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The nucleus as a condensate of  collective quark triplets 
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Starting from an effective hamiltonian for multi-quark systems, we propose a mapping of the quark degrees of freedom onto 
collective colorless triplets of constituent quarks. We end up with an effective hamiltonian for nucleons, which can be treated by 
traditional nuclear many-body approximations. In this way, we can describe subnucleonic degrees of freedom in the quantum 
liquid of nucleons. 

Tradi t ional ly ,  the nucleus is t reated as a quan tum 
l iquid o f  point l ike  structureless nucleons. More  re- 
cently, const i tuent  models  of  the nucleon have called 
this s imple picture into question. The relat ively large 
size of  the nucleons in such models  and a number  of  
recent exper iments  (by, e.g., the EMC)  indicate  that  
the nucleon and nuclear  scales do not  complete ly  
decouple.  

As a consequence, there is current ly great interest  
in trying to describe mul t inucleon systems directly in 
terms of  their  Q C D  consti tuents.  Ideally, the treat-  
ment  should be fully relat ivist ic  and should include 
quark, gluon and ant iquark  degrees o f  f reedom, but  
to date there has been little progress in this direction.  
In contrast ,  significant progress has been made  in the 
use of  nonrelativist ic consti tuent quark models, which 
in pr inciple  can be obta ined  from QCD by el iminat-  
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ing the gluon and ant iquark  degrees of  freedom. For  
example, the quark cluster model  [ 1,2 ] has been used 
with great success to der ive propert ies  of  two-baryon 
systems. 

Efforts to apply the const i tuent  quark model  to 
many-nucleon systems have not  been as successful. 
The major  obstacle is colorless three-quark cluster- 
ing, which cannot  be implemented  with t radi t ional  
many-body  methods.  So far only two-body clustering 
can be t reated in a natural  way, through the use of  the 
BCS approximat ion .  

In this letter, we propose a method  for incorporat -  
ing colorless three-quark clustering in a microscopic  
t rea tment  of  many-nucleon systems. Our  method  is 
based on the use of  i terative mapping techniques [ 3 ]. 
We will describe its appl ica t ion  to several relat ively 
s imple model  hami l tonians  for interact ing quarks,  
in t roduced by Petry and col laborators  [ 4 ]. However,  
our  me thod  is by no means  restr icted to such simple 
model  hamil tonians,  but  can be appl ied  in principle 
to any effective quark interact ion,  possibly including 
the three-quark terms that  are expected to arise from 
the three-gluon exchange d iagram of  QCD. 
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As is well known, three-fermion clusters are not ex- 
act fermions. Our method maps colorless three-quark 
clusters onto triplet fermions that do satisfy exact an- 
ticommutation rules. The mapping leads from the 
underlying multi-quark interaction to an effective 
hamiltonian for these triplet fermions, which can be 
treated by the familiar many-body techniques of con- 
ventional nuclear structure physics. This effective 
triplet hamiltonian incorporates the physics of the 
Pauli principle at the quark level. The nuclear ground 
state in such an approach represents a quantum liq- 
uid of composite particles, the nucleons. Higher-lying 
states involve both excitations within the space of the 
nucleons and excitations of the nucleons themselves. 

As in traditional boson mapping procedures [5], 
the mappings are implemented by requiring that the 
commutation algebra of bilinear operators in the 
mapped (triplet-fermion) space be the same as in the 
original quark space. The effects of the Pauli princi- 
ple are then transmitted to the mapped operators, 
which as a consequence either involve infinite series 
expansions or are non-hermitean. In the Dyson ap- 
proach, which we use throughout, the resulting trip- 
let-fermion hamiltonians are non-hermitean but of  
finite order. 

The details of the mapping depend on the under- 
lying model. As noted earlier, we will describe its ap- 
plication to two models due to Petry and coworkers. 
In these models, quarks interact via a simple phe- 
nomenological separable interaction, which acts only 
between pairs of  quarks coupled to spin and isospin 
zero. In the first and simplest model (which we refer 
to as the single-orbit model) the quarks are restricted 
to a single-j orbit; we also discuss a more complicated 
version (the multi-orbit model) in which they can 
occupy severalj orbits. The single-orbit model can be 
solved exactly by group theoretical methods, as can 
the multi-orbit model when the single-quark energies 
are degenerate. When they are not degenerate, how- 
ever, the model cannot be solved exactly. The non- 
degenerate model has some attractive features and has 
been put forth as a semi-realistic quark model of the 
nucleus. By introducing single-quark energies appro- 
priate to a confining bag whose radius is that of the 
whole nucleus, one can derive from it a nuclear shell 
model. However, as has been shown by Suzuki and 
Hecht [6 ], this model is unable to produce spatially 
localized nucleons, a necessary criterion for a truly 

realistic quark model. Other arguments against the 
model were given in ref. [7]. For our purposes, the 
validity of the Perry model is not an issue; we simply 
use it to test our proposed method. 

We begin by applying our method to the single-or- 
bit model, since it is the simplest and most clearly 
illustrates the basic ideas. The fundamental opera- 
tors in the model are the unpaired quarks q~ =q~m*, 
with quantum numbers 1, m and t labeling color, Jz 
and isospin, respectively, and the bilinear quark 
operators 

At= Z e123q~mtq;a,r, A,=(At)*, 
23mt 

J , l  ' =  ~.  q ] m t q l ' m t ,  N---- E J l l ,  (1 )  
nat 1 

with q~,~r = ( - )j-m+ l/2--tq~[_m_t. The bilinear quark 
operators form a closed algebra: 

[A~,A~]=4[~512(2g2-N)+JI2], [J1~,A~] = 0 ,  

[Jzl,A~]=-A~-, [J~,A;]=A~, [J~2,A~I=0 

(1 ~a2) (2) 

with s'2= 2j+ 1. The hamiltonian of the model has the 
form 

H = - ~ G ~  A'[AI. (3) 
1 

We carry out the mapping in two steps. In the first, 
we map the original quark space using the Dyson 
method onto a space consisting of bosons B,~k and 
ideal fermions a~ which by definition commute with 
the bosons: 

ll" l 

qk qi =~ Bik  , 

q t q ~  ~. BtlBk,+a~a~ " (4) 
t 

This mapping preserves the commutation relations 
(2). Introducing collective bosons 

1 
(-123B~mt,3rhT ( 5 ) ,23\, 

and truncating for the moment to the associated col- 
lective subspace (the hamiltonian (3) separates it 
exactly from the rest of the space), we find for the 
Dyson image of the hamiltonian 
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He = - 2g2GAr~ + GNB (Am - 1 ) - H i , t ,  (6) 

where Na is the number operator for bosons and H~,t 
involves an interaction between fermions and bosons: 

H im=G ~ (B]a],mB2azmt-B~B,a~,ma2,m). 
l~2,mt (7) 

In the second step ~, we map boson-fermion pairs 
B~ka~ onto triplet fermions C,~k,l, which are defined to 
obey the anti-commutation relations 

{ Q , ,  c,~, ~,,,, } = 6,,, (6~, 6~, - 6,~, 6~,, ) .  ( 8 ) 

Using the method of Dyson again, we obtain for the 
general mapping of boson-fermion pairs to triplet 
fermions 

B~,ka]~c~,*,, - Z c* c* " tK,r pq, lt~pq,r 
p<q.r 

Bikal=~Cik . l  , 

a~,ak~ ~ c~q,iCpq,k, 
P<q 

B~,cBkk'~ ~ C~i',tCkk',l. (9) 
l 

Truncating to fully antisymmetric, collective (color- 
less) triplet fermions (again separated by the 
hamiltonian ) 

1 
E123C~m.t.2fft.~..3mt (10) 

we arrive at the hamiltonian 

H e = - G ( 2 t 2 + 3 )  E C*m,C,., 
mt 

+G E * * CmtCmtCm.t .  Cm.,. , ( 11 ) 
mtm' t' 

which has eigenvalues 

E(Nc)=-2GNc(~2+I)+GN~(Nc-1) ,  (12) 

where Arc is the number of collective triplets. This 
corresponds precisely to the eigenvalues that were 
found by Petry for the ( 1 = 0 )-sector, where the quan- 
tity I corresponds to the number of triplets in which 
two of the particles are not paired. The ( /=  1 )-sector, 

for instance, corresponds to (N¢-1  ) nucleons and 
one A-panicle. In deriving eq. ( 11 ), we dropped these 
configurations by neglecting the non-collective bo- 
sons in eq. (6). 

One can easily include these non-collective bosons 
in our treatment by supplementing the collective pair 
algebra of eq. (5) with non-collective pairs. The re- 
sult is to add to the hamiltonian ( 11 ) an additional 
term, which couples nucleons to A-particles: 

/-/c~ = 2 G ~ c ~ ,  (13)  

where Nd is the number operator of non-collective 
triplets (i.e. those that involve non-collective pairs). 
The eigenvalues of the full hamiltonian can then be 
written as 

E( N~, No) = -G[  ( N~ + Nd) (2.Q+ 3 -  N~ --Nd) 

--Nd(2g2+ 3--Nd) ] ,  (14) 

which exactly reproduces the spectrum of Perry, when 
there are non-collective pairs. Thus, our iterative 
mapping method is exact for the single-orbit model. 

Next we consider the multi-orbit model, for which 
the hamiltonian is 

H= ~ ~,jq]jmtqljmt-~G ~ A~jAIj,, (15) 
Ijmt ljj' 

where 

At l j  = 2 ~-123q~jmtq~jmr (16) 
23mt 

is the collective pair for orbit j. Using the same two- 
step iterative mapping method as above, and restrict- 
ing to the single collective J =  0, T =  0 pair for each 
orbit, we end up with colorless triplet-fermion oper- 
ators c~ j,,,, in which two particles in orbi t j '  are fully 
paired and the third in orbit j is unpaired. The result- 
ing hamiltonian expressed in terms of these partially- 
correlated triplet-fermion operators has the form 

*~ A similar method has been discussed by Zhu Yao-yin et al. 
[8], in the context of the composite particle representation 
method and applied to the one-baryon system. 
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H =  E ( ( e j , + e J 2 + a j ) 4 m - 2 G ~  
jl j2 jml 

-- 2G ~ (~jjl )C~l,jmtCj2,jrnt 

--G E 4 ~ j  turn'Eft' (C~j2mtC~j3m't'CJl'j2mtCj'j3m't' 

~- ~3 Cf2,jrnt Cfj3m't" Cj2,j3m' t' Cjl,jm, 

-- 2 C ~j2,jmtC J, j3m, t, Cjl,j3m' t' Cj2,jmt ) • (17)  

This hami l ton ian  clearly exhibits the non-hermitean 
nature of  the Dyson method.  In addi t ion  it is no 
longer analytical ly solvable except in the l imit  where 
all single-particle energies ej are degenerate. How- 
ever, it can be t reated by convent ional  many-body 
approx imat ion  techniques. 

In the specific test appl icat ions  to follow, we will 
focus on the nucleus ~60. In a doubly-magic  system it 
is natural  to use the (non-uni ta ry)  spherical  
H a r t r e e - F o c k  ( H F )  method,  wherein the ground 
state is described by Slater determinants  buil t  up from 
single-particle states with definite angular  momenta .  
For  a non-hermitean hamil tonian,  the bra  and ket 
de terminanta l  state vectors need not be adjoints  of  
one another.  Thus, we introduce separate bra and ket 
states: 

I~'5= H r~m,,,tos, 
i= 1,...,N 

<~1=<01 H ~j,miti. (18) 
i =  l ,...,N 

The correlated creat ion and annihi la t ion  operators,  
FJ.,t and ?j,m, are l inear  combinat ions  of  the funda- 
mental  single-particle creat ion and annihi la t ion 
operators:  

Ffmt= ~ X;jcf.j,m, j, 

~J mr= E YJ'JCJ',jmt . ( 1 9 )  j, 

Their  structure coefficients are de te rmined  by the 
var ia t ional  condi t ion  

8 ( q ~ l n l  5% =o, (20) 

which can be solved with s tandard  i terat ive tech- 
niques. Interestingly, the structure coefficients of  the 
various correlated triplet  fermions (i.e. nucleons)  
need not be the same. 

We have carried out several calculations for the nu- 
cleus 160 with different pa ramete r  choices in the 
mult i -orbi t  model.  In each case, we assumed that  the 
quarks were confined by a harmonic  oscil lator  poten- 
tial (with oscil lator energy hog) and restr icted to the 
orbits of  the Is, l p  and 2 s - l d  oscil lator  shells. The 
unpai red  quarks were assumed to fill the 1 s and lp  
shells only. 

The first calculation assumed a pair ing strength of  
G = 7 MeV and degenerate single-particle orbits. With  
the above choice of  G, the lowest non-nucleonic ex- 
ci tat ions occur at a reasonable energy of  roughly 280 
MeV. The results of  this calculation are given in table 
1. We show both the calculated ground state energy 
and the occupat ion numbers  for the various quark 
orbits.  With  degenerate orbits,  the mult i -orbi t  model  
has the same group structure as the single-orbit model  
and thus, as noted earlier, can be solved exactly. In- 
deed, the eigenvalue expression is identical  to that  of  
the single-orbit  model  (12)  except that  one must  
identify g2= ~f2j. For  N =  16 and £2= 40, the analytic 
result is EGs = -- 3024 MeV, which is reproduced ex- 
actly by the spherical  H a r t r e e - F o c k  calculation. The 
occupat ion numbers  reflect the assumpt ion that  the 

Table 1 
Spherical HF results for 160 using the multi-orbit Petry model. Calculations are carried out for degenerate single-quark energies and for 
a pairing strength of G = 7 MeV. Shown are the number of quarks in the active quark orbits and the ground state energy. 

G (MeV) Quark occupation numbers EGS (MeV) 

1 s~/2 1 P3/2 I Pl/2 I d5/2 2s~/2 1 d3/2 

7 7.429 14.857 7.429 9.143 3.048 6.095 - 3024.00 
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Table 2 
Spherical HF results for 160 using the multi-orbit Perry model. Calculations are carried out for an oscillator energy hoJ= 16 MeV and for 
three values of the pairing strength G. Shown are the number of quarks in the active quark orbits and the ground state energy. 

G (MeV) Quark occupation numbers EGS (MeV) 

lsl/2 1p3/2 lpl/2 ld5/2 2Sl/2 ld3/2 

0 36 8 4 0 0 0 192.00 
1.4 10.69 17.25 8.63 5.72 1.91 3.81 254.02 
7 8.13 15.31 7.66 8.45 2.82 5.63 - 2098.90 

unpaired quarks fill the 1 s and 1 p shells. Because of 
the degeneracy in single-quark energies, the unpaired 
quarks could have been distributed in any other fash- 
ion with no change in energy. 

We next carried out a series of calculations for non- 
degenerate single-quark energies appropriate to  
h~o= 16 MeV, which is reasonable for the nucleus 160 
(see table 2 ). These calculations had two purposes. 
The first was to illustrate that approximate solutions 
could indeed be obtained even when the orbits are 
nondegenerate. The second was to see whether our 
HF solutions violate the Pauli principle at the under- 
lying quark level. Pauli violations have historically 
been a major problem in mapping techniques. If  the 
mapped hamiltonian could be diagonalized exactly, 
there would be a clean separation between physical 
states that properly reflect the underlying Pauli prin- 
ciple and unphysical states that do not. However, once 
approximations are made (as invariably they must 
be) physical and unphysical states can mix and as a 
consequence lead to Pauli violations. We see from the 
table that for G= 0, the (trivial) HF solution indeed 
produces Pauli violations. More specifically, there are 
more quarks in the lowest lsl/2 quark orbit than the 
12 permitted by the Pauli principle. In the most re- 
alistic scenario ( G = 7 MeV), however, this is not the 
case. Furthermore, even when we reduce the pairing 
strength from this value by a factor of five, we still 
find no Pauli violations at the quark level. The rea- 
son for this is the following: There are two funda- 
mental scales in our problem, the nuclear scale (which 
is governed by the single-particle energies and is typ- 
ically of the order of MeV), and the nucleon scale 
(which is governed by Gg2 and is of the order of 
hundreds of MeV). The two-quark interaction, which 
produces di-quark clustering, works at the nucleon 
scale. It thus scatters quarks strongly over a large 

number of single-quark orbits (which were produced 
at the nuclear scale) and this strong scattering pre- 
cludes Pauli violations. Any reasonable quark inter- 
action will have to produce such strong clustering at 
the nucleon scale. Thus, we expect that unphysical 
states and Pauli violations will not prove a problem 
in subsequent realistic applications of our method. 

For the future, there are several formal issues still 
to be investigated. We need to consider the applica- 
tion of our method to more general quark hamilto- 
nians, which include not only more realistic two- 
quark interactions but also three-quark forces. As 
noted by Suzuki and Hecht [6], three-quark inter- 
actions (suggested by QCD) may be necessary to 
spatially localize colorless quark triplets. In the case 
of more general hamiltonian, the commutation alge- 
bra is more difficult to preserve. In general, we must 
not only preserve the algebra ofbilinear operators, as 
we have done in the present work, but we must also 
include the single-quark creation and annihilation 
operators in order to guarantee a physical subspace. 
Indeed, already in our nondegenerate Petry model 
calculations, there exist states in the original quark 
space that do not seem to appear properly in the 
mapped space. However, such states most likely ap- 
pear very high in energy and should not influence the 
ground state significantly. Improper treatment of such 
states could, however, be of greater significance when 
more general interactions are considered. One possi- 
ble way to properly include the single-quark opera- 
tors in the algebra is through the use of the quantized 
Bogolyubov transformation [ 9 ]. In addition, we will 
most likely have to consider the generalization of 
other traditional many-body techniques [ 10] (e.g. 
TDA, RPA and Brueckner theory) to multi-index 
fermions interacting via non-hermitean hamiltoni- 
ans, which invariably arise in Dyson mappings. 
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One these formal  quest ions have been adequately 
resolved, we hope to begin addressing a variety of  in- 
teresting issues. At the level of  t radi t ional  nuclear 
phenomena,  we should be able to calculate such 
quanti t ies as the magnet ic  moments  of  single-particle 
or single-hole nuclei ( the so-called Schmidt  mo- 
ments)  directly from quarks. Indeed,  Ar ima  et al. 
[ 11 ] have shown that  the Petry pair ing hami l ton ian  
cannot  reproduce the Schmidt  moments .  They sug- 
gest, however, that  including other QCD-mot iva t ed  
terms in the quark hami l ton ian  might  help. We also 
hope to address several issues of  more  con temporary  
interest,  such as the structure of  nucleons in the nu- 
clear med ium (as raised, for instance, by the EMC- 
effect) and the role of  nucleonic excited states in nu- 

clear structure. 
In summary,  we have described a new approach to 

deriving the propert ies  of  nuclei from the interac- 
t ions between its const i tuent  quarks. Through the use 
of  i terat ive mapping  techniques, we are able to go 
from quarks to colorless tr iplet  fermions.  These are 
true fermions, satisfying exact ant icommutat ion  rules, 
and thus they can be t reated with famil iar  fermion 
many-body approximat ion techniques (albeit  slightly 
general ized) .  They interact  via an effective hamil to-  
nian that  fully incorporates  the underlying quark 
Pauli  effects. Variat ional  t rea tments  of  many-nu-  
cleon systems will pick out special collective tr iplet  
fermions which can be ident if ied as nucleons. Effects 
associated with excited states of  the nucleon can be 
readily t reated in this fully consistent  framework.  
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