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We use coupled-cluster theory and nuclear interactions from chiral effective field theory to compute the
nuclear matrix element for the neutrinoless double-β decay of 48Ca. Benchmarks with the no-core shell
model in several light nuclei inform us about the accuracy of our approach. For 48Ca we find a relatively
small matrix element. We also compute the nuclear matrix element for the two-neutrino double-β decay of
48Ca with a quenching factor deduced from two-body currents in recent ab initio calculation of the Ikeda
sum rule in 48Ca [Gysbers et al., Nat. Phys. 15, 428 (2019)].
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Introduction and main result.—Neutrinoless double-β
(0νββ) decay is a hypothesized electroweak process in
which a nucleus undergoes two simultaneous β decays but
emits no neutrinos [1]. The observation of this lepton-
number violating process would identify the neutrino as a
Majorana particle (i.e., as its own antiparticle) [2] and
provide insights into both the origin of neutrino mass [3,4]
and the matter-antimatter asymmetry in the Universe [5].
Experimentalists are working intently to observe the decay
all over the world; current lower limits on the lifetime are
about 1026 y [6–8], and sensitivity will be improved by 2
orders of magnitude in the coming years.
Essential for planning and interpreting these experiments

are nuclear matrix elements (NMEs) that relate the decay
lifetime to the Majorana neutrino mass scale and other
measures of lepton-number violation. Unfortunately, these
matrix elements are not well known and cannot be
measured. Computations based on different models and
techniques lead to numbers that differ by factors of 3 to 5
(see Ref. [9] for a recent review). Compounding these
theoretical challenges is the recent discovery that, within
chiral effective field theory (EFT) [10–13], the standard
long-range 0νββ decay operator must be supplemented by
an equally important zero-range (contact) operator of
unknown strength [14]. Efforts to compute the strengths
of this contact term from quantum chromodynamics (QCD)
[15] and attempts to better understand its impact are
underway [16].
The task theorists face at present is to provide more

accurate computations of 0νββ NMEs, including those
associated with contact operators, and quantify their

uncertainties. In this Letter, we employ the coupled-cluster
method to perform first-principle computations of the
matrix element that links the 0νββ lifetime of 48Ca with
the Majorana neutrino mass scale. Among the dozen or so
candidate nuclei for 0νββ decay experiments [17], 48Ca
stands out for its fairly simple structure, making it ame-
nable for an accurate description based on chiral EFT and
state-of-the-art many-body methods [18]. By varying the
details of our calculations, we will estimate the uncertainty
of our prediction. To gauge the quality of our approach we
also compute the two-neutrino double-β decay of 48Ca and
compare with data. Our results will directly inform 0νββ
decay experiments that use 48Ca [19] and serve as an
important stepping stone towards the accurate prediction of
NMEs in 76Ge, 130Te, and 136Xe, which are candidate
isotopes of the next-generation 0νββ decay experiments.
Calculations in those nuclei presumably require larger
model spaces, inclusion of triaxial deformation, and sym-
metry projection.
Figure 1 shows several recent results for the NME

governing the 0νββ decay 48Ca → 48Ti and compares them
with those of this work. The coupled cluster results
obtained here, with both the CCSD and CCSDT-1 approx-
imations (explained below), display uncertainties from
details of the computational approach. They are compared
to the very recent ab initio results from the in-medium
similarity group renormalization method with the generator
coordinator method (IMSRGþ GCM) [20], a realistic
shell-model (RSM) [21], the quasiparticle random phase
approximation (QRPA) [22], the interacting boson model
(IBM) [23], various energy-density functionals (EDF)
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[24,25], and several more phenomenological shell model
(SM) calculations. The latter either limit themselves to the
pf shell [26,27], include perturbative corrections from
outside of the pf shell [28], or are set in the sdpf shell-
model space [29]. We see that the ab initio results of this
work and of Ref. [20] are consistent with each other and
with the most recent work [30]. Our result in the CCSDT-1
approximation is 0.25 ≤ M0ν ≤ 0.75.
Method.—We employ the intrinsic Hamiltonian

H ¼
X

i<j

�ðp⃗i − p⃗jÞ2
2mA

þ Vði;jÞ
NN

�
þ

X

i<j<k

Vði;j;kÞ
NNN : ð1Þ

Herem is the nucleon mass, p⃗ is the momentum operator, A

is the mass number of the nucleus, and Vði;jÞ
NN and Vði;j;kÞ

NNN are
the nucleon-nucleon (NN) and three-nucleon (NNN) poten-
tials, respectively. We employ the chiral potential 1.8=2.0
(EM) of Ref. [31]. Three-nucleon force contributions are
limited to those from matrix elements in the oscillator basis
with N1 þ N2 þ N3 ≤ 16, where Ni ¼ 2ni þ li are single-
particle energies. The oscillator basis has a frequency ℏΩ ¼
16 MeV and we find that working within a model space
with Ni ¼ 10 is sufficient to produce converged results.
Following Refs. [32,33], we transform the Hamiltonian

from the spherical oscillator basis to a natural-orbital basis
by diagonalizing the one-body density matrix. We denote
the resulting reference state, i.e., the product state con-
structed from the A single-particle states with largest
occupation numbers, by jΦ0i and the Hamiltonian that is
normal-ordered with respect to this nontrivial vacuum by
HN . We retainNNN forces at the normal-ordered two-body
level [34,35].
Coupled-cluster theory [36–42] is based on the similarity-

transformed Hamiltonian, H̄N ¼ e−T̂HNeT̂ . The cluster

operator T̂ is a sum of particle-hole (ph) excitations from
the reference jΦ0i and commonly truncated at the two-
particle two-hole (2p-2h) or 3p-3h level. The amplitudes in
T̂ are chosen so that the reference state jΦ0i becomes the
right ground state of H̄N . Because H̄N is non-Hermitian, the
left ground state is hΦ0jð1þ Λ̂Þ, where Λ̂ is a deexcitation
operator with respect to the reference [41,42]. In this
Letter, we work at the leading-order approximation to
coupled cluster with singles-doubles-and-triples excitations
(CCSDT), known as CCSDT-1 [43,44]. To make the
computation feasible, we truncate the 3p − 3h amplitudes
by imposing a cut on the product of occupation probabi-
lities na for three particles above the Fermi surface,
nanbnc ≥ E3, and for three holes below the Fermi surface,
ð1 − niÞð1 − njÞð1 − nkÞ ≥ E3. This truncation favors orbi-
tals near the Fermi surface. The limits are large enough so
that all CCSDT-1 results presented below are stable against
changes in them.
We are interested in computing jM0νj2 ¼

hΨIjÔ†
0νjΨFihΨFjÔ0νjΨIi, where Ô0ν is the 0νββ operator

and ΨI and ΨF denote the ground states of the initial and
final nuclei, respectively. Within coupled-cluster theory, we
can structure the calculation in two ways. In a first
approach, we can use the right and left ground states of
48Ca (jΦ0i and hΦ0jð1þ Λ̂Þ, respectively) to compute

jM0νj2 ¼ hΦ0jð1þ Λ̂ÞO†
0νR̂jΦ0ihΦ0jL̂O0νjΦ0i: ð2Þ

In this case, we use equation-of-motion coupled-cluster
(EOM-CC) techniques [41,45–50] to represent the right
and left 48Ti ground states (denoted by R̂jΦ0i and hΦ0jL̂,
respectively) by generalized excited states of 48Ca with two
more protons and two less neutrons [51,52]. Here, we also
work in the CCSDT-1 approximation. In Eq. (2) O0ν ≡
e−T̂ Ô0νeT̂ is the similarity-transformed 0νββ operator.
In an alternative approach, we can decouple the ground

state of the final nucleus, i.e., take jΦ0i as a reference right
ground state for 48Ti [with hΦ0jð1þ Λ̂Þ its left ground
state], and target the initial nucleus 48Ca with EOM-CC.
This procedure leads to the expression

jM0νj2 ¼ hΦ0jL̂O†
0νjΦ0ihΦ0jð1þ Λ̂ÞO0νR̂jΦ0i; ð3Þ

where the 48Ca right and left ground states (R̂jΦ0i and
hΦ0jL̂, respectively) are represented by generalized excited
states of 48Ti. Because the two approaches are identical
only when the cluster operators are not truncated, the
difference between them is a measure of the truncation
effects. As the ground state of 48Ca is spherical, the first
procedure allows us to exploit rotational symmetry. By
contrast, starting from 48Ti introduces a deformed (though
axially symmetric) reference state, which accurately
reflects the nontrivial vacuum properties and captures static

FIG. 1. Comparison of the NME for the 0νββ decay of 48Ca,
calculated within various approaches (see text for details). The
coupled-cluster results use both the CCSD and CCSDT-1
approximations with both the spherical and deformed reference
states. For IMSRGþ GCM, the double bars show the effects of
uncertainty in model-space size; otherwise they show those of
uncertainty in short-range correlation functions.
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correlations that would be many-particle–many-hole exci-
tations in the spherical scheme [53]. It comes at the expense
of breaking rotational invariance, which eventually could
be restored with symmetry restoration techniques [54–56].
In chiral EFT, the 0νββ operator is organized into a

systematically improvable expansion similarly to the
nuclear forces [57]. The lowest-order contributions to the
0νββ operator are a long-range Majorana neutrino potential
that can be divided into three components, Gamow-Teller
(GT), Fermi (F), and tensor (T), that contain different
combinations of spin operators, with Ô0ν ¼ ÔGT

0ν þ
ÔF

0ν þ ÔT
0ν. The corresponding two-body matrix elements,

as is conventional, are taken from Ref. [58], which adds
form factors to the leading and next-to-leading operators.
We use the closure approximation (which is sufficiently
accurate [26]), with closure energies Ecl ¼ 5 MeV for all
benchmarks in light nuclei and 7.72 MeV for the
decay 48Ca → 48Ti.
The NME for the 2νββ is similar to the 0νββ case except

the two-body operator is replaced by a double application
of the one-body Gamow-Teller operator, στ− [59], with an
explicit summation over the intermediate 1þ states between
them,

jM2νj2 ¼
����
X

μ

h0þF jστ−j1þμ ih1þμ jστ−j0þI i
ΔEμ þ ðEI − EFÞ=2

����
2

: ð4Þ

The denominator consists of the excitation energy of the
intermediate states with respect to the initial ground state,
ΔEμ ¼ Eμ − EI, and the energy difference between the
initial and final states, EI − EF (see Supplemental Material
[60] and Refs. [73,74] for more details). The direct
computation of the matrix element (4) would require
several tens of states in the intermediate nucleus and
several hundred Lanczos iterations, making it unfeasible
in our large model space.
We note that the Green’s function at the center of this

matrix element can be computed efficiently using the
Lanczos (continued fraction) method starting from a 1þ
pivot state [75–79]. We generate Lanczos coefficients
(ai, bi and a�i ; b

�
i ) from a nonsymmetric Lanczos algorithm

using the 1þ subspace of H̄N and rewrite Eq. (4) as a
continued fraction [75]. This computation typically
requires about 10–20 Lanczos iterations. With the sim-
ilarity-transformed operator, O ¼ στ−, and the pivot states

hνFj ¼ hΦ0jLO, jνIi ¼ OjΦ0i, hνIj ¼ hΦ0jð1þ Λ̂ÞO†, and

jνFi ¼ O†RjΦ0i, the NME becomes

jM2νj2 ¼ hνFjνIi
a0 þ EI−EF

2
− b2

0

a1þ���

hνIjνFi
a�0 þ EI−EF

2
− ðb�

0
Þ2

a�
1
þ���

: ð5Þ

Benchmarks.—To gauge the quality of our coupled-
cluster computations we benchmark with the more exact
no-core shell model (NCSM) [80–82] by computing 0νββ

matrix elements in light nuclei. Although the 0νββ decay of
these isotopes are energetically forbidden or would be
swamped by successive single-β decays in an experiment,
the benchmarks still have theoretical value. Figure 2 shows
the 0νββ matrix elements of the GT, F, and T operators for
the transitions 6He → 6Be, 8He → 8Be, 10He → 10Be,
14C → 14O, and 22O → 22Ne. The coupled-cluster results
are shown in pairs, with both the initial and final state as the

FIG. 2. Comparison of the 0νββ NME in several light nuclei
computed with the coupled cluster method and the no-core shell
model. The first two columns correspond to different choices for
the coupled-cluster reference state, and results from the CCSD
and CCSDT-1 approximations are shown in each. The error bars
indicate the uncertainties coming from variations with model-
space size. Each case utilizes the 1.8=2.0 (EM) interaction except
for 22O → 22Ne which disregards the three-nucleon forces to more
rapidly converge the NCSM results.
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reference. For each pair, the first (second) point shows the
CCSD (CCSDT-1) approximation; these two points are
connected by dotted lines. The vertical error bars indicate
the change of the matrix element as the model space is
increased from Nmax ¼ 8 to Nmax ¼ 10. The NCSM results
are shown in the third column, and their error bars indicate
uncertainties from extrapolation to infinite model spaces.
The shaded bands are simply to facilitate comparison.
The NMEs in the mirror-symmetric cases 6He → 6Be and

14C → 14O depend very little (within about 1%) on the
choice of the initial or final nucleus as the reference state, a
result that is consistent with the weak charge-symmetry
breaking of the chiral interaction. For the A ¼ 14 transition
between doubly closed-shell nuclei, coupled-cluster theory
and NCSM results agree within about 3%. The small
contributions of triples correlations (< 10%) suggest that
these results are accurate. The results are of similar quality
for 6He → 6Be, even though these nuclei are only semi-
magic. The case of 10He → 10Be is slightly more challeng-
ing, with a doubly closed-shell initial nucleus and a
partially closed-shell final nucleus. Comparing our results
for 6He → 6Be with other works is complicated by the lack
of renormalization-group invariance. However, Cirigliano
et al. [16] and Pastore et al. [83] found absolute values that
are similar to ours using a harder interaction, and Basili
et al. [84] also agrees with our results (apart from an
arbitrary sign), although they did not include three-nucleon
forces.
The cases of 8He → 8Be and 22O → 22Ne are more

challenging still, because the final nuclei are truly open-
shell systems. Adding triples correlations to the spherical
results induces a ∼50% change in the first case and worsens
the agreement with NCSM in the second, suggesting the
need for more particle-hole excitations. Once again, how-
ever, using the deformed final state as the reference leads to
results that are both consistent with the NCSM and
converged at the CCSDT-1 level. Thus, the coupled-cluster
results are more accurate when the open-shell (or
deformed) nucleus is taken as the reference, and they agree
within smaller model-space uncertainties with the NCSM
benchmarks.
The benchmark calculations suggest that the two

approaches (with a spherical 48Ca or a deformed 48Ti as
the reference state) allow us to bracket the NME. The result
from the first approach exceeds the exact NME because the
imposition of spherical symmetry increases the overlap of
the initial and final wave functions. The second result
underestimates the exact NME, probably because the
deformations of the initial and final states are quite differ-
ent. Generator-coordinate methods [85] might have an
advantage here, and we expect that symmetry projection
would make the results more accurate.
Unfortunately, we are not able to extend the benchmarks

to heavier nuclei. Benchmarks with the traditional shell
model are complicated because coupled-cluster theory in its

singles, doubles, and triples approximation does not accu-
rately capture the strong correlations in small shell-model
spaces [86]; see Supplemental Material [60] for more
details.
Although the coupling strength of the leading-order

contact potential in the 0νββ operator is unknown [14–
16], we attempt to estimate its effect by applying the
coupled-cluster methods discussed above with the addition
of a contact term, Vcðr12Þ ¼ 2π2gδðr12Þτð1Þ− τð2Þ− , to the
operator, Ô0ν. Using a coupling strength of g ¼ �1 fm2

results in a NME of 0.15 ≤ M0ν ≤ 1.02 (see Supplemental
Material [60] for details).
Two-neutrino double-β decay of 48Ca.—The 2νββ decay

of 48Ca was accurately predicted by Caurier et al. [87]
before its observation [88–90]. Subsequent authors studied
this decay further [91–93], and evaluations can be found in
Refs. [17,94]. We compute the matrix element for the 2νββ
decay of 48Ca with the 1.8=2.0 (EM) interaction and the
Lanczos continued fraction method. We employ a spherical
48Ca natural-orbital basis and converge our results with
respect to Nmax and the number of 3p-3h configurations
included in the wave functions of 48Ca, 48Ti, and the
intermediate nucleus 48Sc. The results are also converged
with respect to the number of Lanczos iterations used in the
continued fraction (5). We note that the 2νββ calculations
can only be performed in the spherical scheme since we
sum over intermediate states with definite spin.
Figure 3 shows the NME for the 2νββ decay of 48Ca,

computed in the CCSDT-1 approximation, as a function the
energy difference, EI − EF, with different curves represent-
ing both the Nmax convergence and E3 convergence of 48Sc.
The converged result, M2ν ¼ 0.065� 0.002, is at the
intersection with the theoretical energy difference between
the ground-state energies of 48Ca and 48Ti computed from

FIG. 3. The NME for the 2νββ decay 48Ca → 48Ti computed
with the 1.8=2.0 (EM) interaction as a function of the energy
difference, EI − EF, and the 3p − 3h truncation used to calculate
48Sc, E3, at Nmax ¼ 10. The results for Nmax ¼ 6, 8 are also
shown. The experimental NME and energy difference are shown
along with the computed energy difference and NME, with and
without a quenching factor of 0.812 deduced from two-body
currents [95].
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the corresponding reference states, ðEI − EFÞ=2 ¼
1.32 MeV. Given that E is equivalent to the negative
binding energy, E ¼ −BE, this is consistent with the
experimental difference, ½BEð48TiÞ − BEð48CaÞ�=2 ¼
1.35 MeV. The uncertainty in our result represents the
error from the different convergence criteria. These results
are sensitive to the energy of the first 1þ state in 48Sc. Our
value of ΔEμ¼0 ¼ 2.93 MeV is close to the correspond-
ing experimental value of BEð48CaÞ − BEð48Sc1þμ¼0Þ ¼
3.02 MeV, and the NME gets reduced by about 2% if
one uses the experimental datum instead. The comparison
of the values in Eq. (4) to experiment are detailed in the
Supplemental Material [60].
We multiply our matrix element with the quenching

factor q2 ¼ 0.812 deduced from two-body currents in a
recent coupled-cluster computation of the Ikeda sum rule in
48Ca [95] which includes all final 1þ states in 48Sc and is
similar to Eq. (4). We obtain q2M2ν ¼ 0.042� 0.001,
which is somewhat larger than the experimental value of
M2ν ¼ 0.035� 0.003 [94,96]. This is most likely due to
our inability to accurately describe the deformed nature of
48Ti. In a future work we will investigate the role of
momentum dependent two-body currents on this decay. We
note that the quenching factor from the Ikeda sum-rule
weights all 1þ states equally (as there is no energy
denominator) and is somewhat larger than the phenom-
enological value of q2 ¼ 0.742 [97]. We verified our
methods by performing two 2νββ benchmarks, of 48Ca
in the pf shell and of 14C in a full no-core model space,
which are shown in the Supplemental Material [60]. The
former is compared with exact diagonalization, and the
latter with the NCSM.
Conclusions.—Using interactions from chiral EFT and

the coupled-cluster method, we computed the nuclear
matrix elements for 0νββ-decay of 48Ca → 48Ti and found
a relatively small value. The uncertainties stem from the
treatment of nuclear deformation and are supported by
extensive benchmarks. We also calculated the 2νββ-decay
of 48Ca → 48Ti and included the ab initio quenching factor
from two-body currents of the Ikeda sum rule in 48Ca.
The Department of Energy will provide public access to

these results of federally sponsored research in accordance
with the DOE Public Access Plan [98].

We thank A. Belley, V. Cirigliano, J. de Vries, H.
Hergert, J. D. Holt, M. Horoi, J. Menéndez, C. G. Payne,
S. R. Stroberg, A. Walker-Loud, and J. M. Yao for useful
discussions. This work was supported by the Office of
Nuclear Physics, U.S. Department of Energy, under Grants
No. DE-FG02-96ER40963, No. DE-FG02-97ER41019,
and No. DE-SC0008499 (NUCLEI SciDAC collaboration),
the Field Work Proposal ERKBP57 at Oak Ridge National
Laboratory (ORNL) and SCW1579 at Lawrence Livermore
National Laboratory (LLNL), the National Research
Council of Canada, and NSERC, under Grants

No. SAPIN-2016-00033 and No. PGSD3-535536-2019.
TRIUMF receives federal funding via a contribution agree-
ment with the National Research Council of Canada. This
work was prepared in part by LLNL under Contract
No. DE-AC52-07NA27344. Computer time was provided
by the Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program. This research
used resources of the Oak Ridge Leadership Computing
Facility located at ORNL. ORNL is managed by UT-
Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The U.S. Government
retains and the publisher, by accepting the article for
publication, acknowledges that the U.S. Government
retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this
manuscript or allows others to do so for U.S. Government
purposes.

[1] W. H. Furry, On transition probabilities in double beta-
disintegration, Phys. Rev. 56, 1184 (1939).

[2] J. Schechter and J. W. F. Valle, Neutrinoless double-β decay
in suð2Þ × uð1Þ theories, Phys. Rev. D 25, 2951 (1982).

[3] P. Minkowski, μ → eγ at a rate of one out of 109 muon
decays?, Phys. Lett. 67B, 421 (1977).

[4] R. N. Mohapatra and G. Senjanović, Neutrino Mass and
Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44,
912 (1980).

[5] S. Davidson, E. Nardi, and Y. Nir, Leptogenesis, Phys. Rep.
466, 105 (2008).

[6] G. Anton et al., (EXO-200 Collaboration), Search
for Neutrinoless Double-β Decay with the Complete
EXO-200 Dataset, Phys. Rev. Lett. 123, 161802 (2019).

[7] S. I. Alvis et al. (Majorana Collaboration), Search for
neutrinoless double-β decay in 76Ge with 26 kg yr of
exposure from the majorana demonstrator, Phys. Rev. C
100, 025501 (2019).

[8] M. Agostini et al., Probing majorana neutrinos with double-
β decay, Science 365, 1445 (2019).

[9] J. Engel and J. Menéndez, Status and future of nuclear
matrix elements for neutrinoless double-beta decay: A
review, Rep. Prog. Phys. 80, 046301 (2017).

[10] U. van Kolck, Few-nucleon forces from chiral Lagrangians,
Phys. Rev. C 49, 2932 (1994).

[11] P. F. Bedaque and U. van Kolck, Effective field theory for
few-nucleon systems, Annu. Rev. Nucl. Part. Sci. 52, 339
(2002).

[12] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Modern
theory of nuclear forces, Rev. Mod. Phys. 81, 1773 (2009).

[13] R. Machleidt and D. R. Entem, Chiral effective field theory
and nuclear forces, Phys. Rep. 503, 1 (2011).

[14] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E.
Mereghetti, S. Pastore, and U. van Kolck, New Leading
Contribution to Neutrinoless Double-β Decay, Phys. Rev.
Lett. 120, 202001 (2018).

[15] V. Cirigliano, W. Detmold, A. Nicholson, and P. Shanahan,
Lattice QCD inputs for nuclear double beta decay, Prog.
Part. Nucl. Phys. 112, 103771 (2020).

PHYSICAL REVIEW LETTERS 126, 182502 (2021)

182502-5

https://doi.org/10.1103/PhysRev.56.1184
https://doi.org/10.1103/PhysRevD.25.2951
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1016/j.physrep.2008.06.002
https://doi.org/10.1016/j.physrep.2008.06.002
https://doi.org/10.1103/PhysRevLett.123.161802
https://doi.org/10.1103/PhysRevC.100.025501
https://doi.org/10.1103/PhysRevC.100.025501
https://doi.org/10.1126/science.aav8613
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1103/PhysRevC.49.2932
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevLett.120.202001
https://doi.org/10.1103/PhysRevLett.120.202001
https://doi.org/10.1016/j.ppnp.2020.103771
https://doi.org/10.1016/j.ppnp.2020.103771


[16] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E.
Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, and R. B.
Wiringa, Renormalized approach to neutrinoless double-β
decay, Phys. Rev. C 100, 055504 (2019).

[17] A. S. Barabash, Average and recommended half-life values
for two-neutrino double beta decay, Nucl. Phys. A935, 52
(2015).

[18] G. Hagen, A. Ekström, C. Forssén, G. R. Jansen, W.
Nazarewicz, T. Papenbrock, K. A. Wendt, S. Bacca, N.
Barnea, B. Carlsson, C. Drischler, K. Hebeler, M. Hjorth-
Jensen, M. Miorelli, G. Orlandini, A. Schwenk, and J.
Simonis, Neutron and weak-charge distributions of the 48Ca
nucleus, Nat. Phys. 12, 186 (2016).

[19] K. Tetsuno et al., Status of 48Ca double beta decay search
and its future prospect in CANDLES, J. Phys. Conf. Ser.
1468, 012132 (2020).

[20] J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, and
H. Hergert, Ab Initio Treatment of Collective Correlations
and the Neutrinoless Double Beta Decay of 48Ca, Phys. Rev.
Lett. 124, 232501 (2020).

[21] L. Coraggio, A. Gargano, N. Itaco, R. Mancino, and F.
Nowacki, Calculation of the neutrinoless double-β decay
matrix element within the realistic shell model, Phys. Rev. C
101, 044315 (2020).

[22] F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, 0νββ and
2νββ nuclear matrix elements, quasiparticle random-phase
approximation, and isospin symmetry restoration, Phys.
Rev. C 87, 045501 (2013).

[23] J. Barea, J. Kotila, and F. Iachello, 0νββ and 2νββ nuclear
matrix elements in the interacting boson model with isospin
restoration, Phys. Rev. C 91, 034304 (2015).

[24] N. L. Vaquero, T. R. Rodríguez, and J. L. Egido, Shape and
Pairing Fluctuation Effects on Neutrinoless Double Beta
Decay Nuclear Matrix Elements, Phys. Rev. Lett. 111,
142501 (2013).

[25] J. M. Yao, L. S. Song, K. Hagino, P. Ring, and J.
Meng, Systematic study of nuclear matrix elements in
neutrinoless double-β decay with a beyond-mean-field
covariant density functional theory, Phys. Rev. C 91,
024316 (2015).

[26] R. A. Sen’kov and M. Horoi, Neutrinoless double-β decay
of 48Ca in the shell model: Closure versus nonclosure
approximation, Phys. Rev. C 88, 064312 (2013).

[27] J. Menéndez, A. Poves, E. Caurier, and F. Nowacki,
Disassembling the nuclear matrix elements of the neutrino-
less ββ decay, Nucl. Phys. A818, 139 (2009).

[28] A. A. Kwiatkowski, T. Brunner, J. D. Holt, A. Chaudhuri,
U. Chowdhury, M. Eibach, J. Engel, A. T. Gallant, A.
Grossheim, M. Horoi, A. Lennarz, T. D. Macdonald, M.
R. Pearson, B. E. Schultz, M. C. Simon, R. A. Senkov, V. V.
Simon, K. Zuber, and J. Dilling, New determination of
double-β-decay properties in 48Ca: High-precision Qββ-
value measurement and improved nuclear matrix element
calculations, Phys. Rev. C 89, 045502 (2014).

[29] Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez,
M. Honma, and T. Abe, Large-Scale Shell-Model Analysis
of the Neutrinoless ββ Decay of 48Ca, Phys. Rev. Lett. 116,
112502 (2016).

[30] A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, and J. D.
Holt, Ab Initio Neutrinoless Double-Beta Decay Matrix

Elements for 48Ca, 76Ge, and 82Se, Phys. Rev. Lett. 126,
042502 (2021).

[31] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A.
Schwenk, Improved nuclear matter calculations from chiral
low-momentum interactions, Phys. Rev. C 83, 031301(R)
(2011).

[32] A. Tichai, J. Müller, K. Vobig, and R. Roth, Natural orbitals
for ab initio no-core shell model calculations, Phys. Rev. C
99, 034321 (2019).

[33] S. J. Novario, G. Hagen, G. R. Jansen, and T. Papenbrock,
Charge radii of exotic neon and magnesium isotopes, Phys.
Rev. C 102, 051303 (2020).

[34] G. Hagen, T. Papenbrock, D. J. Dean, A. Schwenk, A.
Nogga, M. Włoch, and P. Piecuch, Coupled-cluster theory
for three-body Hamiltonians, Phys. Rev. C 76, 034302
(2007).

[35] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and
P. Navrátil, Medium-Mass Nuclei with Normal-Ordered
Chiral NN þ 3N Interactions, Phys. Rev. Lett. 109,
052501 (2012).

[36] F. Coester, Bound states of a many-particle system, Nucl.
Phys. 7, 421 (1958).

[37] F. Coester and H. Kümmel, Short-range correlations in
nuclear wave functions, Nucl. Phys. 17, 477 (1960).

[38] J. Čížek, On the correlation problem in atomic and molecu-
lar systems. Calculation of wavefunction components in
Ursell-type expansion using quantum-field theoretical
methods, J. Chem. Phys. 45, 4256 (1966).

[39] J. Čížek, On the use of the cluster expansion and the
technique of diagrams in calculations of correlation effects
in atoms and molecules, in Advances in Chemical Physics
(John Wiley & Sons, Inc., New York, 2007), pp. 35–89.

[40] H. Kümmel, K. H. Lührmann, and J. G. Zabolitzky, Many-
fermion theory in expS- (or coupled cluster) form, Phys.
Rep. 36, 1 (1978).

[41] R. J. Bartlett and M. Musiał, Coupled-cluster theory in
quantum chemistry, Rev. Mod. Phys. 79, 291 (2007).

[42] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean,
Coupled-cluster computations of atomic nuclei, Rep. Prog.
Phys. 77, 096302 (2014).

[43] J. D. Watts, J. Gauss, and R. J. Bartlett, Coupled-cluster
methods with noniterative triple excitations for restricted
open-shell Hartree-Fock and other general single determi-
nant reference functions. Energies and analytical gradients,
J. Chem. Phys. 98, 8718 (1993).

[44] J. D. Watts and R. J. Bartlett, Economical triple excitation
equation-of-motion coupled-cluster methods for excitation
energies, Chem. Phys. Lett. 233, 81 (1995).

[45] I. Shavitt and R. J. Bartlett, Many-Body Methods in Chem-
istry and Physics (Cambridge University Press, Cambridge,
England, 2009).

[46] G. R. Jansen, M. Hjorth-Jensen, G. Hagen, and T. Papen-
brock, Toward open-shell nuclei with coupled-cluster
theory, Phys. Rev. C 83, 054306 (2011).

[47] G. R. Jansen, Spherical coupled-cluster theory for open-
shell nuclei, Phys. Rev. C 88, 024305 (2013).

[48] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt,
and T. Papenbrock, Continuum Effects and Three-Nucleon
Forces in Neutron-Rich Oxygen Isotopes, Phys. Rev. Lett.
108, 242501 (2012).

PHYSICAL REVIEW LETTERS 126, 182502 (2021)

182502-6

https://doi.org/10.1103/PhysRevC.100.055504
https://doi.org/10.1016/j.nuclphysa.2015.01.001
https://doi.org/10.1016/j.nuclphysa.2015.01.001
https://doi.org/10.1038/nphys3529
https://doi.org/10.1088/1742-6596/1468/1/012132
https://doi.org/10.1088/1742-6596/1468/1/012132
https://doi.org/10.1103/PhysRevLett.124.232501
https://doi.org/10.1103/PhysRevLett.124.232501
https://doi.org/10.1103/PhysRevC.101.044315
https://doi.org/10.1103/PhysRevC.101.044315
https://doi.org/10.1103/PhysRevC.87.045501
https://doi.org/10.1103/PhysRevC.87.045501
https://doi.org/10.1103/PhysRevC.91.034304
https://doi.org/10.1103/PhysRevLett.111.142501
https://doi.org/10.1103/PhysRevLett.111.142501
https://doi.org/10.1103/PhysRevC.91.024316
https://doi.org/10.1103/PhysRevC.91.024316
https://doi.org/10.1103/PhysRevC.88.064312
https://doi.org/10.1016/j.nuclphysa.2008.12.005
https://doi.org/10.1103/PhysRevC.89.045502
https://doi.org/10.1103/PhysRevLett.116.112502
https://doi.org/10.1103/PhysRevLett.116.112502
https://doi.org/10.1103/PhysRevLett.126.042502
https://doi.org/10.1103/PhysRevLett.126.042502
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.99.034321
https://doi.org/10.1103/PhysRevC.99.034321
https://doi.org/10.1103/PhysRevC.102.051303
https://doi.org/10.1103/PhysRevC.102.051303
https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1016/0029-5582(60)90140-1
https://doi.org/10.1063/1.1727484
https://doi.org/10.1016/0370-1573(78)90081-9
https://doi.org/10.1016/0370-1573(78)90081-9
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1063/1.464480
https://doi.org/10.1016/0009-2614(94)01434-W
https://doi.org/10.1103/PhysRevC.83.054306
https://doi.org/10.1103/PhysRevC.88.024305
https://doi.org/10.1103/PhysRevLett.108.242501
https://doi.org/10.1103/PhysRevLett.108.242501


[49] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and
T. Papenbrock, Evolution of Shell Structure in Neutron-Rich
Calcium Isotopes, Phys. Rev. Lett. 109, 032502 (2012).

[50] S. Binder, J. Langhammer, A. Calci, P. Navrátil, and R. Roth,
Ab initio calculations of medium-mass nuclei with explicit
chiral 3N interactions, Phys. Rev. C 87, 021303(R) (2013).

[51] C. G. Payne, S. Bacca, G. Hagen, W. G. Jiang, and T.
Papenbrock, Coherent elastic neutrino-nucleus scattering on
40Ar from first principles, Phys. Rev. C 100, 061304(R)
(2019).

[52] H. N. Liu et al., How Robust is the N ¼ 34 Subshell
Closure? First Spectroscopy of 52Ar, Phys. Rev. Lett.
122, 072502 (2019).

[53] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, Heidelberg, 1980).

[54] T. Duguet, Symmetry broken and restored coupled-cluster
theory: I. Rotational symmetry and angular momentum,
J. Phys. G 42, 025107 (2015).

[55] T. M. Henderson, J. Zhao, G. E. Scuseria, Y. Qiu, T. M.
Henderson, and G. E. Scuseria, Projected coupled cluster
theory, J. Chem. Phys. 147, 064111 (2017).

[56] T. Tsuchimochi and S. L. Ten-no, Orbital-invariant spin-
extended approximate coupled-cluster for multi-reference
systems, J. Chem. Phys. 149, 044109 (2018).

[57] V. Cirigliano, W. Dekens, E. Mereghetti, and A. Walker-
Loud, Neutrinoless double-β decay in effective field theory:
The light-majorana neutrino-exchange mechanism, Phys.
Rev. C 97, 065501 (2018).

[58] F. Šimkovic, A. Faessler, V. Rodin, P. Vogel, and J. Engel,
Anatomy of the 0νββ nuclear matrix elements, Phys. Rev. C
77, 045503 (2008).

[59] Here τ− changes a neutron into a proton.
[60] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.126.182502 for calcu-
lations involved in the 0νββ and 2νββ decays of 48Ca and
several benchmark nuclei, which includes Refs. [61–72].

[61] J. Menéndez, T. R. Rodríguez, G. Martínez-Pinedo, and A.
Poves, Correlations and neutrinoless ββ decay nuclear
matrix elements of pf-shell nuclei, Phys. Rev. C 90,
024311 (2014).

[62] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, New
effective interaction for pf-shell nuclei and its implications
for the stability of the N ¼ Z ¼ 28 closed core, Phys. Rev.
C 69, 034335 (2004).

[63] A. Poves, J. Sánchez-Solano, E. Caurier, and F. Nowacki,
Shell model study of the isobaric chains A ¼ 50, A ¼ 51

and A ¼ 52, Nucl. Phys. A694, 157 (2001).
[64] M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, Towards a

full ccsdt model for electron correlation, J. Chem. Phys. 83,
4041 (1985).

[65] J. Noga, R. J. Bartlett, and M. Urban, Towards a full CCSDT
model for electron correlation. CCSDT-n models, Chem.
Phys. Lett. 134, 126 (1987).

[66] C. F. Jiao, M. Horoi, and A. Neacsu, Neutrinoless double-β
decay of 124Sn, 130Te, and 136Xe in the hamiltonian-based
generator-coordinate method, Phys. Rev. C 98, 064324
(2018).

[67] J. C. Light, I. P. Hamilton, and J. V. Lill, Generalized
discrete variable approximation in quantum mechanics,
J. Chem. Phys. 82, 1400 (1985).

[68] D. Baye and P.-H. Heenen, Generalised meshes for quantum
mechanical problems, J. Phys. A 19, 2041 (1986).

[69] J. C. Light and T. Carrington, Discrete-variable representa-
tions and their utilization, in Advances in Chemical Physics
(John Wiley & Sons, Inc., New York, 2007), pp. 263–310.

[70] R. G. Littlejohn, M. Cargo, T. Carrington, K. A. Mitchell,
and B. Poirier, A general framework for discrete variable
representation basis sets, J. Chem. Phys. 116, 8691 (2002).

[71] A. Bulgac and M. McNeil Forbes, Use of the discrete
variable representation basis in nuclear physics, Phys. Rev.
C 87, 051301(R) (2013).

[72] S. Binder, A. Ekström, G. Hagen, T. Papenbrock, and K. A.
Wendt, Effective field theory in the harmonic oscillator
basis, Phys. Rev. C 93, 044332 (2016).

[73] P. Vogel, Nuclear structure and double beta decay, J. Phys. G
39, 124002 (2012).

[74] J. Kotila and F. Iachello, Phase-space factors for double-β
decay, Phys. Rev. C 85, 034316 (2012).

[75] J. Engel, W. C. Haxton, and P. Vogel, Effective summation
over intermediate states in double-beta decay, Phys. Rev. C
46, R2153 (1992).

[76] W. C. Haxton, K. M. Nollett, and K. M. Zurek, Piecewise
moments method: Generalized lanczos technique for nu-
clear response surfaces, Phys. Rev. C 72, 065501 (2005).

[77] M. A. Marchisio, N. Barnea, W. Leidemann, and G.
Orlandini, Efficient method for lorentz integral transforms
of reaction cross sections, Few-Body Syst. 33, 259 (2003).

[78] M. Miorelli, S. Bacca, N. Barnea, G. Hagen, G. R. Jansen,
G. Orlandini, and T. Papenbrock, Electric dipole polar-
izability from first principles calculations, Phys. Rev. C 94,
034317 (2016).

[79] J. Rotureau, P. Danielewicz, G. Hagen, F. M. Nunes, and T.
Papenbrock, Optical potential from first principles, Phys.
Rev. C 95, 024315 (2017).

[80] P. Navrátil, J. P. Vary, and B. R. Barrett, Large-basis ab initio
no-core shell model and its application to 12C, Phys. Rev. C
62, 054311 (2000).

[81] P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett, Recent
developments in no-core shell-model calculations, J. Phys.
G 36, 083101 (2009).

[82] B. R. Barrett, P. Navrátil, and J. P. Vary, Ab initio no core
shell model, Prog. Part. Nucl. Phys. 69, 131 (2013).

[83] S. Pastore, J. Carlson, V. Cirigliano, W. Dekens, E.
Mereghetti, and R. B. Wiringa, Neutrinoless double-β decay
matrix elements in light nuclei, Phys. Rev. C 97, 014606
(2018).

[84] R. A. M. Basili, J. M. Yao, J. Engel, H. Hergert, M. Lockner,
P. Maris, and J. P. Vary, Benchmark neutrinoless double-β
decay matrix elements in a light nucleus, Phys. Rev. C 102,
014302 (2020).

[85] T. R. Rodríguez and G. Martinez-Pinedo, Neutrinoless
double beta decay studied with configuration mixing meth-
ods, Prog. Part. Nucl. Phys. 66, 436 (2011).

[86] M. Horoi, J. R. Gour, M. Włoch, M. D. Lodriguito, B. A.
Brown, and P. Piecuch, Coupled-Cluster and Configuration-
Interaction Calculations for Heavy Nuclei, Phys. Rev. Lett.
98, 112501 (2007).

[87] E. Caurier, A. Poves, and A. P. Zuker, A full 0ℏω
description of the 2νββ decay of 48Ca, Phys. Lett. B 252,
13 (1990).

PHYSICAL REVIEW LETTERS 126, 182502 (2021)

182502-7

https://doi.org/10.1103/PhysRevLett.109.032502
https://doi.org/10.1103/PhysRevC.87.021303
https://doi.org/10.1103/PhysRevC.100.061304
https://doi.org/10.1103/PhysRevC.100.061304
https://doi.org/10.1103/PhysRevLett.122.072502
https://doi.org/10.1103/PhysRevLett.122.072502
https://doi.org/10.1088/0954-3899/42/2/025107
https://doi.org/10.1063/1.4991020
https://doi.org/10.1063/1.5036542
https://doi.org/10.1103/PhysRevC.97.065501
https://doi.org/10.1103/PhysRevC.97.065501
https://doi.org/10.1103/PhysRevC.77.045503
https://doi.org/10.1103/PhysRevC.77.045503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.182502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.182502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.182502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.182502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.182502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.182502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.182502
https://doi.org/10.1103/PhysRevC.90.024311
https://doi.org/10.1103/PhysRevC.90.024311
https://doi.org/10.1103/PhysRevC.69.034335
https://doi.org/10.1103/PhysRevC.69.034335
https://doi.org/10.1016/S0375-9474(01)00967-8
https://doi.org/10.1063/1.449067
https://doi.org/10.1063/1.449067
https://doi.org/10.1016/0009-2614(87)87107-5
https://doi.org/10.1016/0009-2614(87)87107-5
https://doi.org/10.1103/PhysRevC.98.064324
https://doi.org/10.1103/PhysRevC.98.064324
https://doi.org/10.1063/1.448462
https://doi.org/10.1088/0305-4470/19/11/013
https://doi.org/10.1063/1.1473811
https://doi.org/10.1103/PhysRevC.87.051301
https://doi.org/10.1103/PhysRevC.87.051301
https://doi.org/10.1103/PhysRevC.93.044332
https://doi.org/10.1088/0954-3899/39/12/124002
https://doi.org/10.1088/0954-3899/39/12/124002
https://doi.org/10.1103/PhysRevC.85.034316
https://doi.org/10.1103/PhysRevC.46.R2153
https://doi.org/10.1103/PhysRevC.46.R2153
https://doi.org/10.1103/PhysRevC.72.065501
https://doi.org/10.1007/s00601-003-0017-z
https://doi.org/10.1103/PhysRevC.94.034317
https://doi.org/10.1103/PhysRevC.94.034317
https://doi.org/10.1103/PhysRevC.95.024315
https://doi.org/10.1103/PhysRevC.95.024315
https://doi.org/10.1103/PhysRevC.62.054311
https://doi.org/10.1103/PhysRevC.62.054311
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1103/PhysRevC.97.014606
https://doi.org/10.1103/PhysRevC.97.014606
https://doi.org/10.1103/PhysRevC.102.014302
https://doi.org/10.1103/PhysRevC.102.014302
https://doi.org/10.1016/j.ppnp.2011.01.047
https://doi.org/10.1103/PhysRevLett.98.112501
https://doi.org/10.1103/PhysRevLett.98.112501
https://doi.org/10.1016/0370-2693(90)91071-I
https://doi.org/10.1016/0370-2693(90)91071-I


[88] A. Balysh, A. De Silva, V. I. Lebedev, K. Lou, M. K. Moe,
M. A. Nelson, A. Piepke, A. Pronskiy, M. A. Vient, and P.
Vogel, Double Beta Decay of 48Ca, Phys. Rev. Lett. 77,
5186 (1996).

[89] V. B. Brudanin, N. I. Rukhadze, Ch. Briancon, V. G.
Egorov, V. E. Kovalenko, A. Kovalik, A. V. Salamatin, I.
Štekl, V. V. Tsoupko-Sitnikov, Ts. Vylov, and P. Čermák,
Search for double beta decay of 48Ca in the TGVexperiment,
Phys. Lett. B 495, 63 (2000).

[90] R. Arnold et al. (NEMO-3 Collaboration), Measurement of
the double-beta decay half-life and search for the neutrino-
less double-beta decay of 48Ca with the NEMO-3 detector,
Phys. Rev. D 93, 112008 (2016).

[91] M. Horoi, S. Stoica, and B. A. Brown, Shell-model calcu-
lations of two-neutrino double-β decay rates of 48Ca with the
GXPF1A interaction, Phys. Rev. C 75, 034303 (2007).

[92] C. M. Raduta, A. A. Raduta, and I. I. Ursu, New theoretical
results for 2νββ decay within a fully renormalized proton-
neutron random-phase approximation approach with the

gauge symmetry restored, Phys. Rev. C 84, 064322
(2011).

[93] M. Horoi, Shell model analysis of competing contributions
to the double-β decay of 48Ca, Phys. Rev. C 87, 014320
(2013).

[94] A. S. Barabash, Average and recommended half-life values
for two-neutrino double beta decay: Upgrade-2019, AIP
Conf. Proc. 2165, 020002 (2019).

[95] P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris,
P. Navrátil, T. Papenbrock, S. Quaglioni, A. Schwenk, S. R.
Stroberg, and K. A. Wendt, Discrepancy between exper-
imental and theoretical beta-decay rates resolved from first
principles, Nat. Phys. 15, 428 (2019).

[96] S. Stoica and M. Mirea, New calculations for phase space
factors involved in double-β decay, Phys. Rev. C 88, 037303
(2013).

[97] G. Martínez-Pinedo, A. Poves, E. Caurier, and A. P. Zuker,
Effective gA in the pf shell, Phys. Rev. C 53, R2602 (1996).

[98] http://energy.gov/downloads/doe-public-access-plan.

PHYSICAL REVIEW LETTERS 126, 182502 (2021)

182502-8

https://doi.org/10.1103/PhysRevLett.77.5186
https://doi.org/10.1103/PhysRevLett.77.5186
https://doi.org/10.1016/S0370-2693(00)01244-2
https://doi.org/10.1103/PhysRevD.93.112008
https://doi.org/10.1103/PhysRevC.75.034303
https://doi.org/10.1103/PhysRevC.84.064322
https://doi.org/10.1103/PhysRevC.84.064322
https://doi.org/10.1103/PhysRevC.87.014320
https://doi.org/10.1103/PhysRevC.87.014320
https://doi.org/10.1063/1.5130963
https://doi.org/10.1063/1.5130963
https://doi.org/10.1038/s41567-019-0450-7
https://doi.org/10.1103/PhysRevC.88.037303
https://doi.org/10.1103/PhysRevC.88.037303
https://doi.org/10.1103/PhysRevC.53.R2602
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

