-Teller transitions in a range of isotopes and explore the correlation
of these NMEs with those for neutrinoless double beta decay produced by the exchange of a light Majorana
neutrino. When all the NMEs of both isospin-conserving and isospin-changing transitions from the ab initio
calculations are considered, the correlation is strong. For the experimentally relevant isospin-changing transitions
by themselves, however, the correlation is weaker and may not be helpful for reducing the uncertainty in the
NMEs for neutrinoless double beta decay.
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I. INTRODUCTION

Neutrinoless double-β (0νββ) decay is a hypothetical
lepton-number-violating process [1] in which two neutrons
in a parent nucleus decay into two protons in its daughter
nucleus via the emission of only two electrons. The hunt
for 0νββ decay is of particular importance as its observa-
tion would demonstrate the Majorana nature of neutrinos and
provide a key ingredient for generating the matter-antimatter
asymmetry in the Universe. If 0νββ decay is driven by the
standard mechanism of exchanging light Majorana neutrinos,
then its half-life can also be used to determine the effective
neutrino mass 〈mββ〉 = ∑

i U 2
eimi, where mi are the masses of

light neutrinos and Uei are elements of the neutrino-mixing
matrix [2]. The 0νββ decay rate is governed by a nuclear
matrix element (NME) that must be computed. The precise
determination of the NMEs for candidate nuclei, which are
vital for interpreting and planning the current- [3–6] and next-
generation ton-scale [7–9] experiments, is thus being pursued
energetically by theoretical physicists [10].
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A wide range of conventional nuclear models have been
applied to compute the NMEs in nuclei of interest to ex-
periment [11–30], under the assumption that light-neutrino
exchange is the dominant decay mechanism. The discrepancy
between these predictions is as large as a factor of about
three, causing uncertainty at the level of an order of magni-
tude in the half-life for a given value of the neutrino mass.
Resolving this discrepancy has been one of the most signif-
icant objectives in the nuclear community [31,32]; see for
instance the recent reviews in Refs. [33–36]. Unfortunately,
the systematic uncertainty turns out to be difficult to reduce
because each model has its phenomenological assumptions
and uncontrolled approximations. In recent years, remarkable
progress has been achieved in first-principles calculations
of nuclear structure and reactions [37]. It has enabled the
first wave of multimethod results for 0νββ-decay NMEs
in light nuclei [38–41], the lightest experimental candidate
48Ca [42,43], and in one case even in the heavier candidates
76Ge and 82Se [44]. These calculations start with realistic
two-nucleon-plus-three-nucleon (NN+3N) interactions from
either phenomenological parametrization or chiral effective
field theory (EFT). In heavier candidate nuclei, such calcu-
lations that include fully controllable uncertainties are still
challenging, however [35]. Under these circumstances, it is
worthwhile to explore correlations between the 0νββ-decay
NMEs and other observables. Such correlations may provide
model-independent constraints on the NMEs.
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Recently, Shimizu et al. [45] found a linear correlation
between the NMEs of 0νββ decay and those that gov-
ern the ground-state-to-ground-state double Gamow-Teller
(DGT) transition, a double spin-isospin flip excitation mode
accessible in high-energy heavy-ion double-charge-exchange
(HIDCE) processes [46–49]. The correlation, which appeared
in both medium-mass and heavy nuclei in calculations based
on the large-scale nuclear shell-model, was attributed to
the mainly short-range character of both transitions [50,51].
These studies provide strong support to experimental pro-
grams to measure HIDCE reactions, through examples such as
12C(18O, 18Ne) 12Be [52] and (11B, 11Li) [53] at the Research
Center of Nuclear Physics, Osaka University, and others in the
NUMEN project at the Laboratori Nazionali del Sud, Istituto
Nazionale di Fisica Nucleare [54]. The expectation is that the
cross section in HIDCE reactions can place a constraint on
the NMEs for 0νββ decay if the correlation exists and is
universal. Santopinto et al. [55] argued that it is possible to
factorize the HIDCE cross section into reaction and nuclear
parts. The latter can be further written as a product of the DGT
NMEs for projectile and target nuclei. This study showed that
the DGT NME is linearly correlated with the total NME for
0νββ decay predicted by the interacting boson model. Re-
cently, Brase et al. [56] exploited this correlation to determine
the NMEs for 0νββ decay in heavier candidate nuclei with an
EFT.

Reference [45] shows, however, that the correlation does
not appear in the results of the quasiparticle random-phase
approximation (QRPA) [57], which has been extensively used
to calculate 0νββ-decay NMEs [14,24,58–61]. The contra-
diction between this method and others needs to be resolved
to clarify the significance of HIDCE experiments [53,54,62].
In this paper, we use ab initio methods to address the issue.
So that we can compare our results with those obtained pre-
viously, we do not include the recently discovered contact
transition operator [63,64], even though it might affect the
M0νββ significantly within an ab initio framework [65].

The paper is organized as follows. In Sec. II, the formu-
las for the NMEs of both DGT transition and 0νββ decay
are presented. The feature of neutrino potentials regularized
with dipole form factors in coordinate space is discussed.
In Sec. III, we briefly introduce the many-body methods
and nuclear Hamiltonians that are employed in the ab initio
calculations. The results are also discussed in comparison
with a scale-separation analysis in Sec. IV. The in-medium
renormalization effect is discussed in comparison with con-
ventional shell-model results in Sec. V. Our conclusions are
summarized in Sec. VI.

II. THE DGT AND 0νββ TRANSITIONS

The spin-parity Jπ of the ground state of an even-even
nucleus is 0+. A DGT transition connects this state to the final
states of its neighboring even-even nucleus with spin-parity of
0+ or 2+. Here we only consider the ground-state-to-ground-
state DGT transition as its NME is expected to be closest
to that of the 0νββ decay, even though it might be just a
small fraction (about 10−4) of the total DGT strength for
the isospin-changing transitions [45,46,66]. The NME of the

DGT transition is defined as

MDGT = 〈0+
f |

∑
1,2

[σ1 ⊗ σ2]0τ+
1 τ+

2 |0+
i 〉, (1)

where σ and τ are the spin and isospin operators, respectively.
The nonzero matrix element of the isospin-raising operator
is 〈pp| τ+

1 τ+
2 |nn〉 = 1. The ground-state wave functions of

initial and final nuclei |0+
i/ f 〉 also enter into the expression

for the NME M0νββ of 0νββ decay, which in the standard
mechanism has the following form:

M0νββ =
∑

α

〈0+
f |

∑
1,2

hα,K (r12)CK
α · SK

α τ+
1 τ+

2 |0+
i 〉. (2)

The symbol α runs over Fermi, GT, and tensor terms. The
spin-spatial part CK

α · SK
α in (2) is the scalar product of two

tensors with their expressions given by

C0
F = 1, S0

F = 1, (3a)

C0
GT = 1, S0

GT = σ1 · σ2, (3b)

C2
T =

√
24π

5
Y2(r̂12), S2

T = [σ1 ⊗ σ2]2. (3c)

The coordinate-space neutrino potential is given by

hα,K (r12) = 2RA

πg2
A

∫ ∞

0
dq q2 hα,K (q2)

q(q + Ed )
jK (qr12), (4)

where RA = 1.2 A1/3 fm is introduced to make the matrix
element M0νββ dimensionless. The relative coordinate be-
tween the two decaying neutrons is defined as r12 = r1 −
r2 and its magnitude r12 = |r12| and direction vector r̂12 =
r12/|r12|. The average excitation energy Ed is chosen as Ed =
1.12 A1/2 MeV [66]. We make this choice to facilitate compar-
ison with prior work. In an EFT framework, Ed corresponds
to a subleading correction [67]. The function jK (qr12) is
the spherical Bessel function of rank K , where K = 0 for
the Fermi and GT terms and K = 2 for the tensor term.
The functions hα,K (q2) are defined in terms of the vector
(gV ), axial-vector (gA), induced pseudoscalar (gP) and weak-
magnetism (gM) coupling constants,

hF,0(q2) = −g2
V (q2), (5a)

hGT,0(q2) = g2
A(q2) − 2

3

q2

2mp
gA(q2)gP(q2)

+1

3

q4

4m2
p

g2
P(q2) + 2

3

q2

4m2
p

g2
M (q2), (5b)

hT,2(q2) = 2

3

q2

2mp
gA(q2)gP(q2) − 1

3

q4

4m2
p

g2
P(q2)

+1

3

q2

4m2
p

g2
M (q2), (5c)

where the coupling constants are regularized by the following
dipole form factors:

gV (q2) = gV (0)
(
1 + q2/�2

V

)−2
, (6a)

gA(q2) = gA(0)
(
1 + q2/�2

A

)−2
, (6b)
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gM (q2) = gV (q2)(1 + κ1), (6c)

gP(q2) = gA(q2)

(
2mp

q2 + m2
π

)
. (6d)

If not mentioned explicitly, then we choose the vector and
axial-vector coupling constants gV (0) = 1, gA(0) = 1.27, the
anomalous nucleon isovector magnetic moment κ1 = μ(a)

n −
μ(a)

p = 3.7, and the cutoff values �V = 0.85 GeV and �A =
1.09 GeV, following Refs. [68,69].

The dipole form factor regularizes the short-range behavior
of the neutrino potentials. In the simplest case of hF,0(q2) =
−g2

V (0), and hGT,0(q2) = g2
A(0), i.e., without dipole form

factors and induced higher-order currents, the Fermi- and GT-
type neutrino potentials in coordinate space can be derived
analytically [70]:

hF,0(r12) → h̃F,0(r12) = −
(

g2
V

g2
A

)
RA

φ(Ed r12)

r12
, (7a)

hGT,0(r12) → h̃GT,0(r12) = RA
φ(Ed r12)

r12
, (7b)

where the function φ(x) is defined as [66,70]

φ(x) = 2

π
sin(x) Ci(x) + cos(x)

[
1 − 2

π
Si(x)

]
, (8)

with the sine and cosine integrals

Si(x) =
∫ x

0

sin t

t
dt, Ci(x) = −

∫ ∞

x

cos t

t
dt . (9)

To see how the short-range behavior of the neutrino po-
tential hα,0 is regularized by the dipole form factors, we
choose different values for the cutoffs �V and �A in gV (q2)
and gA(q2), respectively. The corresponding Fermi and GT
neutrino potentials are displayed in Figs. 1(a) and 1(b), respec-
tively. It is shown that the use of a smaller cutoff value �V/A

leads to a larger modification on the neutrino potentials in
the short-distance region. As expected, the neutrino potentials
approach a Coulomb-like potential in the limit �V/A → ∞
and Ed = 0, i.e., h̃GT,0(r12) → RA/r12 as φ(0) = 1. Besides,
we show in Fig. 1(c) how a nonzero value of Ed reduces the
entire neutrino potential. For the 0νββ-decay candidate nuclei
with mass number 48 � A � 150, the empirical value of Ed is
Ed ∈ [7.76, 13.71] MeV [66], and r12 � 1.0 fm, which gives
φ(Ed r12) ∈ [0.86, 0.91], as shown in Fig. 2.

The NMEs of both DGT and 0νββ transitions can be
conveniently rewritten as a function of the relative coordinate
r12 between decaying nucleons [71],

Mκ
A =

∫
dr12C

κ
A (r12), (10)

where κ stands for either 0νββ or DGT. It was pointed out
in Ref. [56] that in conventional nuclear models, nuclear
wave functions and neutrino potentials are represented in a
harmonic oscillator basis with the oscillator length given by
b = √

h̄/(MNω), where MN is nucleon mass and the frequency
ω scales as A−1/3. Thus, the NME of M0νββ

GT (proportional
to RA/b) is expected to scale as A1/6 and the DGT matrix
element MDGT is expected to be correlated with M0νββ

GT A−1/6

for all isotopes. From another point of view, if the 0νββ

FIG. 1. The (a) Fermi and [(b) and (c)] GT-type neutrino poten-
tials (4) as a function of r12. The radius parameter RA is excluded
in the neutrino potentials to facilitate comparison with the Coulomb-
like potential 1/r12. Different choices of cutoff values �V and �A are
employed in the dipole form factors. In (c), a different value of the
average excitation energy Ed is used. All the Fermi-type neutrino po-
tentials are multiplied with a minus sign to facilitate comparison. In
panel (b), the potential hAA

GT,0(q2) = g2
A(q2) is compared to that of the

full GT operator (5b) with the cutoff value change to �A = 1.09 GeV.

decay is dominated by the short-range contribution, namely
the long-range Coulomb-like decaying behavior is regularized
by a faster decaying two-nucleon wave function, then one may
expect that the DGT matrix element MDGT is correlated with
M0νββ

GT A−1/3, where the factor A−1/3 is from the radius RA

introduced to make the NME dimensionless, cf. (4). These
two correlation relations will be discussed using the results
from the calculations of both conventional nuclear models and
ab initio methods in the next section.
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FIG. 2. The function φ(x) defined in Eq. (8) with the limits
of φ(0) = 1 and φ(∞) = 0. The shaded area indicates the interval
where the average excitation energy takes Ed ∈ [7.76, 13.71] MeV
and the relative distance between the two decaying nucleons r12 =
1.0 fm.

III. AB INITIO MANY-BODY CALCULATIONS

In this section, we carry out ab initio nuclear many-
body calculations with the importance-truncated no-core shell
model (IT-NCSM) [72], valence-space in-medium similar-
ity renormalization group (VS-IMSRG) [73], and in-medium
generator coordinate method (IM-GCM) [42,74] starting from
chiral NN+3N interactions. The latter two are different vari-
ants of IMSRG [75], which introduces a flow equation to
gradually decouple the off-diagonal elements of the Hamil-
tonian that are connecting the valence space and the excluded
spaces or to decouple a preselected reference state from all
other states. In the VS-IMSRG, an effective Hamiltonian in
a specific valence space is obtained, while in the IM-GCM
[42,74], the reference state becomes a reasonable approxi-
mation to the ground state of the evolved Hamiltonian. The
close-to-exact ground state is obtained with GCM by admix-
ing other states that differ only in their collective parameters.
A unitary transformation is defined via the flow equation and
this transformation is consistently applied to all operators
of interest. We employ the chiral nuclear interaction (up to
N3LO) by Entem and Machleidt [76], which we indicate by
the label “EM.” We use the free-space SRG [77] to evolve
the EM interaction to a resolution scale of λ = 1.8 fm−1. Fol-
lowing Refs. [78,79], we construct the 3N interaction directly,
with a chiral cutoff of � = 2.0 fm−1. We refer to the result-
ing NN+3N Hamiltonian as EMλ/�, i.e., EM1.8/2.0—see
Refs. [78,79] for details. For comparison, we also employ
the recently proposed chiral force �N2LOGO(394) [80], a
low-cutoff NN+3N interaction whose construction accounts
for � isobars and whose parameters are constrained by A � 4
few-body data as well as nuclear matter properties. For the
3N interaction, we discard all matrix elements involving states
with e1 + e2 + e3 > 14, where ei = 2ni + 
i is the number of
oscillator quanta in state i. The frequency of the harmonic
oscillator basis is chosen as h̄ω = 16 MeV.

Figures 3 and 4 display the results of three ab initio calcula-
tions for both isospin-conserving and isospin-changing DGT
transitions and GT-0νββ decay in a set of p-, sd-, and f p-
shell nuclei, respectively, where the same value of eMax = 8

FIG. 3. The transition densities C̃α (r12) for the isospin-
conserving transitions of DGT [(a)–(c)] and GT-0νββ decay
[(d)–(f)] from three ab initio calculations for 6He, 10Be, and 14C
using the EM1.8/2.0 chiral force. The tilde means that the transition
densities are normalized to unity at the first peak position.

is used in the three methods for comparison. As discussed in
the previous paper [41], NMax = 8 is usually employed in the
IT-NCSM calculations, except for the transitions of 8He and
22O where the NMax = 6 and 4 is used, respectively. In the two
variants of IMSRG calculations, the transition density Cκ (r12)
is evaluated using the corresponding IMSRG-evolved transi-
tion operator at each value of the relative coordinate r12 and
the nuclear wave functions by the evolved Hamiltonian. One
can see that the short-range parts of both transition densities
by all the three ab initio methods are on top of each other. The
predictions for the long-range part of the isospin-changing
DGT transitions differ because the long-range part of the
transition densities is more sensitive to the way each method
models many-body correlations. Due to the presence of the
neutrino potential which decreases with r12 approximately as
1/r12 (cf. Fig. 1), the discrepancy in the long-range part of
C̃GT(r12) among the three methods is strongly suppressed.
As a result, the short- and long-range parts of 0νββ decay
of both isospin-conserving and isospin-changing types are
consistently described in the three calculations. It is also seen
that the transition densities of isospin-conserving transitions
do not change sign as a function of r12. In contrast, those of
isospin-changing transitions oscillate with r12, and thus the
contributions of long- and short-range regions compensate for
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FIG. 4. Same as Fig. 3 but for isospin-changing transitions of
8He, 22O, and 48Ca.

each other. Figures 4(b) and 4(c) show that the long-range
contribution in the VS-IMSRG is generally larger than that in
the IM-GCM. In the VS-IMSRG calculation, the long-range
contribution to the DGT transition can be even larger than the
short-range part, resulting in an inverted sign for the DGT
NME. We note that varying the eMax around the selected
value does not change the shape of the transition densities but
modifies slightly the height of the peaks.

As discussed in Ref. [45] and in the next section, if the pro-
cesses of both DGT transition and 0νββ decay are dominated
by the short-range contribution, then these two types of matrix
elements are expected to be correlated, irrespective of if the
isospin is changing or conserving in the process. To verify
this finding, we show all NMEs of DGT transitions and 0νββ

decay from the three ab initio calculations for the isotopes
in different mass regions in Fig. 5. In these calculations, the
value of eMax is chosen to ensure the convergence of the
NMEs, as discussed in Ref. [41]. In the VS-IMSRG calcula-
tion for heavier isotopes, eMax = 12 is used. The NMEs MDGT

are plotted against those of 0νββ decay scaled as M0νββA−1/3

and M0νββA−1/6 in Figs. 5(a) and 5(b) and Figs. 5(c) and 5(d),
respectively. The results are fitted to the following relation:

MDGT = αM0νββAγ + β, (11)

where the power parameter is fixed to be either γ = −1/3
or −1/6. The coefficient of correlation r between the two

quantities,

r =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2

∑
i(yi − ȳ)2

, (12)

is introduced as a statistical measure of the strength of the
correlation relationship, where xi and yi are the samples on
the x and y axis, respectively, and x̄ and ȳ are the average of
the samples on each axis. The value r = 1 corresponds to a
perfect positive linear correlation and r = 0 indicates no linear
relationship. The correlation relationships that we obtain are
as follows:

MDGT = 1.21(3)M0νββ

Tot A−1/3 − 0.32(2), r = 0.99, (13a)

MDGT = 1.57(4)M0νββ

GT A−1/3 − 0.37(3), r = 0.99, (13b)

MDGT = 0.85(3)M0νββ

Tot A−1/6 − 0.42(4), r = 0.98, (13c)

MDGT = 1.12(3)M0νββ

GT A−1/6 − 0.50(4), r = 0.98. (13d)

The finite-sample-size error on the coefficient r is eval-
uated using the formula [81] σr ≈ (1 − r2)/

√
N − 2, which

gives σr = 0.003 for r = 0.99 and σr = 0.006 for r = 0.98.
One can see that the MDGT is correlated slightly stronger with
the quantity M0νββA−1/3 than with the quantity M0νββA−1/6,
irrespective of if only the GT part or the total NME is consid-
ered for M0νββ . The Fermi part of M0νββ is approximately
one-third of the GT part, which explains why we still see
a correlation when considering the total NME M0νββ . Be-
sides, the residuals exhibit some clear pattern at low values of
M0νββ in all cases, more predominantly when scaling M0νββ

by A−1/6. This finding not only further validates that using
A−1/3 is a better choice for the results of ab initio calculations,
but it also suggests that the good correlation we find when
looking at the whole data set is not representative of the whole
situation. We note that the results from ab initio calculations
using the �N2LOGO(394) interaction are consistent with the
above correlation relation (13a).

It is worth emphasizing that the matrix elements for
isospin-changing transitions and isospin-conserving transi-
tions are significantly different from each other. The relevant
0νββ decay is an isospin-changing transition, and thus its
matrix element is generally smaller than those of isospin-
conserving transitions for the same mass number A. There-
fore, one may expect the correlation obtained from these two
types of transitions to be different. With this consideration,
we plot the NMEs of isospin-changing and isospin-conserving
transitions separately in Figs. 6(a) and 6(b), respectively. Two
different linear regressions are carried out for these two types
of transitions with the parameter γ = −1/3. We find the fol-
lowing correlation relationships:

�T = 2 : MDGT = 1.21(20)M0νββ

GT A−1/3 − 0.30(5), (14a)

�T = 0 : MDGT = 1.43(14)M0νββ

GT A−1/3 − 0.17(20). (14b)

It is shown that the correlation coefficient (r = 0.72,
σr = 0.08) of isospin-changing transitions (�T = 2) is much
smaller than that (r = 0.95, σr = 0.03) of isospin-conserving
(�T = 0) transitions. In other words, the correlation relation
is much weaker for the NMEs of isospin-changing transitions.
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FIG. 5. Correlation between the NMEs of DGT transitions (MDGT) with those of GT-0νββ decay (M0νββ

GT ) or the full NMEs of 0νββ

decay (M0νββ

Tot ), scaled by a mass-number-dependent factor of either A−1/6 or A−1/3, respectively. The NMEs are obtained from ab initio
calculations with the chiral NN+3N interactions EM1.8/2.0 or �N2LOgo for isotopes ranging from A = 6 to A = 76. Only the results
obtained with EM1.8/2.0 are used in the linear regression with residuals given in the bottom row. The shaded area indicates the confidence
interval with a 95% confidence level while the dashed line indicates the prediction interval at a 95% confidence level. See text for
details.

FIG. 6. Correlation between MDGT and M0νββ

GT A−1/3 when con-
sidering only isospin-changing transitions (left column) or only
isospin-conserving transitions (right column). The green bands show
the 95% confidence interval while the dashed lines show the 95%
prediction interval. The best fit lines from both cases agree with each
other within 1σ .

Figures 7 and 8 summarize the results from the calcu-
lations of both ab initio and conventional nuclear models
(shell models [45,50,51], energy-density-functional (EDF)
[82] and QRPA [57]). Treating the matrix elements of isospin-
conserving and isospin-changing processes, separately, we

FIG. 7. Correlation between MDGT and M0νββ

Tot A−1/3 derived from
the results of both ab initio (red) and conventional (blue) nuclear
models [45,50,51,57,82], except for the results of QRPA calculations
[57] for isospin-conserving transitions in (a) and isospin-changing in
(b).
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FIG. 8. Same as Fig. 7, but for the correlation between MDGT and
M0νββ

Tot A−1/6.

find the following relation for the nuclear matrix elements
from the ab initio calculations,

�T = 2 : MDGT = 1.08(15)M0νββ

Tot A−1/3 − 0.26(4), (15a)

�T = 0 : MDGT = 1.20(9)M0νββ

Tot A−1/3 − 0.30(15), (15b)

�T = 2 : MDGT = 0.51(7)M0νββ

Tot A−1/6 − 0.23(4), (15c)

�T = 0 : MDGT = 1.09(10)M0νββ

Tot A−1/6 − 1.06(26), (15d)

and the following relation for the nuclear matrix elements
from the conventional nuclear-model calculations:

�T = 2 : MDGT = 1.32(3)M0νββ

Tot A−1/3 − 0.19(2), (16a)

�T = 0 : MDGT = 1.87(20)M0νββ

Tot A−1/3 − 0.68(22), (16b)

�T = 2 : MDGT = 0.58(2)M0νββ

Tot A−1/6 − 0.14(2), (16c)

�T = 0 : MDGT = 1.10(9)M0νββ

Tot A−1/6 − 0.93(18). (16d)

It is seen that the correlation relations are significantly
different for the matrix elements of �T = 2 and �T = 0
transitions. The slope for the �T = 0 transitions is generally
larger than that for the �T = 2 transitions. Besides, the slope
by the ab initio calculation is generally smaller than that
by the conventional nuclear model calculations because of a
stronger cancellation between the long-range and short-range
contributions in the DGT NMEs by ab initio methods. Among
all the methods concerned, the QRPA predicts the smallest
value for the DGT NMEs, indicating the occurrence of the
strongest cancellations [57].

To compare with the correlation relation in Refs. [45,56],
we follow their way to derive the correlation relation based
on the matrix elements of both isospin-conserving and
isospin-changing processes from the calculations of conven-
tional nuclear models (excluding the results of QRPA), which
reads

MDGT = 1.41(3)M0νββ

Tot · A−1/3 − 0.23(2), r = 0.96, (17a)

MDGT = 0.65(2)M0νββ

Tot · A−1/6 − 0.20(2), r = 0.94, (17b)

the latter of which is consistent with the interval of parame-
ters α ∈ [0.447, 0.699], β ∈ [−0.18,−0.056], with the power
parameter γ = −1/6 found in Ref. [56]. The value of the
coefficient r indicates that the DGT matrix elements MDGT

are slightly stronger correlated with M0νββ

Tot A−1/3 than with
M0νββ

Tot A−1/6, as discussed in Fig. 5.
It is worth mentioning that the NMEs of the ground-

state-to-ground-state DGT transition of isospin-changing
transitions would be exactly zero if the spin-isospin SU(4)
symmetry were conserved in atomic nuclei as in this case the
initial and final states would belong to different irreducible
representations of the SU(4) group. Therefore, different val-
ues of the DGT NMEs predicted by different nuclear models
indicate that the SU(4) symmetry is broken to different extents
in the ground-state wave functions. The studies on the break-
ing of the SU(4) symmetry in different nuclear models and
its impact on the correlation relation might be able to provide
us with a more profound understanding, but these studies are
beyond the scope of this work.

IV. A SCALE-SEPARATION ANALYSIS

In this section, we carry out a scale-separation analysis of
the correlation between the NMEs of DGT transitions and
0νββ decay based on the argument [83–85] that the long-
and short-distance physics in atomic nuclei can be rather well
separated. In this case, the nuclear many-body wave functions
�i/ f (1, 2, . . . A) of initial and final nuclei in the transitions can
be approximately factorized into the product of a universal
short-distance two-body wave function φc(r12) and a state-
dependent long-range A-body wave function χ

(i/ f )
c [86]

�i/ f
r12→0−−−→

∑
c

φc(r12)χ (i/ f )
c (R12; 3, . . . , A), (18)

where R12 = (r1 + r2)/2, and c distinguishes channels (spin-
isospin) with different quantum numbers for the pair of
nucleons. For the NMEs of DGT and 0νββ transitions, the
pair of neutrons in the s-wave state with total spin S = 0,
angular momentum J = 0, and isospin T = 1 converting into
a pair of protons with the same quantum numbers provides the
predominate contribution. If only this channel (labeled with
c = 0) is considered and the two-body wave function φc(r12)
is assumed to be isospin independent, then one has φnn(r12) =
φpp(r12) = φ0(r12). Thus, it is reasonable to parametrize the
transition densities defined in (10) into the following forms:

C̃GT
A (r12) = −3r2

12hGT,0(r12)ρnn(r12)C0
ppnn(A f , Ai, r12),

(19a)

C̃DGT
A (r12) =

√
3r2

12ρnn(r12)C0
ppnn(A f , Ai, r12), (19b)

where the factor of (−3) in the GT transition is from the
spin operator. The DGT defined in (1) brings an additional
factor of (−1/

√
3). The two-nucleon density is defined as

ρnn(r12) = |φ0(r12)|2. The overlap function C0
ppnn(A f , Ai, r12)

is determined by the A-body wave functions χ
(i/ f )
0 of initial

and final nuclei multiplied by the number of pairs [86]. In
the limit of r12 → 0, the two-nucleon density ρnn(r12) is
expected to be universal for different nuclei but may depend
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on the employed nuclear force. The overlap function
C0

ppnn(A f , Ai, r12) in the short-distance region r12 < 1.0 fm
can be approximated by a constantNA

ppnn( f , i) depending only
on the nucleus and on the details of employed nuclear force
[85,87,88]. The ratios NA

ppnn( f , i)/NA′
ppnn( f , i) for any two

nuclei with mass numbers A and A′ are less model dependent.
Recently, this property has been exploited in the calculation of
the NMEs of 0νββ candidate nuclei by combining quantum
Monte Carlo and the nuclear shell model [86].

If the processes of both DGT transition and 0νββ decay
are dominated by the short-range contribution, as pointed out
in Ref. [45], then one would have the ratio of these two matrix
elements from Eq. (19),

M0νββ

GT

MDGT
≈ lim

ε→0

−3
∫ ε

0 dr12r2
12ρnn(r12)hGT,0(r12)√

3
∫ ε

0 dr12r2
12ρnn(r12)

= lim
ε→0

−
√

3RA

∫ ε

0 dr12r12ρnn(r12)∫ ε

0 dr12r2
12ρnn(r12)

= lim
ε→0

C(ε)A1/3,

(20)
where C(ε) is a constant depending on the short-range param-
eter ε. This expression holds for both isospin-changing and
isospin-conserving transitions, because the isospin effects are
encoded in the overlap functions, which cancel in the ratio. Of
course, in the realistic case, the validity of the approximations
employed to derive the above relation varies with atomic
nuclei, and it will be studied in combination with the results
of ab initio calculations.

Let us first parametrize the two-nucleon density ρnn(r) with
the following function form:

ρnn(r) = FSRC(r)e−r2/d , (21)

where the parameter d controls the long-range decay behavior.
The function FSRC(r) is introduced to mimic the effect of
short-range correlation (SRC) [89],

FSRC(r) = 1 − ce−ar2

(
γ +

3∑
i=1

bir
i+1

)
. (22)

The parameters a = 3.17 fm−2, γ = 0.995, c = 1, b1 =
1.81 fm−2, b2 = 5.90 fm−3, and b3 = −9.87 fm−4 were ob-
tained in Ref. [89] by fitting to the results from clus-
ter variational Monte Carlo calculations for the proton-
proton/neutron-neutron correlation functions. Here we vary
the values of the parameters c and d within an interval pro-
ducing reasonable transition densities to simulate the impacts
from the nuclear-force dependence and nucleus dependence
[85] on the correlation relation between the NMEs of DGT
and GT-0νββ transitions. Specifically, we vary the parameter
c between 0 and 1 and the d between 0.5 and 5 to examine the
sensitivity of the correlation relation to these two parameters.

As shown in Figs. 3 and 4, the transition densities C̃κ (r12)
of isospin-conserving and isospin-changing transitions have
different dependence on r12, so we treat these two transitions
separately. Besides, it has been found in previous many-body
calculations [11,42,71] that the transition densities Cκ (r12)
may possess node structures varying in detail with nuclear
models and the mass regions of isotopes. We note that this
structure is generally similar for the same type of transitions

in the isotopes of the same mass region for a given nuclear
model. To reproduce this node structure, we approximate the
overlap function C0

ppnn(A f , Ai, r12) with the following simple
form:

C0
ppnn(A f , Ai, r12) � p(r12)q(r12)NA

ppnn( f , i), (23)

where p(r) and q(r) are polynomial functions c0[1 +∑N
i=1 c2i−1(r − c2i )2i] with different values of ci for

isospin-changing and isospin-conserving transitions. The
parameter N is determined by the node structure of the
transition densities and the parameters ci need to be fitted
to transition densities of each nuclear model. In our case, as
shown later, we fit to the results of a few transitions in each
valence space and take the average values given for the ci’s
from those fits. We also imposed p(r) = q(r) for the case of
isospin-conserving transitions to ensure isospin symmetry.
Figure 9 displays the transition densities of isotopes in p,
sd , and f p shells from the VS-IMSRG calculation with the
EM1.8/2.0 interaction. One can see that the distribution of
the transition density could have a complex structure with
more than two peaks. In particular, long-range contribution
to the DGT transition could be even more significant than the
short-range contribution, and it could enhance (quench) the
isospin-conserving (isospin-changing) transitions.

To examine the correlation between the NMEs of DGT
and 0νββ decay in a more general way, we use the tran-
sition densities in Fig. 9 to optimize the parameters c and
d in the two-nucleon density and cis in the function p(r12)
and q(r12). Once these parameters are determined, we vary
the parameters c and d around their optimal values which
allows to generate more transition densities to look at the
correlation relation. The sampled transition densities C̃κ

A (r12)
are displayed in Fig. 10. One can see that the function
form (19) for the transition density, together with the two-
nucleon density ρnn(r) in (21) and the polynomial function
for the overlap C0

ppnn(A f , Ai, r12) in (23) can reproduce nicely
the main structure of both isospin-conserving and isospin-
changing transition densities in each mass regions from the
VS-IMSRG calculations.

The sampled transitions are then integrated over the coor-
dinate r12 which leads to the NME M̃DGT and M̃0νββ

GT ,

M̃κ =
∫

dr12C̃
κ
A (r12), (24)

where C̃κ
A (r12) has been defined in (19) with the overlap func-

tion (23). The NME M̃κ might differ from the actual value of
the NME Mκ because of the unknown constant NA

ppnn( f , i),
but it does not impact the analysis of the correlation relation
between them, except for the intercept parameter.

The NMEs M̃DGT and M̃0νββ

GT for isospin-conserving tran-
sitions are displayed in Fig. 11. It is shown that these two
types of NMEs are correlated in some way. With the transition
densities generated by varying the parameters c and d around
those values from the VS-IMSRG calculations for the p- and
sd-shell isotopes, the resultant MDGT is increasing with M0νββ

GT
in a parabolic form approximately, while that derived from
the f p-shell isotopes is in a linear form. These correlation
relations are summarized in Fig. 12, where the NMEs from
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FIG. 9. The transition densities [cf. Eq. (10)] of isotopes in p, sd ,
and f p shells from the VS-IMSRG calculation with the EM1.8/2.0
interaction. Asterisks indicate isospin conserving transitions.

FIG. 10. Sampled transition densities C̃κ
A (r12) with the param-

eters fitted to the results of VS-IMSRG calculations for the
isospin-conserving transitions in p-, sd-, and f p-shell nuclei, except
for the parameters c and d , which vary from 0 to 1 and from 0.5 to
4.5 fm2, respectively.
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FIG. 11. The NMEs from the integral of the sampled transition
densities in Fig. 10. Arrows show the direction of increasing the d
value.

FIG. 12. The correlation relations are derived from the sampled
transition densities for isospin-conserving transitions. The area is
originated from the variants of the parameters c and d which control
the short-range and long-range behavior, respectively. The NMEs
from the VS-IMSRG calculations are added for comparison.

FIG. 13. Sampled transition densities with parameters fitted to
the VS-IMSRG results for isospin-changing transitions in the (a) sd-
and (b) f p-shell nuclei, with the parameters c and d increasing from
0 to 1 and from 0.5 to 4.5 fm2, respectively.

the VS-IMSRG calculations are added for comparison. It is
shown that the location of the VS-IMSRG calculations is
generally within the area of the correlation relation for the iso-
topes in each mass region. However, the correlation relations
for the isotopes in different mass regions are offset from each
other. It implies that there are probably different correlation
relations for the isospin-conserving transitions of isotopes in
different mass regions.

The correlation relationship between the NMEs of isospin-
changing transitions is more complicated. The corresponding
sampled transition densities are displayed in Fig. 13 and the
obtained NMEs are shown in Fig. 14. Again, one can see that
the main structure of the transition densities exhibited in those
by the VS-IMSRG calculation is reproduced in the sampled
ones. Due to the strong cancellation between long-range and
short-range contributions, the final DGT NME is significantly
quenched. As a result, the value of the DGT NME varies
from a small negative value to a small positive value with the
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FIG. 14. The NMEs from the integral of the sampled transition
densities in Fig. 13. (a) For sd-shell nuclei and (b) for f p-shell
nuclei. Arrows show the direction of increasing the d value.

parameters c and d . There is a kind of weak correlation
between the NMEs of DGT transitions and 0νββ decay, de-
pending much on the mass region of the isotopes and the
values of c and d .

For comparison, we perform a similar analysis based on
the transition densities from conventional shell-model calcula-
tions for isotopes in sd and f p shells. The results are shown in
Fig. 15. In contrast to the results from the VS-IMSRG calcula-
tions, the linear correlation relation between the NMEs is very
robust. Varying the parameters c and d seems only change
the intercept parameter of the linear correlation relation. The
main difference between the sampled densities in Fig. 13 and
Fig. 15 is the contributions from the intermediate- and long-
range regions to the NME. A strong cancellation is shown in
transition densities derived from the VS-IMSRG calculation
but not in those from the conventional shell-model calcula-
tions. The previous analysis starts from (but is not limited to)
the assumption that the transition matrix elements are domi-
nated by the short-ranged part of the operator. As can be seen
in Fig. 4, the DGT operator satisfies this requirement rather
poorly. It is worth considering whether limiting this operator
to shorter distances would enhance the scale separation and
thus improve the correlation with the 0νββ amplitude. Such a
restriction to short distances could conceivably be motivated
by the light-ion induced double charge exchange reaction
mechanism being surface peaked and therefore requiring both
exchanged nucleons to be relatively localized. Our aim here
is not to model the reaction process realistically but to test
whether requiring the DGT operator to be short range im-
proves the correlation with the NME of 0νββ decay. To this

FIG. 15. (a) The transition densities from conventional shell-
model calculations; (b) sampled transition densities with parameters
fitted to the isospin-changing transition densities in (a). (c) The
NMEs from the integral of the sampled transition densities in (b).

end, we define the NME of the surface localized DGT as

MDGT
surf = 〈0+

f |
∑
1,2

f (r12)g(rCM)[σ1 ⊗ σ2]0τ+
1 τ+

2 |0+
i 〉, (25)
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FIG. 16. Correlation between the NMEs MDGT of DGT transitions and the M0νββ

GT scaled by A−1/3 using a subset of isospin-changing
transitions for the sd- and f p-shell nuclei from the conventional shell-model calculation as well as the results obtained with the VS-IMSRG
wave functions and the transition operators in the harmonic oscillator (HO) basis, Hartree-Fock basis (HF), or fully (full) evolved basis. See
text for details.

where

f (r12) = exp
(−r2

12/2
)
, (26)

g(R12) = 1 − exp

(
− R2

12

2R2
A

)
, (27)

with R12 = |(r1 + r2)/2| representing the position of the
center of mass of the two particles. The functions f (r12) and
g(R12) ensure that the two particles are close to each other
and on the surface of the nucleus, respectively. We find that
the correlation of the NME by this operator with M0νββA−1/3

is worse than the standard DGT operator in (1).

V. THE IN-MEDIUM RENORMALIZATION EFFECT

In this section, we try to understand the origin of the dis-
crepancy between the results of the conventional nuclear shell
model and VS-IMSRG as these two methods are comparable.
To further understand why a correlation is found in the nuclear
shell-model calculation for isospin-changing transitions, we
select a subset of transitions that shows a very strong cor-
relation. This subset consists of the transitions 22O → 22Ne,
28Mg → 28Si, 44Ca → 44Ti, 48Ca → 48Ti, 56Ca → 56Ti, and
52Ti → 52Cr. In the conventional shell-model calculations, the
USDB interaction [90] is used for the sd-shell nuclei and the
GXPF1A interaction [91] for the f p-shell nuclei. The results
are shown in Fig. 16. Based on the results within this subset,
one finds the following correlation relationship:

MDGT = 1.86(20)M0νββ

GT A−1/3 − 0.37(8), r = 0.98. (28)

The correlation coefficient r = 0.98 indicates that the two
NMEs are strongly correlated, as shown in Fig. 16(a). This
result is consistent with the previous shell-model study [45],
as expected. In contrast, Fig. 16(d) shows that the correlation
relation from the full VS-IMSRG calculation is weakened
with the correlation coefficient r = 0.91. We note that the
0νββ NMEs of these nuclei by the the VS-IMSRG are gen-
erally smaller than those by the conventional shell-model
calculations, while the DGT NMEs are much smaller and even

with opposite sign. This is mainly due to the configuration
mixing in nuclear wave functions predicted differently in the
calculations using the conventional shell-model interactions
and those derived from VS-IMSRG.

To better understand how the in-medium renormalization
effect from the VS-IMSRG evolution on the transition opera-
tor affects the correlation, we provide two intermediate results
in Figs. 16(b) and 16(c), where the nuclear wave functions are
from the VS-IMSRG calculation, while the transition operator
in the harmonic oscillator (HO) basis or in the Hartree-Fock
(HF) basis is used, respectively. In these two intermediate
results, the transition operator is not consistently evolved. One
can see that the correlation in the results of calculations with
either the HO transition operator or the HF operator is even
stronger than that of the conventional shell model in which
the operator is represented in the harmonic oscillator basis.

Taking 48Ca as an example, we illustrate how the transition
density distribution looks in the four types of calculations
shown in Fig. 16. The transition densities are displayed in
Fig. 17. One can see that the use of the transition operator
from the HO one to the IMSRG evolved one modifies the
transition densities slightly in both short-range (�0.6 fm) and
long-range (�2.0–3.0 fm) regions. Quantitatively, this modi-
fication is slightly different for different isotopes. Figure 18
shows the transition densities for the isospin-conserving tran-
sition 6He → 6Be and for the isospin-changing transition
8He → 8Be obtained with and without VS-IMSRG evolution.
The evolution enhances the short-range part of the transition
densities for the isospin-conserving transitions, leading to an
overall enhancement of the NME. This behavior is found
in all the isospin-conserving cases. For the isospin-changing
transition of 8He, the evolution increases the magnitude of
the peaks of the distributions but, due to cancellations, does
not necessarily increase the final NMEs. This behavior is
found in all isospin-changing cases. In particular, one finds
that the renormalization effect on the short-range part of the
transition density is more significant in the isospin-conserv-
ing transitions than in the isospin-changing transitions. In
short, the effect of VS-IMSRG evolution on isospin-changing
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FIG. 17. The transition densities of both DGT and the GT part
of the 0νββ decay from 48Ca to 48Ti from the conventional nuclear
shell-model calculation with the GXPF1A interaction and the VS-
IMSRG calculation using the transition operators in three types of
basis: HO basis, HF basis, and the fully evolved basis.

FIG. 18. Evolution of the transition distribution of the GT part
of the 0νββ decay and DGT transitions from the VS-ISMSRG in
(a) 6He and (b) 8He.

FIG. 19. The transition densities of the DGT and GT part of the
0νββ decay in 48Ca from the IM-GCM calculation using either the
bare or evolved transition operator, where the same nuclear wave
functions but different transition operators are used, respectively.

transitions is generally small, but the details of the cancella-
tion between short- and long-range components depend on the
nucleus and the operator, which finally degrades the correla-
tion.

To help assess the method dependence of these conclu-
sions, Fig. 19 displays the transition densities of the DGT
and GT part of the 0νββ decay in 48Ca from the IM-GCM
calculation using either the bare or evolved transition oper-
ator, where the renormalization effect enlarges significantly
the short-range contribution for both transitions. It has been
discussed in Ref. [42] that the multireference IMSRG flow
incorporates the effects of pairing in high-energy orbitals,
greatly enhancing the contribution of the J = 0 pair of nu-
cleons to the NMEs. We note that one should not make a
direct comparison of the operator renormalization effects in
the VS-IMSRG and IM-GCM calculations, as the operator
renormalization and many-body correlations are partitioned
in a different way. It is, however, meaningful to compare the
final matrix elements obtained with renormalized operators;
in this case, the discrepancy between the results of these two
calculations reflects the error due to the missing of higher-
body operators in both methods. As shown in Ref. [41] the
inclusion of an induced three-body transition operator helps
reduce the discrepancy between them. Therefore, these two
variants of IMSRG provide a complementary description of
NMEs of neutrinoless double-β decay.

VI. CONCLUSION

In this work, we have explored the possible correlation be-
tween the NMEs M0νββ of ground-state-to-ground-state 0νββ

decay and those MDGT of DGT transitions in a set of nuclei
in different mass regions with three ab initio methods starting
from the same NN+3N chiral interactions. We have found that
the obtained MDGT is correlated with the quantity M0νββA−1/3

slightly stronger than with M0νββA−1/6 for isospin-conserving
transitions, where the long-range and short-range contribu-
tions add coherently, leading to large values of both transition
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matrix elements. However, the correlation relation turns out
to be much weaker in isospin-changing transitions where the
long-range and short-range contributions compensate each
other, leading to small values of MDGT. This conclusion has
been confirmed with a scale-separation analysis in which we
have sampled a set of transition densities for both isospin-
conserving and isospin-changing transitions by changing the
short-range and long-range behavior around the results from
the VS-IMSRG calculation.

We have also explored the origin of the discrepancy
between the NMEs from conventional shell-model calcula-
tions and VS-IMSRG calculations. Our studies have shown
that apart from the discrepancy mainly due to the con-
figuration mixing predicted differently in the calculations
using the conventional shell-model interactions and those de-
rived from VS-IMSRG, the in-medium renormalization effect
from the VS-IMSRG evolution on the transition operator
varies with isotopes, which spoils somewhat the correlation
relation.

Combining the NMEs of both isospin-conserving and
isospin-changing transitions from the three ab initio cal-
culations, we observe a strong correlation. However, the
correlation is considerably weaker for the experimentally rel-
evant isospin-changing transitions. In other words, a large
uncertainty will likely still exist in the M0νββ even if the
ground-state-to-ground-state DGT transition of the candidate
nucleus is precisely measured. It is worth mentioning that our
current analysis is mainly based on the results of calculations
with the chiral interaction EM1.8/2.0. A comprehensive way
to examine the correlation relation can be carried out by
computing the NMEs with a set of chiral nuclear forces with
the low-energy constants varying within acceptable regions
[92]. Any experimental data on the DGT transition NME may
provide a constraint on the chiral interaction, and through
that reduce the uncertainty of the predicted M0νββ . Besides,
we note that recently Romeo et al. [93] found a good lin-
ear correlation between the 0νββ decays and the double-γ
transitions, suggesting another potential way to constrain the

NMEs of 0νββ decay. The present study can be extended
straightforwardly to examine that linear correlation relation
as well.
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