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The relation between the pseudo-L scheme and the Nilsson model is discussed within the context of SU (3) dynamical sym- 
metry limits of boson-fermion models of odd-mass nuclei. It is shown that the pseudo-L approach incorporates certain non- 
adiabatic effects which modify the effective Coriolis matrix elements, thus offering a possible explanation for their observed 
deviation from experiment. 

The idea o f  t reat ing the single-particle states o f  the 
shell model  in terms o f  pseudo-orbi ta l  and  pseudo- 
spin angular  momen ta  was in t roduced  several years 
ago [ 1 ] and  has since led to a number  o f  interest ing 
appl icat ions  [2] .  More  recently this approach  has 
emerged as a crucial e lement  in the deve lopment  o f  
boson - f e rmion  coupling schemes, via  the recogni- 
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t ion [ 3 ] o f  specific dynamical  symmetr ies  within the 
f ramework o f  the interact ing boson fermion approx-  
imat ion  ( IBFA)  model  [4] of  odd-mass  nuclei. In 
certain l imit ing cases, a pseudo-L decomposi t ion  o f  
the fermionic  orbits  allows the dynamica l  symmet ry  
chains of  the bosonic even -even  core to be extended 
to encompass  the odd fermion as well [ 5 ]. This is o f  
par t icular  interest  in the descr ipt ion o f  strongly 
deformed odd-mass  nuclei, where combined  
boson - f e rmion  S U ( 3 )  dynamical  symmetr ies  may 
play an impor tan t  role [ 5-7  ]. 

While  dynamica l  symmetr ies  conta ined in a 
nuclear  model  are certainly o f  interest  in their  own 
right, they become even more  interest ing i f  they have 
clear geometrical  analogs. In the interact ing boson 
approx imat ion  model  o f  even-even  nuclei, much o f  
the beauty derives from the fact that  the three 
dynamica l  symmetr ies  are not  only approx imate ly  
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realized but also have simple geometrical interpre- 
tations. The situation is less simple for 
boson-fermion symmetries. A natural possibility to 
consider is that dynamical SU(3) boson-fermion 
symmetries have their geometrical analog in the 
Nilsson or particle-rotor model. This idea was 
explored recently [ 6,7 ], and important progress in 
understanding the relation of Bose-Fermi SU (3) 
symmetries to the Nilsson model was achieved. In 
this work, we extend and generalize that understand- 
ing by considering a decomposition of the SU(3) 
Bose-Fermi symmetry hamiltonian into intrinsic and 
rotational degrees of  freedom, in analogy with the 
Nilsson model approach. Essential to this decompo- 
sition is the use of the pseudo-L approach. 

In the Nilsson model [ 8], an od-mass deformed 
system is treated as an even-even rotating core 
strongly coupled to an odd nucleon which moves in 
a deformed mean field produced by the core. Assum- 
ing that the rotation of the core is very slow com- 
pared to the motion of the odd particle, we can make 
an adiabatic separation of the total hamiltonian of 
the system into an intrinsic part and a collective part 
that describes the rotation of the inert core. For axi- 
ally symmetric deformations, 

Hcoltecuve = (1/2I) R'R ,  (1) 

where R denotes the angular momentum of the core. 
If  we let j denote the angular momentum of 

the odd nucleon and J=R+j  denote the total an- 
gular momentum of the system, then we can recast 
ncollective in the form 

H c o l l e c t i v  e = (1/2I) d.d+ (1/2I) j . j  

- (1/I) J3J3 - (1/2I)(J+j_ +J_j+) ,  (2) 

where the subscript 3 refers to the symmetry axis in 
the body-fixed system. The last term represents the 
well-known Coriolis interaction. Note that the same 
moment of  inertia, that of  the even-even core, enters 
in all terms in the collective hamiltonian. The many 
successes of  this model in describing properties of  
odd-mass deformed nuclei are well documented in 
the literature [ 9 ]. 

We now consider a boson-fermion model of  odd- 
mass nuclei, based on the algebraic group structure 
UB(mR) XUF(mF). Here mB denotes the dimen- 
sionality of the boson space and mF the dimensional- 

ity of the fermion space. Under appropriate 
conditions, it is possible to construct an SU(3) 
dynamical boson-fermion symmetry for such a 
model. The group chain that governs this symmetry 
has the generic form 

UB(mB) ×UF(m~) 

UB(mB) ×UF(½mF) × SUF(2) 

~...  

SUB+F(3) ×SUF(2)  

SOB+v(3) ×SUv(2)  

= Spin(3) .  (3) 

The dots refer to the necessary intermediate 
subgroups in the chain, for which there is often more 
than one possibility. 

For any such group chain, it is possible to decom- 
pose the total IBFA hamiltonian into 

H=Ho +Hrot • (4a) 

Here Ho involves the Casimir operators up to and 
including that for SUB + v (3) in the group chain and 

Hrot =AL Czsoa+~(3) + AjCzspin(3) • (4b) 

Clearly Hrot governs collective rotations of the sys- 
tem, as is evident from the fact that 

C2so.+~(3)=L'L, C2spin(3) = J" J , (5) 

where L is the total pseudo-orbital angular momen- 
tum operator and I as before is the total angular 
momentum operator. More precisely, i f j  = l+  s is the 
decomposition of the single-fermion angular mo- 
mentum into its pseudo-orbital and pseudo-spin 
parts, then L = R + I  and d - L + s ,  where R, as noted 
earlier, is the angular momentum of the (boson) core. 

The pseudo-L decomposition appears explicitly in 
the reduction UF(mF) ~ UF(½mE) ×SUv(2) .  We will 
focus all subsequent discussions on a specific IBFA 
model, involving an s-d  boson core and single-par- 
ticle orbits with j =  ½, ~ and ~. Then mF= 12 and 
rnB=6 and the pseudo-L decomposition "corre- 
sponds to treating the single-particle space as arising 
from the coupling of a pseudo-spin s = ½ to pseudo- 
o rb i t a l /=0  and 2. The corresponding SU(3) spec- 
trum consists of a series of  rotational bands, as shown 
in fig. 1. The intrinsic excitation energies of the dif- 
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Fig. 1. Schematic representation of the low-lying band structure appropriate to a system of N bosons and one fermion described by the 
SU(3) limit ofa UB(6) ×UF(12) Bose-Fermi model. Shown above each intrinsic band are the (2, g) quantum numbers. States of each 
band are labelled on the left by the pseudo-L quantum number and on the right by the total angular momentum. 

ferent bands are governed by the coefficients o f  the 
higher Casimir operators, which contribute to Ho, 
whereas the level spacings within bands are governed 

by/-/rot. 
The intrinsic configurations defined by Ho can be 

characterized by the SU(3)  quantum numbers (2, #),  
by quantum numbers K, KL and a that give the pro- 
jections o f / ,  L and s, respectively, on the symmetry 
axis (note: K=KL+a) and by additional quantum 
numbers ol that relate to earlier subgroups in the 
chain (1). We shall suppress these latter quantum 
numbers since they play no role in the rotational 
properties under discussion, and denote the intrinsic 
states by 1(2, lt)Ka). Note that we choose a basis 
with good K quantum numbers [ 10 ], rather than the 
or thonormal  Vergados basis [11] (the two bases 
become identical in the large N limit).  

Each intrinsic state contains information about all 
the states in the corresponding intrinsic band. States 
with definite values o f  angular momentum can be 
obtained using standard angular m o m e n t u m  projec- 
tion techniques. We denote them by I (2,/t)Ka; JM).  

Each intrinsic state is doubly degenerate. For each 
state 1(2,1z)Ka), there is another I (2,/z) - K - a >  

with the same intrinsic energy. This double degener- 
acy results from the fact that the intrinsic hamilton- 
ian is invariant with respect to rotations of  180 ° 
about an axis perpendicular to the symmetry axis. As 
a consequence, states projected from the two degen- 
erate intrinsic states are not independent, but are 
related by a simple phase. Proper  physical states are 
obtained from the symmetric linear combinations 

1(2, It)Ka; JM>s = ( l /x /2) [  ] (2, lt)Ka; JM> 

+ ( - 1 )J+K I (2, U) - K - a ;  JM> ] .  (6) 

We now return to the rotational part o f  the sym- 
metry hamiltonian. To make contact with the Nils- 
son description, it is useful to recast//rot in a form 
similar to (2):  

nrot =AL L.L + AjJ.J 

=ALJ--s) ( J - s )  +AjJ'J 

= (A L +Aj)J',I-[-AL$',$--2ALJ3S 3 

- A L ( J + s _  + J _ s + )  . (7) 

The first three terms are diagonal for any intrinsic K 
band. The last term bears a striking similarity to the 
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Coriolis interaction of the Nilsson model, and is the 
term on which we will focus most of  the discussion 
to follow. We will refer to it as the pseudo-Coriolis 
interaction and will denote it by Vpc. Like the Cor- 
iolis interaction, it has diagonal matrix elements for 
K=  ½ bands and also has matrix elements mixing dif- 
ferent K bands. 

There are however two clear differences between 
the pseudo-Coriolis interaction and the usual Cor- 
iolis interaction of the Nilsson model. First, the 
pseudo-Coriolis interaction involves the pseudo-spin 
operator s+(_) rather than the odd-particle angular 
momentum operators j+(_).  Second, the multiplica- 
tive constant in front of the pseudo-Coriolis interac- 
tion is different from the one in front of  the rotational 
kinetic energy term. In contrast, in the Nilsson 
approach the same constant premultiplies both terms. 
This latter difference has potentially interesting con- 
sequences, and we will return to it later. 

We now consider in more detail the matrix ele- 
ments of the pseudo-Coriolis interaction. As noted 
earlier, it has diagonal matrix elements for K =  ½ + 
bands, which follow from the presence of the two 
terms in the physical states (6). They are given by 

s ( (2, #) ½tr; JMI Vpc 1(2,/t) ½a; JM>s 

=-AL(-1)J+I /2(J+½)(s=½,  iris+ Is=½, - t r )  

= --AL( -- 1 )s+ ' / : ( J +  ½ ) 

for a =  + ½ and KL = 0 ,  

= 0  f o r a = - - ½  a n d K L = l  . (8) 

Thus, for K =  ½, KL = 0 bands the rotational contri- 
bution to the energy is given by 

ErJot = (AL +A,)J(J+ 1 ) 

+AL[( -- 1 )Y+'/2(J+ ½) + ¼ ] ,  (9a) 

which is very similar in structure to the analogous 
Nilsson-model expression 

ErJot (Nilsson) --- ( 1/21) [ J ( J + 1 ) 

- ~4 + a (  - 1 )J+ ~ / 2 ( j +  ½ )1 , ( 9 b )  

where a is the decoupling parameter. 
Next, we discuss pseudo-Coriolos mixing between 

different intrinsic bands. From the form of the 
pseudo-Coriolis interaction, it is clear that such band 
mixing is limited to cases in which AK= l, AKL = 0 
and Aa = 1. The relevant non-zero pseudo-Coriolis 
mixing matrix elements are 

s < (2', u ' ) K +  1, ½; JMI Vpc I (2,/~)K, - ½; JM)s 

= - A L x / ( J - K ) ( J + K +  I) × g a ,  tf,u, . (10) 

As a specific example, we consider the bands with 
KL= 1 and 2 that arise within the UB(6)×UF(12)  
model under discussion. Each such band splits into 
two intrinsic bands, one with K=KL+ ½ and one with 
K = K c -  ½. The energies of the bands prior to mixing 
are determined by the term - 2AJ3s3 of (7), which 
splits them an amount 2ALKL relative to their degen- 
erate intrinsic energies. States with the same J values 
in the two bands mix via the pseudo-Coriolis inter- 
action, with the mixing matrix elements given by 
(10). For every such pair of states, an analytic diag- 
onalization of the mixing matrix is possible. Pairs of  
states are split by an amount AL(2J+ 1), and the 
resulting eigenstates no longer have good K or a val- 
ues; they still have good KL values and furthermore 
each now has good L. 

Exactly the same splitting A L ( 2 J + I )  can be 
obtained directly from the eigenvalue expression for 

/rot, 

Erot =ALL(L+ 1 ) + A J ( J +  1 ) .  (11 ) 

The purpose of our analysis is to make more evident 
the connection to the Nilsson model, and thus we 
have followed an approach that highlights the role of 
the pseudo-Coriolis interaction. 

Now we return to the comment made earlier that 
in the pseudo-L approach different constants appear 
in front of  the rotational kinetic energy term and the 
pseudo-Coriolis interaction term. The origin of the 
different constants is the presence of separate L.L and 
J.J  terms in the rotational hamiltonian. Both con- 
tribute to the rotational kinetic energy; only the L.L 
term contributes to the pseudo-Coriolis interaction. 

The rotational hamiltonian (7) can be rewritten 
in the form 

//rot = (AL + A j) R.R + extra terms.  ( 12 ) 

Comparing (12) and ( 1 ), we see that the moment  of 
inertia I of the even-even core is given by 
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I =  1/2(AL + A , ) .  (13) 

This is also the moment  of  inertia of  the total 
Bose-Fermi system, as can be seen directly from (7). 
We can thus rewrite the coefficient in front of the 
pseudo-Coriolis interaction as 

A L ~- (1/2I)[AL/(AL +A j)] . (14) 

Note that AL enters as a multiplicative constant in 
both the decoupling matrix elements for K =  ½ bands 
(9) and the band mixing matrix elements (10). 
Depending on the relative signs of  A L and A,, the 
quantity A L / ( A L + A j )  will either be greater than or 
less than unity. The net result will be an effective 
suppression or enhancement of pseudo-Coriolis 
matrix elements, relative to the values they would 
have if the multiplicative constant were simply 1/21. 
It is a well-known feature of the Nilsson model that 
the Coriolis coupling matrix elements required to 
phenomenologically describe the mixing of K bands 
are usually much weaker than those that arise theo- 
retically [ 9 ]. The above discussion suggests a possi- 
ble mechanism within the pseudo-L scheme but 
outside the standard adiabatic Nilsson scheme for 
suppressing (or enhancing) such coupling matrix 
elements. 

Note that such a modification of coupling matrix 
elements in the pseudo-L scheme occurs whenever 
the rotational hamiltonian contains both L.L and J.J 
terms. The expressions for both the decoupling 
parameter and the mixing matrix elements become 
identical to those of the Nilsson model whenever the 
J.J term vanishes. Such a term arises whenever the 
pseudo-orbital doublets j=l+½ are not exactly 
degenerate in energy. Further work on this proposed 
mechanism for modifying coupling matrix elements 
is clearly called for. 

There is one further important distinction between 
the pseudo-L scheme and the Nilsson scheme. This 
deals with the structure of the states in the two 
schemes. The conventional Nilsson treatment cou- 
ples deformed states of  the odd particle to the ground 
band of the even-even core only. In a more general 
adiabatic treatment, excited bands of the core also 
enter; however, there is still no mixing between dif- 
ferent intrinsic core configurations. Such a restric- 
tion is not mandated by the pseudo-L approach. Here, 

physical states in general contain admixtures of dif- 
ferent core configurations. Moreover, such mixing 
leads naturally to a fragmentation of single-particle 
transfer strength and significant fragmentation has 
indeed been observed in odd-mass deformed nuclei 
in the H f - W - O s  region [ 12]. 

It should be remarked that many of the features of 
the treatment described above, including the 
approximate existence of pseudo-L symmetry and 
associated pseudo-K values, arose in earlier studies 
based on the pseudo-SU (3) scheme [2] for deformed 
nuclei. The crucial difference is that in our approach, 
no attempt is made to describe the core in an explicit 
fermionic basis. Instead, the core is treated phenom- 
enologically, as in the Nilsson scheme, and it is this 
feature that permits an explicit comparison of rota- 
tion-particle coupling effects in the two approaches 
to be carried out. 

In summary, we have discussed in this letter the 
pseudo-L scheme as it pertains to strongly deformed 
odd-mass systems described by an SU(3) 
Bose-Fermi symmetry, and have considered its rela- 
tion to the usual Nilsson-model treatment. We have 
seen that the pseudo-L scheme incorporates two 
important extensions to the Nilsson framework. First, 
core states other than those of the ground band can 
be incorporated without departing from a pseudo-L 
symmetry. Second, the collective hamiltonian asso- 
ciated with a pseudo-L symmetry includes separate 
L.L and J . J  interactions, which can modify the 
effective matrix elements that couple intrinsic bands. 
Of course, the ultimate goal of any theory of odd-mass 
deformed nuclei, whether purely fermionic or based 
on a IBFA model, is to describe real deformed nuclei. 
Although SU(3) may provide a meaningful starting 
point, it is clear that symmetry-breaking effects will 
have to be taken into account. In such cases, pseudo- 
L need no longer remain a good quantum number of 
the system, and the exact decomposition of the ham- 
iltonian given by (4) may no longer apply. An 
important question to address in the future is whether 
a better starting point for a description of such nuclear 
systems is provided by an adiabatic approach or by a 
pseudo-L approach. 
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