Some years ago, Schiff [1] showed that in the limit of a point-like nucleus and nonrelativistic electrons any electric-dipole moments (EDMs) carried by the electrons and nucleons are completely screened by atomic polarization, so that the EDM of the atom vanishes. Shortly thereafter, Sandars [2] pointed out that in heavy polarizable atoms, relativistic corrections to the electron-EDM operator not only survive Schiff screening to be evaded, but at a low level that is systematically discussed in Ref. [6]. The effects on the screening of nuclear EDMs due to relativistic electrons, which we also neglect, are not large either: according to Ref. [7], they correct the finite-size effects in heavy atoms by a few tens of percent.

We can now calculate corrections to the ground-state energy induced by the parity- and time-reversal-violating interaction of the nucleon dipole moments with an external electric field E_{ext}. The first-order shift is

$$\Delta E^{(1)} = -\langle \text{g.s.} | \sum_{j=1}^{A} d_N^j \gamma^0 \Sigma_j | \text{g.s.} \rangle \cdot E_{\text{ext}},$$

where $\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the Dirac matrix for the j^{th} nucleon, $\Sigma_j = \begin{pmatrix} 0 & 0 \\ 0 & \Sigma \end{pmatrix}$ is the spin operator for that nucleon, d_N^j is the magnitude of the EDM for the same nucleon, and $| \text{g.s.} \rangle$ is the ground state of the unperturbed Hamiltonian H_0. Often the relativistic operator in Eq. (3) is divided into two pieces by writing γ^0 as $1 + (\gamma^0 - 1)$; the second piece is then purely relativistic (see, e.g., Ref. [2]). Reference [3] makes this split because it assumes that the relativistic corrections are unshielded, i.e., not canceled by atomic polarization. We do not make the split because in the limit where the nucleus is very small, as we show below, that assumption is not justified.

To see that no portion of the dipole operator is left unscreened in the point-like (lowest-order monopole) limit, we calculate the second-order addition to Eq. (3) from polarization of the electrons. With the nucleus kept in its ground state (see below for justification), this contribution is

$$\Delta E^{(2)} = -\sum_{n} \frac{1}{E_{\text{g.s.}} - E_n} \langle \text{g.s.} | \left(\sum_{j=1}^{A} d_N^j \gamma^0 \Sigma_j \right) \left(\sum_{i=1}^{Z} \nabla_i A_0 \right) | n \rangle \times \langle n | e \sum_{k=1}^{Z} r_k \cdot E_{\text{ext}} | \text{g.s.} \rangle + \text{H.c.},$$

where $r_i \equiv |r_i|$ is the coordinate of the i^{th} electron. We shall neglect in this discussion the sub-leading terms “...,” which involve nuclear moments (static and local) beyond the lowest-order monopole. These higher moments, corresponding to what are often called “finite-size effects,” do in fact allow Schiff screening to be evaded, but at a low level that is not made the split because in the limit where the nucleus is very small, as we show below, that assumption is not justified.
where the label n on the states refers to electronic configurations and A_0 denotes the electric potential at the origin (where the nucleus is located) generated by the electrons:

$$A_0 = \sum_{i=1}^{Z} \frac{e}{r_i} = -\frac{1}{Ze} H_{e-nuc}. \quad (5)$$

The gradient $\nabla_i A_0$ in Eq. (4) is then just the electric field at the origin produced by the ith electron. In writing these expressions we have assumed only that the full wave function factors into products of atomic and nuclear wave functions to good approximation.

The truncation of the multipole expansion at leading order—the point-like approximation—allows us to restrict attention to the electric field at the origin and write H_{e-nuc} in terms of electron operators only in Eq. (5). As a consequence, the nuclear state is not perturbed; excited nuclear states do not contribute to Eq. (4), even if the coupling of nucleons to the nuclear state is included (nuclear polarization). For there to be a contribution, the excitations would have to be created by a nuclear operator included (nuclear polarization). That can not happen, however, because $H_{\text{nuc}}^{\text{int}}$ is symmetric under reflection so that all unperturbed nuclear states have good parity.

These facts allow us to evaluate the sum in $\Delta E^{(2)}$. From Eq. (5) it follows that

$$\left(\sum_{j=1}^{A} \frac{d_{\gamma j}^{(1)}}{\Sigma_j} \right) \cdot \left(\sum_{i=1}^{Z} \nabla_i A_0 \right)$$

$$= -\frac{1}{Ze} \left[\sum_{j=1}^{A} \sum_{i=1}^{Z} \frac{d_{\gamma j}^{(1)}}{\Sigma_j} \cdot \nabla_i, H_{e-nuc} \right]$$

$$= -\frac{1}{Ze} \left[\sum_{j=1}^{A} \sum_{i=1}^{Z} \frac{d_{\gamma j}^{(1)}}{\Sigma_j} \cdot \nabla_i, H_0 - H_{\text{nuc}}^{\text{int}} - H_{\text{nuc}} \right]. \quad (6)$$

Now, noting that

(i) the electron-electron interaction is pair-wise, so that

$$\sum_{j=1}^{A} \frac{d_{\gamma j}^{(1)}}{\Sigma_j} \cdot \nabla_i, H_{\text{nuc}}^{\text{int}} = 0,$$

and

(ii) the nucleus is not excited so that the commutator of any nuclear operator with H_{nuc} yields a vanishing expectation value,

$$\langle g.s. | \left[\frac{d_{\gamma j}^{(1)}}{\Sigma_j} \cdot \nabla_i, H_{\text{nuc}} \right] | g.s. \rangle_{\text{nuc}} = 0,$$

$$\langle g.s. | \left[\frac{d_{\gamma j}^{(1)}}{\Sigma_j}, H_{\text{nuc}} \right] | g.s. \rangle_{\text{nuc}} \cdot \nabla_i = 0. \quad (8)$$

we can eliminate the energy denominators in $\Delta E^{(2)}$ and perform the sum over intermediate state in closure. The result is

$$\Delta E^{(2)} = \frac{1}{Z} \langle g.s. | \left[\sum_{j=1}^{A} \sum_{i=1}^{Z} \frac{d_{\gamma j}^{(1)}}{\Sigma_j} \cdot \nabla_i, H_{\text{nuc}} \right] \cdot \sum_{k=1}^{Z} r_k \cdot E_{\text{ext}} \rangle | g.s. \rangle$$

$$= \langle g.s. | \sum_{j=1}^{A} \frac{d_{\gamma j}^{(1)}}{\Sigma_j} \cdot E_{\text{ext}} \rangle = -\Delta E^{(1)}, \quad (9)$$

so that the first- and second-order contributions cancel each other exactly. Thus, atomic polarization screens the nucleon EDMs even in relativistic quantum theory. The finite size of the nucleus, leading to a difference between the monopole and dipole charge densities, is still the dominant nuclear contribution to the atomic EDM. Relativistic corrections to nuclear wave functions affect the result only a little because their contributions to densities are of $\mathcal{O}(v^2/c^2) \approx 1\%$.

Why then do relativistic corrections to electron EDM operators evade screening? The reason is that the γ_0 in the relativistic operator does not commute with the relativistic free-electron Hamiltonian $\gamma_0(m_e + p \cdot \gamma)$, so that the first commutator in Eq. (7) does not vanish if the Dirac matrices act on electrons (see Refs. [2,6,8] for details). By contrast, Eq. (8) vanishes even if one uses a relativistic form for the nuclear Hamiltonian because of the expectation value. And as mentioned above, off-diagonal nuclear matrix elements contribute nothing because of the parity symmetry of $H_{\text{nuc}}^{\text{int}}$.

In summary, at leading-order in the multipole expansion for H_{e-nuc}, where the electrons see the nucleus as a point particle, even fully relativistic nucleon EDMs are screened by electron polarization. The effects of relativity in the nucleus will only add small corrections to the usual finite-size effects encoded in the nuclear “Schiff moment.”

This work was supported in part by the U.S. Department of Energy under Contracts DE-AC52-06NA25396 (C.P.L.) and DE-FG02-97ER41019 (J.E.).