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Quenching of nuclear matrix elements for 0νββ decay by chiral two-body currents
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We examine the leading effects of two-body weak currents from chiral effective field theory on the matrix
elements governing neutrinoless double-β decay. In the closure approximation these effects are generated by the
product of a one-body current with a two-body current, yielding both two- and three-body operators. When the
three-body operators are considered without approximation, they quench matrix elements by about 10%, less
than suggested by prior work, which neglected portions of the operators. The two-body operators, when treated
in the standard way, can produce somewhat larger quenching. In a consistent effective field theory, however, these
two-body effects become divergent and must be renormalized by a contact operator, the coefficient of which we
cannot determine at present.
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Neutrinoless double-β (0νββ) decay is a still hypothetical
process in which two neutrons decay to two protons and two
electrons without emitting neutrinos [1]. Its discovery would
show that neutrinos are their own antiparticles and could both
pin down uncertain neutrino masses and discover entirely new
particles. Experiments to observe the decay are thus growing
in size and cost. Interpreting them, however, requires us to
know the values of the nuclear matrix elements that figure in
the decay rate via Fermi’s golden rule. These cannot be mea-
sured, only calculated, and theorists have worked increasingly
hard to compute them accurately; see Refs. [2,3] for reviews
and, e.g., Refs. [4–11] for original work.

Because 0νββ decay has never been observed, one really
ought to calculate its matrix elements from first principles
with ingredients that allow an error estimate. The standard
scheme for doing this is chiral effective field theory (EFT)
[12]. Roughly speaking, one writes down all interactions
among nucleons and pions that are consistent with sponta-
neously broken chiral symmetry. There are infinitely many of
these but a power-counting scheme in nuclear momenta or the
pion mass (both denoted by Q) divided by a QCD scale � near
a GeV allows one to fit all the terms necessary to achieve any
desired level of accuracy, at least in principle. The counting is
not rigorous but usually works well.

The weak nuclear current can also be represented in this
way. The leading piece involves the usual Gamow-Teller and
Fermi operators associated with a single nucleon. Three orders
down in the counting, two-body current operators appear
[13]. Two-body axial weak currents are currently receiving a
lot of attention because they appear [14] to mostly explain
the longstanding tendency of nuclear theorists to overpredict
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single-β decay rates [15,16], which forces them to adopt an
effective value for the axial-vector coupling constant gA that
is significantly smaller than the bare value. Recent suggestions
[17] that gA should exhibit similar quenching in 0νββ matrix
elements, where it is squared and would thus have a larger
impact, have led theorists to examine the effects of two-body
current operators in 0νββ decay. Reference [18] was the first
work on the issue. The authors and those of the later Ref. [19]
normal ordered the two-body operators with respect to the
noninteracting ground state of spin- and isospin-symmetric
nuclear matter to obtain an effective density-dependent one-
body current that quenched 0νββ matrix elements by roughly
30%, less than one might fear because the quenching was
less effective when the virtual neutrino exchanged between
nucleons in the process transferred a significant amount of
momentum. The assumptions underlying the conclusions—
that an effective one-body operator is sufficient and that
normal ordering with respect to a simple nuclear-matter
state is sufficient to obtain it—have never been examined,
however.

Here we carry out a more comprehensive analysis. We
construct the explicit product of the one-body and two-body
current operators, the leading contribution from two-body
currents to the 0νββ matrix element in the closure approxi-
mation (which in tests is accurate to 10% or so [20,21]), to
obtain two- and three-body 0νββ operators. After an illus-
trative calculation in symmetric nuclear matter, we evaluate
the matrix elements of these operators between reasonable
approximations to full shell-model wave functions in 76Ge
and 76Se, which have been used in many experiments; see,
e.g., Ref. [22]. We find that the obvious sources of quenching,
involving three nucleons (only two of which decay), have even
smaller effects than the effective-operator approach suggests.
Contributions from pairs of nucleons that both generate the
two-body current and decay themselves turn out to be more
problematic, however.

2469-9985/2018/98(3)/031301(6) 031301-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.031301&domain=pdf&date_stamp=2018-09-07
https://doi.org/10.1103/PhysRevC.98.031301


LONG-JUN WANG, JONATHAN ENGEL, AND JIANG MING YAO PHYSICAL REVIEW C 98, 031301(R) (2018)

In 0νββ decay the weak current acts twice. The nuclear
matrix element that governs the decay is given by

M = 4πR

g2
A

∫
dx1dx2dq

(2π )3

eiq·(x1−x2 )

q(q + Ed )

×〈0+
F | Ĵ μ(x1)Ĵμ(x2) |0+

I 〉, (1)

where Ĵ (x) is the nuclear current, R ≡ 1.2A1/3 fm is the
nuclear radius, gA ≈ 1.27, q labels the momentum transfer,
and Ed ≡ Ē − (EI + EF )/2 is an average excitation energy
to which the matrix element is not sensitive [23] (Ē is an
absolute average energy). Up to third order in Q/�, the
nuclear current Ĵ μ can be written as Ĵ μ = Ĵ μ

1b + Ĵ μ
2b where

the two terms in the sum are the one- and two-body pieces of
the current. The first of these is [13,24,25]

Ĵ μ
1b(x) =

A∑
n=1

[δμ0Jn,0(q2) − δμj Jn,j (q2)]τ−
n δ(x − rn). (2)

Here rn is the coordinate of the nth nucleon, q ≡ i∇, and

Jn,0(q2) = gV + · · · ,

Jn(q2) = gAσ n + i(gM + gV )
σ n × q
2mN

− gP (q2)
qσ n · q

2mN

+ · · · , (3)

where gV = 1, gM ≈ 3.706, gP (q2) is given, e.g., in
Ref. [18], and mN is the nucleon mass. In what follows, we
will be looking at the axial current and so neglect contribu-
tions of Jn,0(q2). The terms indicated by ellipses can be shown
[18] to contribute negligibly to the matrix element in Eq. (1).

In considering the two-body current, we neglect the term
with coefficient c6 [13] and terms with two-body pion poles
[26] but otherwise keep the full momentum dependence of
Ref. [13]). Fourier transforming Eqs. (A5) and (A6) of that
paper with, following Ref. [27], an additional factor of −1/4
in the contact term gives the leading space piece of the axial
two-body current operator in coordinate space,

Ĵ 2b(x) =
A∑

k<l

Jkl (x), (4)

Jkl (x) = 2c3gA

mNF 2
π

{
m2

π

[(
σ l

3
− σ l · r̂ r̂

)
Y2(r ) − σ l

3
Y0(r )

]
+ σ l

3
δ(r )

}
τ−
l δ(x − rk ) + (k ↔ l)

+
(

c4 + 1

4

)
gA

2mNF 2
π

{
m2

π

[(
σ×
3

− σ k × r̂σ l · r̂
)

Y2(r ) − σ×
3

Y0(r )

]
+ σ×

3
δ(r )

}
τ−
× δ(x − rk ) + (k ↔ l)

− gA

4mNF 2
π

[2d̂1(σ kτ
−
k + σ lτ

−
l ) + d̂2σ×τ−

× ]δ(r )δ(x − rk ), (5)

where Fπ = 92.4 MeV is the pion decay constant, mπ is the
pion mass, r = rk − r l , and r̂ ≡ r

r
. The Yukawa functions

Y are Y0(r ) = e−mπ r

4πr
and Y2(r ) = 1

m2
π
r ∂

∂r
1
r

∂
∂r

Y0(r ), and the
compound spin and isospin operators are σ× = σ k × σ l and
τ−
× = (τk × τl )− [13]. The product of currents in Eq. (1) for

the 0νββ matrix element can be broken up into contributions
from one- and two-body currents. The leading piece, from
two one-body currents acting as in diagram (a) of Fig. 1, is
what has been considered almost exclusively in prior work.
The first correction comes from diagrams such as (b) and
(c), in which one of the one-body currents is replaced by a
two-body current of either long range [diagram (b) with an
internal pion] or short range [diagram (c)]. Reference [18] first
considered these contributions but only with approximations
that we avoid here.

To get an idea of what to expect in real nuclei, we begin
with a more schematic discussion of nuclear matter, modeled
after that in Ref. [18]. To simplify matters here (and only
here), we neglect all but the d1 and d2 contact pieces of the
two-body current [see Eq. (5)] and evaluate all the current
operators at q = 0.

In nuclear matter, the one-body–two-body contributions
just alluded to can be represented by the Goldstone diagrams

in Fig. 2. The top row of diagrams, in which one nucleon in
the two-body current is a spectator, was treated in Ref. [18].
The spectators contribute coherently, leading to a factor of
the nuclear density in the matrix element and allowing one
to replace the two-body current in the diagram by a density-
dependent one-body effective current. Three-body operators
need never be considered explicitly in such a procedure.
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FIG. 1. 0νββ decay with electron lines omitted. Diagram (a)
shows the leading contribution in which the one-body current acts
twice, turning two neutrons (thick solid red lines) into two protons
(dotted blue lines) via the exchange of a Majorana neutrino. Diagram
(b) shows the action of the pion-exchange two-body current at one
vertex; the thin solid black line on the left represents either a proton
or a neutron. In diagram (c) the contact current replaces the pion-
exchange current.
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FIG. 2. Goldstone-diagram contributions to the 0νββ matrix
element from the two-body current in symmetric nuclear matter.
The thick solid red lines represent neutrons, the dotted blue lines
represent protons, the thin black lines represent either neutrons or
protons, and the wiggly black lines represent the exchanged neutrino.
Upward-pointing arrows signify particles and downward-pointing
arrows holes. The diagrams (a) and (b) in the top row represent the
contributions considered in Ref. [18]. The diagrams (c)–(f) in the
bottom row have not been considered before.

The bottom row has not been examined before. These
diagrams contract creation and annihilation operators from
different vertices and superficially are perhaps not as coherent.
But the internal hole and particle lines are summed, and it is
not obvious that their contributions will be much smaller. It
is obvious, however, that diagrams (e) and (f) have the same
sign as the top row of diagrams and that diagrams (c) and
(d) have the opposite sign. A diagram’s sign contains a factor
of S = (−1)nh+nl , where nh (nl ) is the number of hole lines
(nucleon loops). The diagrams in the top row have one hole
line and one nucleon loop, and thus S = 1. Diagrams (e) and
(f) have no hole lines or nucleon loops (S = 1), and diagrams
(c) and (d) have one hole line and no nucleon loops (S = −1).
The net effect once all terms are taken into account remains to
be seen.

We evaluate the diagrams in the closure approximation,
that is, by neglecting the variation in the energies of the in-
termediate particles and holes in the bottom row of diagrams.
To simplify matters, we set Ed in Eq. (1) to zero so that
the energy denominators contain just 1/q2 associated with
the neutrino. We take the external momenta ka, kb, kc, and
kd , which are to represent those of valence nucleons, to lie
on the Fermi surface (k = kF ), although in evaluating the
angle average of 1/|ka − kc|2 in the top row of diagrams we
let the magnitude of one of the two momenta be distributed
with equal probability in a symmetric interval of width kF

around the Fermi surface (to avoid a divergent result). With
these assumptions, the amplitude represented by each of the
diagrams has the form

Xδ(ka + kb − kc − kd ) 〈f | σ 1 · σ 2τ
−
1 τ−

2 |i〉 (6)

for some constant X where the matrix element refers just
to the spin-isospin part of the initial (i) and final (f ) wave
functions. We separately sum diagrams (a) and (b), (c) and
(d), and (e) and (f) (the members of each pair are equal). The

results are

Xab ≡ X(a) + X(b) ≈ −2C(2 + 2 ln 2)kF

3π2
,

Xcd ≡ X(c) + X(d) = 3CkF

4π2
≈ −1

2
Xab, (7)

Xef ≡ X(e) + X(f) ≈ −6C(� − kF )

4π2
≈ 2Xab,

where C is a constant containing d1, d2, R, Fπ, gA, and mN

and where we take �, the momentum at which we cut off the
integral over particle states, to be 3kF . The relative signs of
the contributions reflect the discussion above. Avoiding the
closure approximation—i.e., modifying the energy denom-
inators to include the energies of the intermediate particle
lines—would reduce the contributions of diagrams (e) and (f)
by about 20%, but the integral would still grow with �. (The
closure approximation is more drastic here than anywhere
else because the intermediate-particle energies are bounded
from above by � not by kF . The states that carry these high
intermediate-particle energies do not contribute strongly when
only one-body currents are at play because the second current
cannot act on the same nucleon as the first one.)

We can break the X’s in Eq. (7) into contributions of three-
body operators with n �= k, l in the products of the currents in
Eqs. (1), (2), and (4), and two-body operators with n = k or l.
In addition to the producing the quenching contributions Xab

discussed in Ref. [18], three-body operators also contribute
exactly twice Xcd so that the net quenching produced by
the three-body operators nearly vanishes. Two-body operators
produce Xef − Xcd , which is about 5/2 Xab (a number, that,
again, would be a bit smaller without closure) so the final
overall quenching is greater than obtained in prior work. As
we see next, conclusions much like these still hold when we
use realistic nuclear wave functions, nucleon form factors, and
the full two-body current.

One might argue that in computing Xef we should not use
a cutoff to regulate the integral. In a more consistent chiral
effective field theory such as that in Refs. [28,29], in which all
two-body processes are evaluated in isolation and the results
subsequently embedded in a many-body calculation [so that
Eq. (1) is not the starting point], that is standard practice;
dimensional regularization restricts the momenta in loops
to be low. But that procedure introduces counterterms with
unknown coefficients at chiral orders below those considered
here. We are simply trying to assess the quenching induced
by two-body currents alone, and a cutoff simulates the effects
of nucleon form factors in the sum over intermediate states in
a realistic calculation. Of course, the use of a form factor to
eliminate divergences, in conjunction with chiral currents, is
not consistent; if we really want to do EFT we will require
explicit counterterms. We return to this issue later.

First, however, we present realistic shell-model-like calcu-
lations 76Ge and 76Se in the usual f5/2pg9/2 oscillator valence
space. Here, without the ability to include a complete set
of intermediate-nucleus states, we need to work to evaluate
the matrix elements of three-body operators. We do so by
combining the three-body matrix elements of the operator
Ô3b [representing the three-body part of Ĵ μ(x1)1bĴμ(x2)2b +
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Ĵ μ(x1)2bĴμ(x2)1b] with three-body transition densities to
obtain

M3b = −
∑

abcdef

〈abc| Ô3b |def 〉 ρ3b
abc,def , (8)

where

ρ3b
abc,def = 〈0+

F | a†
aa

†
ba

†
cadaeaf |0+

I 〉. (9)

Here the subscripts a, b, . . . represent full single-particle la-
bels, e.g., a stands for the set {τa, na, la, ja,ma}, i.e., the
isospin, harmonic-oscillator radial quantum number, orbital
angular momentum, total angular momentum, and z projec-
tion associated with the level in question. M3b is thus the
three-body piece of the matrix element M in Eq. (1). Other
than the terms already mentioned, only those pieces of the
product containing tensors in both the one-body and two-body
currents are neglected.

We obtain the three-body matrix elements of Ô3b in much
the same way as Refs. [30–32] obtained those of three-body
interactions, i.e. by first computing them in a large three-body
Jacobi basis and then transforming to a coupled product basis.
To get ρ3b we use the generator coordinate method (GCM) to
approximate shell-model wave functions [33]. As in Ref. [34],
we use the Hamiltonian GCN2850 [4,35], take Ed to be 7.72
MeV, and include both axial deformation and an isoscalar
pairing amplitude [36] as generator coordinates. We assume
that the valence space sits atop an inert core of 56 filled
oscillator orbitals. If all three nucleons acted on by Ô3b are
in the valence space, the densities ρ3b are the matrix elements
between the initial and the final GCM states of three creation
and three annihilation operators. If one of the three nucleons
comes from the shell-model core, on the other hand, then
the ρ3b reduce to simpler two-body valence-space transition
densities. The corresponding contributions to M3b are what
one would obtain by normal ordering the product of currents
with respect to the inert shell-model core, a more realistic
version of the symmetric nuclear-matter state considered in
Ref. [18]. The contractions generated by the normal ordering
can be either between creation and annihilation operators
within the two-body current as in the top row of Fig. 2 and
in Ref. [18] or between operators from different currents as in
the bottom row of Fig. 2.

Figure 3 shows the ratio M3b/M0, where M0 is the leading
part of the matrix element that comes from one-body currents
at both vertices [Fig. 1(a)] for the decay of 76Ge with the
GCM wave functions described in the previous paragraph.
These wave functions are not quite as complex as those in
Ref. [34]; they are linear combinations of states with a single
value for the isoscalar pairing amplitude and seven values
for the axial deformation parameter β. The resulting matrix
element—3.47—is reasonably close to the exact result of 2.81
[4]. The different panels in the figure correspond to different
values for the couplings c3 and c4, and we present them as
functions of cD ≡ d1 + 2d2. The values of c3 = −3.2, c4 =
5.4 are from Ref. [37], the values of c3 = −4.78, c4 = 3.96
are from Ref. [38], and the values of c3 = −3.4, c4 = 3.4 are
from Ref. [39]. To get the results on the left side of the figure
(labeled same), we include only the contributions of con-

FIG. 3. Relative effects on the 0νββ matrix element from the
three-body-operator parts of diagrams involving chiral two-body
currents [as shown in Figs. 1(b) and 1(c), and Eq. (8) with several
sets of coefficients c3, c4, and as a function of cD for 76Ge. The
solid line represents the full results, the dashed line represents the
approximate results when three-body operators are discarded after
normal ordering with respect to the intercore, and the dotted line
represents the results when the normal ordering is with respect to
an ensemble containing the GCM 76Ge and 76Se ground states. The
results in the panels on the left include only contributions from the
contraction of creation an annihilation operators at the same vertex
in Fig. 1. See the text for details.

tractions of creation and annihilation operators from within
the same (two-body) current, such as those of Ref. [18] or
diagrams (a) and (b) in Fig. 2. {Note, however, that Ref. [18]
omitted a factor of −1/4 in the last line of Eq. (5).} We
include all possible contractions to obtain the results on the
right. The dashed and dotted lines show approximate results in
which the we have discarded three-body operators that survive
normal ordering with respect to the inert core (the discarded
terms are those in which all three nucleons are in the valence
shell) and with respect to an ensemble containing the full
GCM ground states of 76Ge and 76Se, weighted equally. The
ideas on which this ensemble normal ordering is based are
presented in Ref. [40].

The figure shows that with only the contractions from
within the two-body current, the three-body operators quench
the matrix element by 5%–25% for |cD| � 2. This level
of quenching is what one would obtain with the density-
dependent effective-operator treatment of Ref. [18] at a some-
what lower nuclear density than that used there. A similar
level of quenching holds in single-β decay as discussed in
Ref. [14]. When all the contractions are included, the quench-
ing decreases, just as in our nuclear-matter results for the
contact part of the current. In the bottom two panels it does
not decrease very much, but in the top panel, it decreases
significantly. The full results are also nearly independent of
cD , bearing out the almost complete cancellation between the
different three-body contractions we found in the nuclear-
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FIG. 4. Relative effects on the 0νββ matrix element from the
two-body-operator parts of diagrams involving chiral two-body cur-
rents [as shown in Figs. 1(b) and 1(c)] as a function of cD . The results
in panel (a) are for three sets of values for c3 and c4. Panel (b) shows
the effects of several modifications to the operator, both separately
and when combined. See the text for details.

matter calculation. When all is said and done, the three-body
operators end up quenching matrix element by 5 or 10%.

A final observation regarding Fig. 3: the normal ordering
with respect to the inert core indeed provides most of the
matrix element with the configurations in which all three
nucleons are in the valence shell contributing relatively little.
The realistic reference ensemble usually makes the normal
ordering even better. That is good news for many-body cal-
culations in which three-body operators are problematic.

We turn finally to the troublesome two-body operators in
the product of one-body and two-body currents. As already
noted, without nucleon form factors or other regulators the
loops that produce these operators cause divergences. The
operator that comes from the contact current, for example, is

Ô2b
cD

= 2cDR

πmNF 2
π

A∑
k �=l

∫
dq

[
qg2

A(q2) − q3gA(q2 )gP (q2 )
6mN

]
(q + Ed )g2

A

× σ k · σ lτ
−
k τ−

l δ(r ). (10)

The integral diverges if gA has no q dependence. Here, for
the purposes of estimation, we assign the dipole nucleon form
factors given in Ref. [25] and used in nearly every prior calcu-
lation. Figure 4(a) shows the relative effects on the nuclear
matrix elements from all the two-body operators and with
the GCM wave functions described earlier (again for several
chiral interactions). These operators can quench the matrix
element substantially by up to 90% in the figure. The amount
of quenching, however, is very sensitive to c3, c4, and cD and
can be much less. Furthermore, the quenching is due almost
entirely to the zero-range parts of the two-body operators in
Eq. (10) and in the analogous contact associated with pion
exchange. (The longer-range pion-exchange Yukawa func-
tions have very little effect.) As a result, modifications to
physics at short distances, omitted from the matrix elements
in panel (a) but typically included in calculations such as
ours, have significant effects. Panel (b) shows what happens
when we include them. A consistent EFT calculation requires
regulation; the two-body regulator from Ref. [13] with � =
500 MeV smears out the contact terms in the operator and
decreases the quenching from the two-body matrix element

by about a third. An explicit short-range correlation function
is needed if the model space omits high-momentum states;
the figure indicates that a Jastrow function of the “Argonne”
type from Ref. [41]) drastically reduces the quenching. When
the regulator and short-range correlation function are used
together, the latter has a much smaller effect because of the
smearing by the regulator. It is not, of course, consistent to
use a short-range correlation function from a calculation with
the Argonne potential in chiral EFT, but the regulator makes
the precise form of the correlation function irrelevant.

What is the meaning of these various results? One might
take the final dot-dashed curve in panel (b) to be a rough esti-
mate of the quenching from two-body operators, but because
those contributions diverge without form factors or a cutoff, a
consistent calculation will contain additional short-range con-
tributions from a counterterm. Unfortunately, the coefficient
of that term is unknown with no obvious way to fix it from
data. Only if it is small, i.e., if short-range repulsion fully and
faithfully represents the effects induced by high-energy virtual
neutrinos, will the dot-dashed line represent reality.

Interestingly, the counterterm is already a part of the ββ
EFT of Ref. [28] where it occurs one order below that of
the two-body currents. Within a cutofflike scheme, such as
ours, that is the order required to cancel the divergent loops.
With more typical dimensional regularization, however, the
two-body operators in the product of currents, after removal
of the divergence, would naturally contribute at most at the
same order as the two-body currents themselves. We might
even expect them to have less of an effect than the three-body
operators in the product because the factor of Q from the low
momenta in loops is a little smaller than kF , which one obtains
from the third particle in the three-body operators. But even
with dimensional regularization one would need a countert-
erm at higher order than with cutoff regulation but with an
equally unknown coefficient to remove the divergence.

How can we determine the unknown coefficient? The same
question arises for a coefficient at leading order according to
Ref. [29]. In either case, the coefficient can, in principle, be
fixed through a calculation in lattice QCD or from data on pion
double-charge exchange [42]. Either possibility is difficult to
realize, however. Until a lattice calculation becomes feasible,
we may have to resort to models to provide estimates that will
be hard to verify.

The unknown coefficient does not weaken our conclusions
about the three-body operators in the product of currents.
They probably quench matrix elements by about 10%—we
say probably because of the potential effects of pion poles,
higher-order contributions in χEFT, etc., which eventually
should be examined carefully. A 10% quenching is less
than previous work suggests and nearly independent of cD .
Furthermore, in the future we can compute the effects of
these operators to a good approximation by discarding all
but the normal-ordered two-body pieces. All in all, many-
body currents in χEFT are unlikely to produce really severe
quenching. To say more, we will need a way to determine the
coefficients of two-body counterterms.
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