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The nucleus as a condensate of collective quark triplets
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Starting from an effective hamiltonian for multi-quark systems, we propose a mapping of the quark degrees of freedom onto
collective colorless triplets of constituent quarks. We end up with an effective hamiltonian for nucleons, which can be treated by
traditional nuclear many-body approximations. In this way, we can describe subnucleonic degrees of freedom in the quantum

liquid of nucleons.

Traditionally, the nucleus is treated as a quantum
liquid of pointlike structureless nucleons. More re-
cently, constituent models of the nucleon have called
this simple picture into question. The relatively large
size of the nucleons in such models and a number of
recent experiments (by, e.g., the EMC) indicate that
the nucleon and nuclear scales do not completely
decouple.

As a consequence, there is currently great interest
in trying to describe multinucleon systems directly in
terms of their QCD constituents. Ideally, the treat-
ment should be fully relativistic and should include
quark, gluon and antiquark degrees of freedom, but
to date there has been little progress in this direction.
In contrast, significant progress has been made in the
use of nonrelativistic constituent quark models, which
in principle can be obtained from QCD by eliminat-
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ing the gluon and antiquark degrees of freedom. For
example, the quark cluster model [1,2] has been used
with great success to derive properties of two-baryon
systems.

Efforts to apply the constituent quark model to
many-nucleon systems have not been as successful.
The major obstacle is colorless three-quark cluster-
ing, which cannot be implemented with traditional
many-body methods. So far only two-body clustering
can be treated in a natural way, through the use of the
BCS approximation.

In this letter, we propose a method for incorporat-
ing colorless three-quark clustering in a microscopic
treatment of many-nucleon systems. Our method is
based on the use of iterative mapping techniques [3].
We will describe its application to several relatively
simple model hamiltonians for interacting quarks,
introduced by Petry and collaborators [4]. However,
our method is by no means restricted to such simple
model hamiltonians, but can be applied in principle
to any effective quark interaction, possibly including
the three-quark terms that are expected to arise from
the three-gluon exchange diagram of QCD.
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As is well known, three-fermion clusters are not ex-
act fermions. Our method maps colorless three-quark
clusters onto triplet fermions that do satisfy exact an-
ticommutation rules. The mapping leads from the
underlying multi-quark interaction to an effective
hamiltonian for these triplet fermions, which can be
treated by the familiar many-body techniques of con-
ventional nuclear structure physics. This effective
triplet hamiltonian incorporates the physics of the
Pauli principle at the quark level. The nuclear ground
state in such an approach represents a quantum liq-
uid of composite particles, the nucleons. Higher-lying
states involve both excitations within the space of the
nucleons and excitations of the nucleons themselves.

As in traditional boson mapping procedures [5],
the mappings are implemented by requiring that the
commutation algebra of bilinear operators in the
mapped (triplet-fermion ) space be the same as in the
original quark space. The effects of the Pauli princi-
ple are then transmitted to the mapped operators,
which as a consequence either involve infinite series
expansions or are non-hermitean. In the Dyson ap-
proach, which we use throughout, the resulting trip-
let-fermion hamiltonians are non-hermitean but of
finite order.

The details of the mapping depend on the under-
lying model. As noted earlier, we will describe its ap-
plication to two models due to Petry and coworkers.
In these models, quarks interact via a simple phe-
nomenological separable interaction, which acts only
between pairs of quarks coupled to spin and isospin
zero. In the first and simplest model (which we refer
to as the single-orbit model ) the quarks are restricted
to a single-j orbit; we also discuss a more complicated
version (the multi-orbit model) in which they can
occupy several j orbits. The single-orbit model can be
solved exactly by group theoretical methods, as can
the multi-orbit model when the single-quark energies
are degenerate. When they are not degenerate, how-
ever, the model cannot be solved exactly. The non-
degenerate model has some attractive features and has
been put forth as a semi-realistic quark model of the
nucleus. By introducing single-quark energies appro-
priate to a confining bag whose radius is that of the
whole nucleus, one can derive from it a nuclear shell
model. However, as has been shown by Suzuki and
Hecht [6], this model is unable to produce spatially
localized nucleons, a necessary criterion for a truly
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realistic quark model. Other arguments against the
model were given in ref. [7]. For our purposes, the
validity of the Petry model is not an issue; we simply
use it to test our proposed method.

We begin by applying our method to the single-or-
bit model, since it is the simplest and most clearly
illustrates the basic ideas. The fundamental opera-
tors in the model are the unpaired quarks gf =¢1,.,
with quantum numbers 1, m and ¢ labeling color, j,
and isospin, respectively, and the bilinear quark
operators

AY=232 €23 me @i, Ar=(ADT,

mi

Jll'=Zqutql’mt: N=ZJ11, (1)
mi 1

with g{;7 = (= yY~™*2-Y4]_,,_,. The bilinear quark
operators form a closed algebra:

[AI,A§]=4[§12(2.Q—]\7)+J12], [Jn,A“=O,
[Lor, Al]=—At, [Ji,45]1=4), [Ji5,41]=0
(1#£2) (2)

with 2=2j+4 1. The hamiltonian of the model has the
form

H=—-1GY Al4,. (3)
1

We carry out the mapping in two steps. In the first,
we map the original quark space using the Dyson
method onto a space consisting of bosons Bj, and
ideal fermions a! which by definition commute with
the bosons:

qiql=Bl — ;BT/BL'BH’— Z/: (B:f,a};a,—BLaIa,)

;=B ,
qlq= Y B}By+ala. (4)
{

This mapping preserves the commutation relations
(2). Introducing collective bosons

1
Bl=—— Y €23Bpmimes 5
T \/E]g'nt 123 51,37 ( )

and truncating for the moment to the associated col-
lective subspace (the hamiltonian (3) separates it
exactly from the rest of the space), we find for the
Dyson image of the hamiltonian
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H,=—2QGNg +GNg(Ng—1) —Hy,, (6) for instance, corresponds to (N.—1) nucleons and

where Ny is the number operator for bosons and Hi,,
involves an interaction between fermions and bosons:

I—Iim=G1 ; (B¥a¥mtB2a2mt"BTBlazmtath) .
#2,mt
(7)
In the second step*!, we map boson-fermion pairs

Bl.aJ onto triplet fermions ¢}, which are defined to
obey the anti-commutation relations

{Cirs> C}"k',/' }=0y (S Opper — O Oir) - (8)

Using the method of Dyson again, we obtain for the
general mapping of boson-fermion pairs to triplet
fermions

Blal=cl,— ¥ chrclaiCoqr
p<qr

Bia/=ci,,

a},ak: z C;q,icpq,k,
pb<q

Bl Bie = 21: C:ri',lckk',z- 9)

Truncating to fully antisymmetric, collective (color-
less) triplet fermions (again separated by the
hamiltonian)

Z 6123C'Im't’2rﬁ'f,3mla (10)

1 _
Cmt=
3 2amee

we arrive at the hamiltonian

H,=—GQQ+3) 5 chicm
mt

+G Y il Core (11)

mmm’'t’
which has eigenvalues
E(N)=-2GN(Q+1)+GN.(N.—-1), (12)

where N, is the number of collective triplets. This
corresponds precisely to the eigenvalues that were
found by Petry for the (/=0)-sector, where the quan-
tity / corresponds to the number of triplets in which
two of the particles are not paired. The (/= 1)-sector,

#1 A similar method has been discussed by Zhu Yao-yin et al.
81, in the context of the composite particle representation
method and applied to the one-baryon system.

one A-particle. In deriving eq. (11), we dropped these
configurations by neglecting the non-collective bo-
sonsineq. (6).

One can easily include these non-collective bosons
in our treatment by supplementing the collective pair
algebra of eq. (5) with non-collective pairs. The re-
sult is to add to the hamiltonian (11) an additional
term, which couples nucleons to A-particles:

Heq=2GN Ny, (13)

where N, is the number operator of non-collective
triplets (i.e. those that involve non-collective pairs).
The eigenvalues of the full hamiltonian can then be
written as

E(Nc, Na)=—G[(N.+Nq) (22+3—-N.—No)
—N4(22+3-Ny)1, (14)

which exactly reproduces the spectrum of Petry, when
there are non-collective pairs. Thus, our iterative
mapping method is exact for the single-orbit model.

Next we consider the multi-orbit model, for which
the hamiltonian is

H= Z gqu'mtqumt—%G Z AL-AU, , (15)
1jme iy
where
AL: 232 flzsq;jmtqgjm (16)
mi

is the collective pair for orbit j. Using the same two-
step iterative mapping method as above, and restrict-
ing to the single collective /=0, T=0 pair for each
orbit, we end up with colorless triplet—fermion oper-
ators ¢}, in which two particles in orbit j* are fully
paired and the third in orbit j is unpaired. The result-
ing hamiltonian expressed in terms of these partially-
correlated triplet—fermion operators has the form
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H= Z ((8j1+6j2 +Sj)6j1j2"‘2G\/leQj2

J1j2jmt
Q.
‘j2
—2G\/; Ty JCHjmiCajmt
j
Gy [ T
- Z Z Z (Cj,jzmtcj,jamt’cjl,jzmtcj,jsm't’
Jn -Qj J2j3 mm't’

4k imiCljsm e Cia jam v Civ joma

- %C;ermtc},jsm't' Cijam'e Cjz,jmz) . ( 17)
This hamiltonian clearly exhibits the non-hermitean
nature of the Dyson method. In addition it is no
longer analytically solvable except in the limit where
all single-particle energies ¢ are degenerate. How-
ever, it can be treated by conventional many-body
approximation techniques.

In the specific test applications to follow, we will
focus on the nucleus '°0. In a doubly-magic system it
is natural to use the (non-unitary) spherical
Hartree-Fock (HF) method, wherein the ground
state is described by Slater determinants built up from
single-particle states with definite angular momenta.
For a non-hermitean hamiltonian, the bra and ket
determinantal state vectors need not be adjoints of
one another. Thus, we introduce separate bra and ket
states:

ey

<¢|=<0| __UNyjimili' (18)

The correlated creation and annihilation operators,
I'f, and Vi are linear combinations of the funda-
mental single-particle creation and annihilation
operators:

Table 1
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&

Yimt = 2 Yj’jcj',jmz- (19)
7

Their structure coefficients are determined by the
variational condition

(PH|Y)
) (D =0, (20)
which can be solved with standard iterative tech-
niques. Interestingly, the structure coefficients of the
various correlated triplet fermions (i.e. nucleons)
need not be the same.

We have carried out several calculations for the nu-
cleus 'O with different parameter choices in the
multi-orbit model. In each case, we assumed that the
quarks were confined by a harmonic oscillator poten-
tial (with oscillator energy #iw) and restricted to the
orbits of the 1s, Ip and 2s—1d oscillator shells. The
unpaired quarks were assumed to fill the 1s and 1p
shells only.

The first calculation assumed a pairing strength of
G'=7MeV and degenerate single-particle orbits. With
the above choice of G, the lowest non-nucleonic ex-
citations occur at a reasonable energy of roughly 280
MeV. The results of this calculation are given in table
1. We show both the calculated ground state energy
and the occupation numbers for the various quark
orbits. With degenerate orbits, the multi-orbit model
has the same group structure as the single-orbit mode!
and thus, as noted earlier, can be solved exactly. In-
deed, the eigenvalue expression is identical to that of
the single-orbit model (12) except that one must
identify 2= €. For N=16 and =40, the analytic
result is Egs= — 3024 MeV, which is reproduced ex-
actly by the spherical Hartree—-Fock calculation. The
occupation numbers reflect the assumption that the

Spherical HF results for '®O using the multi-orbit Petry model. Calculations are carried out for degenerate single-quark energies and for
a pairing strength of G=7 MeV. Shown are the number of quarks in the active quark orbits and the ground state energy.

G (MeV) Quark occupation numbers Egs (MeV)
Isi 1ps/2 Ipijz 1ds,2 281, 1d;/,
7 7.429 14.857 7.429 9.143 3.048 6.095 —3024.00
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Spherical HF results for 'O using the multi-orbit Petry model. Calculations are carried out for an oscillator energy iiw=16 MeV and for
three values of the pairing strength G. Shown are the number of quarks in the active quark orbits and the ground state energy.

G (MeV) Quark occupation numbers Egs (MeV)
1812 1p3,2 1py/2 1ds/, 2812 1ds/2
36 8 4 0 0 0 192.00
1.4 10.69 17.25 8.63 5.72 1.91 3.81 254.02
7 8.13 15.31 7.66 8.45 2.82 5.63 —2098.90

unpaired quarks fill the 1s and 1p shells. Because of
the degeneracy in single-quark energies, the unpaired
quarks could have been distributed in any other fash-
ion with no change in energy.

We next carried out a series of calculations for non-
degenerate single-quark energies appropriate .to
ficw=:16 MeV, which is reasonable for the nucleus °O
(see table 2). These calculations had two purposes.
The first was to illustrate that approximate solutions
could indeed be obtained even when the orbits are
nondegenerate. The second was to see whether our
HF solutions violate the Pauli principle at the under-
lying quark level. Pauli violations have historically
been a major problem in mapping techniques. If the
mapped hamiltonian could be diagonalized exactly,
there would be a clean separation between physical
states that properly reflect the underlying Pauli prin-
ciple and unphysical states that do not. However, once
approximations are made (as invariably they must
be) physical and unphysical states can mix and as a
consequence lead to Pauli violations. We see from the
table that for G=0, the (trivial) HF solution indeed
produces Pauli violations. More specifically, there are
more quarks in the lowest 1s,,, quark orbit than the
12 permitted by the Pauli principle. In the most re-
alistic scenario (G=7 MeV ), however, this is not the
case. Furthermore, even when we reduce the pairing
strength from this value by a factor of five, we still
find no Pauli violations at the quark level. The rea-
son for this is the following: There are two funda-
mental scales in our problem, the nuclear scale (which
is governed by the single-particle energies and is typ-
ically of the order of MeV), and the nucleon scale
(which is governed by GQ and is of the order of
hundreds of MeV). The two-quark interaction, which
produces di-quark clustering, works at the nucleon
scale. It thus scatters quarks strongly over a large

number of single-quark orbits (which were produced
at the nuclear scale) and this strong scattering pre-
cludes Pauli violations. Any reasonable quark inter-
action will have to produce such strong clustering at
the nucleon scale. Thus, we expect that unphysical
states and Pauli violations will not prove a problem
in subsequent realistic applications of our method.

For the future, there are several formal issues still
to be investigated. We need to consider the applica-
tion of our method to more general quark hamilto-
nians, which include not only more realistic two-
quark interactions but also three-quark forces. As
noted by Suzuki and Hecht [6], three-quark inter-
actions (suggested by QCD) may be necessary to
spatially localize colorless quark triplets. In the case
of more general hamiltonian, the commutation alge-
bra is more difficult to preserve. In general, we must
not only preserve the algebra of bilinear operators, as
we have done in the present work, but we must also
include the single-quark creation and annihilation
operators in order to guarantee a physical subspace.
Indeed, already in our nondegenerate Petry model
calculations, there exist states in the original quark
space that do not seem to appear properly in the
mapped space. However, such states most likely ap-
pear very high in energy and should not influence the
ground state significantly. Improper treatment of such
states could, however, be of greater significance when
more general interactions are considered. One possi-
ble way to properly include the single-quark opera-
tors in the algebra is through the use of the quantized
Bogolyubov transformation [9]. In addition, we will
most likely have to consider the generalization of
other traditional many-body techniques [10] (e.g.
TDA, RPA and Brueckner theory) to multi-index
fermions interacting via non-hermitean hamiltoni-
ans, which invariably arise in Dyson mappings.
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One these formal questions have been adequately
resolved, we hope to begin addressing a variety of in-
teresting issues. At the level of traditional nuclear
phenomena, we should be able to calculate such
quantities as the magnetic moments of single-particle
or single-hole nuclei (the so-called Schmidt mo-
ments) directly from quarks. Indeed, Arima et al.
[11] have shown that the Petry pairing hamiltonian
cannot reproduce the Schmidt moments. They sug-
gest, however, that including other QCD-motivated
terms in the quark hamiltonian might help. We also
hope to address several issues of more contemporary
interest, such as the structure of nucleons in the nu-
clear medium (as raised, for instance, by the EMC-
effect) and the role of nucleonic excited states in nu-
clear structure.

In summary, we have described a new approach to
deriving the properties of nuclei from the interac-
tions between its constituent quarks. Through the use
of iterative mapping techniques, we are able to go
from quarks to colorless triplet fermions. These are
true fermions, satisfying exact anticommutation rules,
and thus they can be treated with familiar fermion
many-body approximation techniques (albeit slightly
generalized ). They interact via an effective hamilto-
nian that fully incorporates the underlying quark
Pauli effects. Variational treatments of many-nu-
cleon systems will pick out special collective triplet
fermions which can be identified as nucleons. Effects
associated with excited states of the nucleon can be
readily treated in this fully consistent framework.
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