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a b s t r a c t

Searches for the permanent electric dipolemoments (EDMs) ofmolecules, atoms, nucleons
and nuclei provide powerful probes of CP violation both within the Standard Model and
beyond the StandardModel (BSM). The interpretation of experimental EDM limits requires
careful delineation of physics at a wide range of scales, from the long-range atomic and
molecular scales to the short-distance dynamics of physics at or beyond the Fermi scale. In
this review, we provide a framework for disentangling contributions from physics at these
disparate scales, building out from the set of dimension four and six effective operators that
embody CP violation at the Fermi scale. We survey computations of hadronic and nuclear
matrix elements associated with Fermi-scale CP violation in systems of experimental
interest and quantify the present level of theoretical uncertainty in these calculations.
Using representative BSM scenarios of current interest, we discuss ways in which the
interplay of physics at various scales can generate EDMs at a potentially observable level.
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1. Introduction

Nuclear physics tests of fundamental symmetries have played a vital role in the development of the StandardModel (SM)
and provide powerful probes of what may lie beyond it. As described elsewhere in this issue, these tests have uncovered
the left-handed nature of the charged current weak interaction, helped single out the SM structure of the weak neutral
current fromvarious alternatives, revealed the phenomena of quark-mixing via the slight deviation fromexact lepton–quark
universality inweak decays, and provided stringent upper bounds on the neutrinomass scale. In this article, we focus on two
symmetries for which nuclear physics studies have a long and illustrious history: time reversal invariance (T) and invariance
under the combination of change conjugation (C) and parity (P). It iswell-known, of course, that CP is not conserved in flavor-
changing weak interactions, a phenomenon now associated with the complex phase in the Cabibbo–Kobayashi–Maskawa
(CKM) matrix. A consistent phenomenology of CKM CP violation (CPV) has emerged from extensive studies of K - and
B-meson properties and interactions. As a local quantum field theory satisfying the postulates of the CPT theorem, the SM
thus also admits time-reversal violation, as the combined operation of CPT leaves the SM interactions unchanged.

It is likely, however, that the SM picture of CP and T violation is incomplete. Numerous scenarios for physics beyond the
SM (BSM) readily admit new sources of CPV. Given that the SM is likely embedded in amore complete theory of fundamental
interactions, it is reasonable to expect novel signatures of CPV to appear along with other manifestations of new physics.
Cosmology provides an additional compelling motivation for BSM CPV. Assuming the Universe was matter–antimatter
symmetric at its birth or at the end of the inflationary epoch, additional sources of CPV are needed to explain the presently
observed cosmic matter–antimatter asymmetry (for reviews and extensive references, see Refs. [1–3]). From a perhaps
even more speculative standpoint, the generation of the matter–antimatter asymmetry could also entail the violation of
CPT invariance, and various exotic BSM frameworks also incorporate such a violation. While exploring the possibilities for
BSM CPV and even CPT violation, one should bear in mind that there remains within the SM itself one as yet unobserved
source of CP and T violation: the dimension-four QCD ‘‘θ ’’ term, whose dimensionless coefficient, the vacuum angle θ̄ , is now
constrained to be no larger than ∼10−10 by the non-observation of permanent electric dipole moments (EDMs) of the 199Hg
atom and neutron. This exceedingly small upper limit – and the associated ‘‘strong CP problem’’ – has motivated the idea of
an additional symmetry, the ‘‘Peccei–Quinn’’ (PQ) symmetry, whose spontaneous breakdown would imply the existence of
the axion that has also not yet been observed. (For a recent review, see Ref. [4].)

In the quest to discover both BSMCPV aswell as CPV generated by the SMstrong interaction, EDMsearches have generally
provided by far the most powerful probes. In contrast to the CPV observed in the K - and B-meson sectors, the existence
of an EDM of an elementary particle or quantum system requires no flavor-changing interactions. The situation is more
complicated in the SM, however, since CKM CPV requires the participation of three generations of quarks and, thus, flavor-
changing interactions at the loop level. As a result, the EDMs of light quark and lepton systems generated by CKM CPV are
highly suppressed. The individual quark EDMs vanish at two-loop order [5,6]. The lowest-order contribution to the neutron
EDM, then, arises not from the individual quark EDMs but from a two-loop hadronic interaction involving two∆S = 1weak
interactions between quarks. The CP-conserving interaction appears at tree-level, while the CPV interaction is generated
from the one-loop d → s ‘‘penguin’’ operator that contains a sum over all three flavors of positive-charge quarks. The
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electron EDM first appears at four-loop order [7], suppressing it by several orders of magnitude with respect to the neutron
EDM.

Given the present and prospective EDM search sensitivities (see Table 1), onemay consider CKMCPV to be something of a
negligible ‘‘background’’, making these searches primarily probes of either SM strong or BSMCPV (togetherwith P violation).
Moreover, if the latter is flavor-diagonal as one encounters in many (but not all) BSM scenarios, then the sensitivity of EDMs
generally exceeds that of other possible tests, such as CP-odd observables in a high-energy collider experiment. For these
reasons, the emphasis in this article on nuclear physics tests of CP and T will fall on EDMs.

Unraveling the implications of EDMsearches is amulti-faceted problem, entailing physics at a variety of length scales. The
experiments themselves are extraordinarily challenging, requiring exquisite control over a number of possible effects that
could mimic an EDM. Still, significant improvements are expected for the traditional searches on neutral systems (Table 1)
and proposals have been made to measure the EDMs of charged particles in storage rings at similar levels. (For discussions
of the experimental status and prospects, see, e.g. Ref. [8] as well as a forthcoming companion article to this review [9].) In
what follows, we concentrate on the theoretical problem, seeking to provide a framework for interpreting experimental
results that delineates the physics at different length scales that one must consider: the atomic, nuclear, and hadronic
scales, wherein one contends with the complications of non-perturbative strong interactions and many-body physics;
the Fermi scale, associated with the various effective operators outlined in the introductory article [10]; the scale of BSM
physics, 1/Λ, atwhich one encounters explicit newdegrees of freedomwhose interactions give rise to the effective-operator
Wilson coefficients; the short-distance scale of high-energy collider experiments that may produce these new degrees of
freedom directly; and the scales associated with early Universe cosmology that may be responsible for the generation of the
matter–antimatter asymmetry.

Table 1
Present EDM limits and sensitivity goals for the paramagnetic atoms and molecules (first group); nucleons (n, p) (second
group); and diamagnetic atoms (third group). A limit on the electron EDM of 10.5 × 10−15 e fm (90% C.L.) has been derived
from the most recent YbF experiment [152] assuming it is the only source of the molecular EDM (see Section 5). Also listed
are the expected magnitudes of the SM ‘‘background’’ due to the phase in the CKMmatrix.

System Present 90% C.L. Sensitivity goalb Group SM CKM (e fm)c

Limit (e fm)a

Cs 1.2 × 10−10 [169] ∼10−23

Tl 9.5 × 10−12 [170] ∼10−22

YbFd 10.5 × 10−15 [152] ∼10−19

ThOd – 10−15
→ 10−17

n 2.7 × 10−13 [171] 1.6×10−18
→ 1.4×10−20

n (1 − 3)× 10−14 CryoEDM
n 4 × 10−15 nEDM/SNS
n 5 × 10−14 nEDM/PSI
n 5 × 10−15 n2EDM/PSI
n 2 × 10−15 nedm/FRM-II Munich
n 10−14

− 10−15 TRIUMF

p 10−16 srEDM
199Hg 2.6 × 10−16 (2.6 − 5)× 10−17 [172] –
225Ra (10 − 100)× 10−15 Argonne –
221/223Rn 1.3 × 10−14 TRIUMF –
221/223Rn 2 × 10−15 FRIB –
129Xe 5.5 × 10−14 [173] –
a We thank T. Chupp for providing the 90% C.L. limits from existing searches.
b All sensitivity goals are self-reported by members of the given collaboration.
c We do not quote SM CKM predictions for diamagnetic atoms, due to the incorrect implementation of chiral symmetry

in Ref. [118] as pointed out in Ref. [174].
d Molecular sensitivity expressed in terms of limit on de rather than on dA and assume Im C (±)eq = Im C (3)ℓeqq = 0.

The interplay of these different scales is illustrated in Fig. 1. For purposes of this article, we assume the underlying
dynamics of BSM CPV are associated with an energy scale Λ that lies well above the electroweak or Fermi scale.1 If
Λ . 10 TeV, high energy collider searches may discover the elementary particles responsible for BSM CPV, determine their
masses, and provide information about the nature of their CP-conserving interactions. The new CPV interactions may also
provide one of the ingredients needed for successful electroweak baryogenesis, though additional scalar degrees of freedom
would also be expected in order to obtain a first order electroweak phase transition. In principle, collider searches could
also observe the latter and measure their relevant properties [1]. At the low-end of the energy scale, EDM searches look for
the CPV ‘‘footprints’’ of these new interactions. In this energy regime, the extent to which the underlying CPV interactions

1 It is possible that new CPV interactions are generated by new light degrees of freedom, a possibility that we do not treat extensively in this article.
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Fig. 1. Electric dipole moments and the interplay of various scales. For purposes of illustration, only the impact of dimension six CPV operators is shown.
Below the weak scale, some operators, such as the fermion EDMs and quark chromo EDMs are effectively dimension five, carrying an explicit factor of the
Higgs vacuum expectation value ⟨H0

⟩. A summary of the operators of interest to this article appears in Table 2. See text for a full discussion.

becomemanifest depends on their interplay with the many-body and strong interaction dynamics of the hadronic, nuclear,
atomic, and molecular systems of interest. The quantities that one extracts most directly from EDM searches, then, are
not the underlying CPV interactions, but the hadronic, nuclear, and atomic matrix elements that they induce, such as
the neutron EDM, time-reversal-violating and parity-violating (TVPV) πNN interaction, nuclear Schiff moment, and TVPV
effective electron–nucleus interaction.2

The bridge between these matrix elements and the underlying CPV dynamics is provided by a set of effective operators,
whose coefficients are governed by an appropriate power of 1/Λ and dimensionless Wilson coefficients that depend on the
details of the underlying dynamics. At energies between Λ and the weak scale, these operators contain all of the Standard
Model fields and respect the SU(3)C × SU(2)L × U(1)Y gauge symmetry of the theory. Below the weak scale, the heavy
SM degrees of freedom are ‘‘integrated out’’, leaving a set of effective operators that respect the residual SU(3)C × U(1)EM
symmetry and thatmay have reducedmass dimension. Nevertheless, theWilson coefficients of the hadronic scale operators
derive from those that enter at theweak scale,wherein the full gauge symmetry of the SMenforces certain relations between
them.

As we discuss below, it is in principle possible to use a combination of experimental results and theoretical hadronic,
nuclear, and atomic computations to determine, or at least constrain, the Wilson coefficients without making any
assumptions about the details of the underlying BSM CPV other than that it is associated with a high energy scale. In this
sense, the theoretical effort associated with the bottom half of Fig. 1 is model-independent. More broadly, however, the
goal of the ‘‘EDM program’’ is to derive as much information as possible from EDM searches, in conjunction with other
precision tests and high-energy experiments, for both BSM and strong CPV as well as for the origin of matter. Doing so
requires running operators from one scale to the next; matching the interactions at the boundaries between neighboring
scales; and identifying and quantifying where possible the attendant theoretical uncertainties. One may then ask whether
the emerging picture is consistent with any existing model for the underlying BSM CPV, precludes others, or perhaps points
to one not yet invented.

In what follows, we lay out the overall framework for this program. In doing so, we attempt to address a question that
has been somewhat underemphasized in previouswork, namely, the level of theoretical uncertainty associatedwith various
steps in the interpretive chain of ‘‘running and matching’’. While the absence of theoretically robust hadronic, nuclear and
atomic/molecular computationswould not detract from the significance of the observation of an EDM, the level of theoretical
uncertainty does affect one’s ability to utilize present and prospective experimental results to pinpoint the underlying CPV
mechanism or rule out various possibilities. In response to this issue, we provide a set of benchmark theoretical error bars
associated with various quantities of interest, recognizing that this effort remains a work in progress and alerting the reader
to the website where updated information will appear.

The focus of this framework is on the θ-term as well as Wilson coefficients Ck for the dimension-six CPV operators
indicated in the center of Fig. 1. These operators, which break P aswell as T, include the elementary fermion EDMs, the quark
‘‘chromo-electric dipolemoments’’ (CEDMs),Weinberg three-gluon operator, and various four-fermion CPV operators (both
semileptonic and non-leptonic). We provide a general set of expressions relating these operator coefficients to the hadronic,

2 Henceforth, we will use ‘‘CPV’’ when referring to the underlying elementary particle interactions and ‘‘TVPV’’ when referring to the resulting effects
induced at the hadronic, nuclear, atomic, and molecular levels.



J. Engel et al. / Progress in Particle and Nuclear Physics 71 (2013) 21–74 25

Table 2
Dimension four and dimension six CPV operator coefficients for light flavors. First column gives
dimensionless Wilson coefficient (see Section 2), followed by operator name and mass dimension
(second column) and number of operators (third column). Final column indicates type of system in
which a given operator will have its most significant impact.

Wilson coefficient Operator (dimension) Number Systems

θ̄ Theta term (4) 1 Hadronic & diamagnetic atoms

δe Electron EDM (6) 1 Paramagnetic atoms & molecules
Im C (1,3)ℓequ , Im Cℓeqd Semi-leptonic (6) 3

δq Quark EDM (6) 2 Hadronic & diamagnetic atoms
δ̃q Quark chromo EDM (6) 2
CG̃ Three-gluon (6) 1
Im C (1,8)quqd Four-quark (6) 2
Im Cϕud Induced four-quark (6) 1

Total 13

nuclear, atomic and molecular quantities of interest, given in Eqs. (3.42)–(3.45), (3.46), (4.168), (5.171) and (5.172) and
Table 7. We take into account the chirality-flipping nature of the elementary fermion EDMs and quark CEDMs, writing the
correspondingWilson coefficients as the product of the fermion Yukawa couplings and a BSM scenario-dependent factor (δf
or δ̃q). Doing so allows us to place the EDMand CEDMoperator coefficients on the same footing as those for operators that do
require explicit insertions of the Higgs field, such as the CPV electron–quark operators. A summary of the dimension-four
and -six operators for light flavors (electron, up- and down-quarks, gluons) is given in Table 2. Note that one encounters
thirteen quantities at this order, though some combinations have a more significant impact than others on the systems of
experimental interest. One could, of course, expand the list to include the muon EDM as well as heavier flavors of quarks. In
some cases the manifestation of the latter in light quark systems may be non-negligible. Nonetheless, for purposes of this
review we will concentrate largely on the already sizeable set of operators involving only the light flavors.3

The dependence of various hadronic, atomic, and molecular quantities on θ̄ , Im Ck, δf , and δ̃q is then governed by the
physics at the relevant scales. We compile the existing set of corresponding matrix-element calculations and give a set of
benchmark values and theoretical ranges that can be used when extracting limits on θ̄ , Im Ck, δf , and δ̃q from experimental
results. For the discussion of hadronic matrix elements, we rely heavily on considerations of chiral symmetry as an overall
guide, though we also quote results from lattice QCD, QCD sum rules, and quark models as well. An important conclusion
from this survey is the need for a concerted future effort on the hadronic and nuclear matrix elements. While the literature
on computations of the Im Ck, δf , and δ̃q in various BSM scenarios is deep, the corresponding set of results for hadronic and
nuclearmatrix elements is relatively thin. Given the level of effort and resources devoted to the experimentalmeasurements
of EDMs, a commensurate attack on the theoretical side is clearly in order.

Our discussion of this theoretical framework is organized in the remainder of the article as follows. In Section 2, we
briefly review the conventions and definitions, drawing on the notation of the introductory article [10]. Section 3 contains a
discussion of physics at the hadronic scale, including the running of the weak-scale operators to the hadronic scale, the
various hadronic interactions cast in the context of chiral symmetry, and a summary of sensitivities of these hadronic
quantities to the weak-scale operator coefficients. In Sections 4 and 5, we review the status and open questions related
to computations at the nuclear and atomic scales, including P- and T-odd nuclear moments such as the Schiff moment. We
follow this discussion with an illustrative overview of the high-scale physics that may give rise to the weak-scale operators
in Section 6. A discussion and outlook appears in Section 7. Throughout the article, we refer to other recent reviews [11–
14] when appropriate, endeavoring to avoid excessively duplicating material that is amply covered elsewhere but updating
when necessary. We also do not discuss other tests of CP and T violation, given the limitations of space for this review
(for a discussion of T violation in neutron and nuclear β-decay, see the companion article in this issue on charged current
processes [15]).

2. Conventions and definitions

The starting point for our analysis is the weak scale operators defined in the introductory article [10]. We concentrate on
three sources of CPV,

LCPV = LCKM + Lθ̄ + Leff
BSM. (2.1)

Here the CPV SM CKM [16] and QCD [17–19] interactions are

LCKM = −
ig2
√
2
V pq
CKMŪp

L ̸W+Dq
L + h.c., (2.2)

3 One should also bear in mind that not all possible sources of CPV naturally fit within the effective operator framework. If a new CPV interaction is
mediated by a very light weakly coupled boson, the latter must be retained as an explicit degree of freedom.
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Table 3
Dimension-six CPV operators involving gauge and/or Higgs degrees of freedom. Notation largely follows that of introductory article [10] with the following
modifications: qp → Q denotes a left-handed quark doublet; F denotes a left-handed fermion doublet; fR denotes a right-handed SU(2) singlet fermion;
andΦ =ϕ (ϕ) for fR being an up-type (down-type) fermion. For simplicity, generation indices have been omitted.

Pure gauge Gauge–Higgs Gauge–Higgs–Fermion

QG f ABCGAν
µ GBρ

ν GCµ
ρ QϕG ϕĎϕGA

µνG
Aµν QuG (Q̄σµνT AuR)ϕ GA

µν

QW εIJK W Iν
µ W Jρ

ν W Kµ
ρ QϕW ϕĎϕ W I

µνW
Iµν QdG (Q̄σµνT AdR)ϕ GA

µν

QϕB ϕĎϕBµνBµν QfW (F̄σµν fR)τ IΦW I
µν

QϕWB ϕĎτ Iϕ W I
µνB

µν QfB (F̄σµν fR)Φ Bµν

Table 4
Dimension-six CPV operators involving four fermions. Nota-
tion as in Table 3, with the additional modification lp → L
with respect to the introductory article [10].

(L̄R)(R̄L) and (L̄R)(L̄R)

Qledq (L̄jeR)(d̄RQ j)

Q (1)
quqd (Q̄ juR)ϵjk(Q̄ kdR)

Q (8)
quqd (Q̄ jT AuR)ϵjk(Q̄ kT AdR)

Q (1)
lequ (L̄jeR)ϵjk(Q̄ kuR)

Q (3)
lequ (L̄jσµνeR)ϵjk(Q̄ kσµνuR)

Lθ̄ = −
g2
3

16π2
θ̄ Tr


Gµν G̃µν


, (2.3)

where g2 and g3 are the weak and strong coupling constants, respectively, Up
L (Dp

L ) is a generation-p left-handed up-type
(down-type) quark field,V pq

CKM denotes a CKMmatrix element,W±
µ are the chargedweak gauge fields, and G̃µν = ϵµναβGαβ/2

(ϵ0123 = 1)4 is the dual to the gluon field strength Gµν . In addition,

Leff
BSM =

1
Λ2


i

α
(6)
i O(6)i , (2.4)

gives the set of dimension-six CPVoperators at theweak scale v = 246GeVgenerated byBSMphysics at a scaleΛ > v. These
operators [20] are listed in Tables 3 and 4. Note that the operators containing fermions are not CPV in and of themselves.
Rather CPV effects arise when the corresponding coefficients α(n)i are complex, as discussed below.

In this reviewwe are mostly interested in the atomic/molecular, hadronic, and nuclear aspects of CPV. We will therefore
concentrate on the two lightest quarks, up and down, but will occasionally also point out effects of other quarks, especially
the strange quark.

2.1. CPV at dimension four

CPV from the θ-term in Eq. (2.3) is intimately connected with the quark masses. The ‘‘bar’’ notation indicates that this
dimensionless quantity is a linear combination of a bare θ-parameter and argument of the quark Yukawa coupling matrices
Yq:

θ̄ = θ + arg det(YuYd), (2.5)
where the second term arises after redefining the phases of all the quark fields. Alternatively, the θ-term can be eliminated,
thanks to the axial anomaly, through a chiral rotation [21]. Enforcing vacuum stability to first order in the quark masses, all
CPV is then in the quark bilinear

Lθ̄ ↔ LQCD
CPV = −m∗θ̄ q̄iγ5q, (2.6)

where θ̄ ≪ 1 was used. Here

m∗
=

mumd

mu + md
=

m̄
2


1 − ϵ2


, (2.7)

in terms of the average light quark mass m̄ = (mu + md)/2 and relative splitting ϵ = (md − mu)/2m̄. Below we use
mu = 2.3+0.7

−0.5 MeV and md = 4.8+0.7
−0.3 MeV [22]. In the same notation the CP-even quark mass operator is given by

Lquark
mass = −m̄q̄q + ϵm̄q̄τ3q. (2.8)

Eq. (2.6) will be the starting point in Section 3 for chiral considerations that impact TVPV observables in nuclear physics.

4 Note that our sign convention for ϵµναβ , which follows that of Ref. [20], is opposite to what is used in Ref. [14] and elsewhere. Consequently, Lθ̄ carries
an overall −1 compared to what frequently appears in the literature.
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2.2. CPV at dimension six

We now focus on a subset of the operators in Tables 3 and 4 that have been the objects of most scrutiny, because they
are expected to give the largest contributions at low energies [23]: QqG (q = u, d), QfW , QfB, QG, and various four-fermion
operators.

After electroweak symmetry breaking (EWSB) wherein φT
→ (0, v/

√
2), QqG gives rise to the quark chromo-electric

dipole moment (CEDM) interaction:

LCEDM
= −i


q

g3d̃q
2

q̄σµνT Aγ5q GA
µν, (2.9)

where T A (A = 1, . . . , 8) are the generators of the color group. Analogously, QfW and QfB generate the elementary fermion
EDM interactions,

LEDM
= −i


f

df
2
f̄ σµνγ5f Fµν, (2.10)

where Fµν is the electromagnetic field strength. In the non-relativistic limit, Eq. (2.10) contains the CPV interactions with
the electric field E⃗,

LEDM
→


f

df χ
Ď
f σ⃗ χf · E⃗, (2.11)

where χf is the Pauli spinor for fermion f and σ⃗ is the vector of Pauli matrices. Thus, df gives the EDM typically quoted units
of e cm or e fm. Letting

α
(6)
fVk

≡ gkCfVk , (2.12)

where Vk = B, W , and G for k = 1, 2, 3 respectively, the relationships between the d̃q and df and the CfVk are

d̃q = −

√
2
v

 v
Λ

2
Im CqG, (2.13)

df = −

√
2e
v

 v
Λ

2
Im Cf γ , (2.14)

where

Im Cf γ ≡ Im CfB + 2I f3 Im CfW , (2.15)

and I f3 is the third component of weak isospin for fermion f . Here, we have expressed df and d̃q in terms of the Fermi scale
1/v, a dimensionless ratio involving the BSM scale Λ and v, and the dimensionless Wilson coefficients. Expressing these
quantities in units of fm one has

d̃q = −(1.13 × 10−3 fm)
 v
Λ

2
Im CqG, (2.16)

df = −(1.13 × 10−3 e fm)
 v
Λ

2
Im Cf γ . (2.17)

It is useful to observe that the EDM and CEDM operator coefficients are typically proportional to the corresponding
fermion masses, as the operators that generate them above the weak scale (QqG, Qf W , QfB) contain explicit factors of the
Higgs field dictated by electroweak gauge invariance. More physically, the EDM and CEDM operators – like the fermion
magnetic moment – induce a flip of chirality and, thus, are naturally proportional to the fermion mass mf = Yf v/

√
2.

Broadly speaking, then, one expects the Wilson coefficients to contain a factor of the fermion Yukawa coupling Yf . In the
Minimal Supersymmetric Standard Model (MSSM), for example, a one-loop contribution to Im CqG from squark–gluino loop
(see Fig. 5) has the magnitude [24,25]

Im CqG =
g2
3

16π2
Yq sin[Arg(µM3b∗)] F(m̃j), (2.18)

whereµ is the supersymmetric Higgs–Higgsinomass parameter,M3 is the soft SUSY-breaking gluinomass, b gives the Higgs
SUSY-breaking mass parameter, and F(m̃j) is a loop function that depends on the various superpartner masses m̃j. In this
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case, the scaleΛwould be the largest value of m̃j entering the loop.5 It is convenient to define two quantities δ̃q and δf that
embody all of the model-specific dynamics responsible for the EDM and CEDM apart from Yukawa insertion:

Im CqG ≡ Yq δ̃q → d̃q = −
2mq

v2

 v
Λ

2
δ̃q, (2.19)

Im Cf γ ≡ Yf δf → df = −e
2mf

v2

 v
Λ

2
δf . (2.20)

While one often finds bounds on the elementary fermion EDM and CEDMs quoted in terms of df and d̃q, the quantities δf and
δ̃q are more appropriate when comparing with the Wilson coefficients of other dimension-six CPV operators, such as the
three-gluon or semileptonic four-fermion interactions, that do not generally carry the Yukawa suppression. In what follows,
we will provide expressions in terms of the Im CfV , (df , d̃q), and (δf , δ̃q). In doing so, we will neglect the light-quark mass
splitting and replace

Yu, Yd → Yq ≡

√
2m̄
v

(2.21)

with m̄ being the average light quark mass.
The extraction of the CPV three-gluon and low-energy, flavor-diagonal CPV four-fermion operators fromLeff

BSM is generally
more straightforward. Making the identifications

α
(6)
G̃

≡ g3 CG̃ α
(6)
ℓedq ≡ Cℓedq, α

(6)
ℓequ(1,3) ≡ C (1,3)ℓequ , α

(6)
quqd(1,8) ≡ g2

3 C (1,8)quqd (2.22)

gives the so-called Weinberg three-gluon operator [26]

LG̃
CPV =

g3 CG̃

Λ2
f ABCGAν

µ GBρ
ν GCµ

ρ , (2.23)

the CPV semileptonic interaction

L
eq
CPV = i

ImCℓedq
2Λ2


ēγ5e d̄d − ēe d̄γ5d


− i

ImC (1)ℓequ
2Λ2

[ēγ5e ūu + ēe ūγ5u] −
ImC (3)ℓequ
2Λ2

ϵµναβ ēσµνe ūσ αβu, (2.24)

and the CPV hadronic interaction [27]

L
qq
CPV = i

g2
3 ImC (1)quqd

2Λ2


ūγ5u d̄d + ūu d̄γ5d − d̄γ5u ūd − d̄u ūγ5d


+ i

g2
3 ImC (8)quqd

2Λ2


ūγ5T Au d̄T Ad + ūT Au d̄γ5T Ad − d̄γ5T Au ūT Ad − d̄T Au ūγ5T Ad


. (2.25)

Note that in contrast to the other CPV d = 6 operators of interest here, the coefficient of the three-gluon operator (2.23)
does not require the imaginary part.

In addition to these four-fermion operators, the operator

Qϕud = i

ϕ̃ĎDµϕ


ūRγ

µdR (2.26)

with ϕ̃ = iσ2φ∗ can also give rise to a four-fermion operator through exchange of the W boson contained in the covariant
derivative. After EWSB, one has

Qϕud →
gv2

2
√
2
ūRγ

µdR W+

µ . (2.27)

Exchange of the W+ between the right-handed current in Eq. (2.27) and the left-handed current of the SM leads to an
effective left–right (LR) Lagrangian with the CPV part given by [28–31,23]

Leff
LR,CPV = −i

Im Cϕud
Λ2


d̄Lγ µuL ūRγµdR − ūLγ

µdL d̄RγµuR

. (2.28)

After a Fierz transformation, one then obtains

Leff
LR,CPV = i

Im Cϕud
3Λ2


ūu d̄γ5d − ūγ5u d̄d + 3


ūT Au d̄γ5T Ad − ūγ5T Au d̄T Ad


. (2.29)

5 Note that we have not included a similar contribution involving the relative phases ofM3 and the squark triscalar terms (see Section 6.1).
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Although the RHS of Eq. (2.29) has the formof a product of scalar and pseudoscalar bilinears, it has a different flavor structure
from the similar spacetime structures appearing in Eq. (2.25). As we discuss in Section 6 below, the interaction (2.29) is
naturally generated in left–right symmetric theories. We also note that the operator in Eq. (2.28) will mix [32] with an
operator of the form

d̄Lγ µT AuL ūRγµT AdR − ūLγ
µT AdL d̄RγµT AuR, (2.30)

generating the corresponding scalar ⊗ pseudoscalar structures in Eq. (2.29), when running from the weak scale to the
hadronic scale.

2.3. Naturalness, Peccei–Quinn, and an induced vacuum angle

It is well known that null results for the neutron and 199Hg EDMs imply that the coefficient of the dimension four operator
in Eq. (2.3) is tiny: θ̄ . 10−10. In general, one would expect both terms of the right side of Eq. (2.5) to be O(1). Obtaining
a value that is ten or more orders of magnitude smaller would require a highly unnatural degree of fine-tuning to obtain a
cancellation between the two terms. Note that in the limit of one massless quark, m∗

→ 0, CPV from Eq. (2.6) disappears
entirely. However, such a possibility seems to be excluded on phenomenological grounds [33].

Alternatively, one may construct a mechanism that would generate a tiny θ̄ at a more fundamental level, through
imposition of a symmetry or ‘‘geography’’ (see, e.g., Ref. [34]). The most well-known example of a symmetry argument
is the Peccei–Quinn (PQ) mechanism. In brief, one starts from the anomalous axial U(1) symmetry of the SM in the limit
of massless quarks, adding one or more additional scalar fields to the SM whose interactions with the quarks preserves the
tree-level axial U(1) symmetry. The enlarged symmetry, denoted U(1)PQ, is spontaneously broken at a high scale, leading
to a pseudoscalar Goldstone boson a, the axion. The corresponding axion Lagrangian is

Laxion =
1
2
∂µa∂µa − V (a)−

a(x)
fa

g2
3

16π2
Tr

Gµν G̃µν


, (2.31)

where the axion potential

V (a) =
1
2
χ(0)


θ̄ +

a
fa

2

+ · · · (2.32)

is given in terms of the topological susceptibility χ(0) as well as the axion decay constant fa whose value indicates the scale
of spontaneous PQ-symmetry breaking. In two-flavor QCD, one finds

χ(0) = −m∗
⟨q̄q⟩, (2.33)

with ⟨q̄q⟩ ≈ −(225MeV)3 [14]. Physical observables depend on the combination θ̄ + ⟨a⟩/fa rather than on θ̄ , where ⟨a⟩ is
the axion vacuum expectation value (vev). Minimization of V (a) then implies that this combination vanishes, leading to a
vanishing contribution to EDMs. The fluctuations about ⟨a⟩ correspond to the physical axion particle, whose mass is set by
the ratio of

√
χ(0) and fa.

Within the SM as well as in BSM scenarios, CPV radiative corrections to the quark masses (or Yukawa interactions) can
generate a non-vanishing contribution to argdet(YuYd), re-introducing a possibly unacceptably large magnitude for θ̄ . If the
given CPV scenario does not suppress these contributions, the constraints on the underlying source of CPV can be quite
severe. Invoking the PQ mechanism can alleviate these constraints.

As emphasized in Ref. [14], the presence of higher dimension CPV operatorsOCPV = Im C QCPV/Λ
2 can lead to an induced

θ-term. The operatorQϕG in Table 3 gives a tree-level shift in θ̄ , which can still be removed through the PQmechanism.More
importantly, there is a shift in the minimum of the axion potential, which now reads [35]

V (a) = χ(0)OCPV


θ̄ −

a
fa


+

1
2
χ(0)


θ̄ +

a
fa

2

+ · · · , (2.34)

where

χ(0)OCPV = −i lim
k→0


d4x eix·k⟨0|T {GG̃(x),OCPV(0)}|0⟩. (2.35)

As a result the minimum of the potential occurs for

θ̄ +
a
fa

=
χ(0)OCPV

χ(0)
≡ θind, (2.36)

a so-called ‘‘induced’’ θ-term.6 Thus, use of the PQ mechanism to eliminate the contribution of θ̄ to an EDM will introduce
an additional contribution linear in the coefficient of a higher-dimensional CPV operator, Im C/Λ2. In the case of the CEDM

6 Note that our definition gives an opposite sign to θind compared to Ref. [14].
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operator, for example, one has

θind =
m2

0

2


q=u,d,s

d̃q
mq
, (2.37)

where m2
0 characterizes the strength of the quark–gluon condensate ⟨q̄σµνT AGA

µνq⟩. In discussing the contributions of the
dimension-six CPV operators to various P- and T-odd hadronic quantities, we will include the contributions from θind
wherever they have been explicitly computed.

3. CP and T at the hadronic scale

In order to relate the interactions defined in Section 2 to P- and T-odd (TVPV) observables at the hadronic, nuclear, and
atomic levels, we first introduce the most relevant hadronic quantities in the context of heavy baryon chiral perturbation
theory (HBχPT) [36]. From the standpoint of effective field theory (EFT), HBχPTprovides thenatural andmodel-independent
framework – consistent with the approximate chiral symmetry of QCD – in which to parameterize one’s ignorance about
presently incalculable non-perturbative strong-interactionmatrix elements of the various CPV operators appearing inLCPV.
For both the hadronic scale analysis as well as the Fermi scale effective operator formulation embodied in Eqs. (2.1), and
(2.4), the EFT philosophy entails expressing the physical impact of unknown physics (BSM CPV or non-perturbative QCD) in
terms of an infinite tower of operators having successively higher-mass dimension that carry appropriate inverse powers of
the relevant mass scale:Λ in the case of BSM CPV and the QCDmass scale (or chiral symmetry-breaking scale)Λχ ∼ 1 GeV
in the case of the low-energy hadronic interaction. Doing so affords a systematic expansion of CPV observables in scale ratios,
such as Λχ/Λ or P/Λχ where P denotes a soft momentum or pion mass. After truncation at a given order in these ratios,
one has a reasonable estimate of the error incurred through omission of higher-order terms.

Below Λχ all meson fields besides the pions can be ‘‘integrated out’’, their effects being captured by short-range
interactions. Pions are light because they are the pseudo-Goldstone bosons of chiral symmetry, which plays an important
role in determining the relative importance of the effective interactions. The term ‘‘heavy’’ in HBχPT indicates that one
is only interested in dynamics where the nucleon is non-relativistic, having momentum pµ = mNv

µ
+ kµ with vµ being

its velocity and |kµ| ≪ mN , the nucleon mass. The nucleon is, then, described by a two-component field Nv(k) associated
with a given velocity rather than a four-component Dirac fieldψN . The anti-nucleon degrees of freedom are effectively also
integrated out in terms of operators containing only Nv(k), its derivatives, and the pion field. Dropping the subscript ‘‘v’’
for notational simplicity, we give some representative terms in the resulting T-violating and P-violating (TVPV) Lagrangian
[37,38,23]:

LTVPV
Nπ = −2N̄


d̄0 + d̄1τ3


SµN vνFµν + N̄


ḡ(0)π τ · π + ḡ(1)π π

0
+ ḡ(2)π


3τ3π0

− τ · π


N

+ C̄1N̄N ∂µ

N̄SµN


+ C̄2N̄τN · ∂µ


N̄SµτN


+ · · · . (3.38)

Here, τ and π denote the isovectors of Pauli matrices and pion fields, respectively, while Sµ and vµ denote the spin and
velocity of the nucleon that take on values in the nucleon rest frame: Sµ → (0, σ⃗ /2)when vµ → (1, 0⃗).

The first term in Eq. (3.38) defines the isoscalar (d̄0) and isovector (d̄1) ‘‘short-range’’ contributions to the nucleon EDM
interaction:

Heff
EDM = −


d̄0 ± d̄1


χĎσ⃗ χ · E⃗, (3.39)

where the upper (lower) sign correspond to the proton (neutron) EDM interaction.
The second term is the T- and P-odd pion–nucleon non-derivative interaction [39], consisting of isoscalar (ḡ(0)π ), isovector

(ḡ(1)π ) and isotensor (ḡ(2)π ) pieces. These interactions have formally the same formwhenwritten in terms of a Dirac spinorψN .
Note, however, that various authors follow differing notation for the pion interactions. From the standpoint of a non-linear
realization of chiral symmetry, it is more natural to build the Lagrangian from functions of π/Fπ , where Fπ = 185 MeV
is the pion decay constant. The resulting P- and T-odd πNN couplings would then have dimension of mass. Moreover,
in the absence of any breaking of chiral symmetry, the best choices of pion field are such that pion interactions involve
derivatives, in which case the leading P-, T-even pion–nucleon interaction is of the pseudovector form. Yet, frequently a
pseudoscalar form in terms of ψN is used. Chiral symmetry is then only ensured if additional π2ψ̄NψN interactions are
included. Fortunately, in most of the instances we are concerned with here, these additional interactions are irrelevant, and
pseudoscalar and pseudovector interactions give the same result, once the corresponding couplings are related. A summary
of notation used by various authors is given in Table 5.

The third and fourth terms in Eq. (3.38) contain T- and P-odd two-nucleon contact interactions, which represent all
dynamics of range ∼1/Λχ , such as vector meson (η, ρ, ω, etc.) exchange. As we discuss below, these are expected to be
the most significant short-range TVPV interactions among nucleons. The ‘‘· · ·’’ subsume an infinite number of other TVPV
interactions: terms related to the above by chiral symmetry (see below) as well as interactions involving larger number of
derivatives and nucleon fields and/or more powers of small parameters. For purposes of the present analysis we will not
draw on these additional interactions explicitly. The reader should be warned that in general the Lagrangian (3.38) contains
pion tadpoles [37,23], as no spacetime symmetry forbids a π0 term (accompanied by its chiral partners with an odd number
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Table 5
Conventions for πNN couplings: first three rows give TVPV non-derivative interactions while the last row gives the leading-order strong interaction.
Note that N denotes a heavy nucleon field, so the pseudovector interaction in the last row corresponds to the pseudoscalar coupling π · ψ̄N iγ5τψN (plus
an additional two-pion interaction) in terms of a relativistic field ψN . In the chiral limit gA ≃ 1.26 and g = gπNN ≃ 12.6, while accounting for the
Goldberger–Treiman discrepancy g = gπNN ≃ 13.5 [44,45] and gA ≃ 1.33. Here, Fπ = 185 MeV.

Interaction This work Herczeg Pospelov & Ritz Engel et al. Dmitriev et al. Mereghetti et al.
[28] [14] [40,41] . . . [42,43] [37,38,23]

N̄τ · πN ḡ(0)π ḡ(0) ′πNN ḡ(0)πNN ḡ0 −g0 −
(ḡ0+ḡ2/3)

Fπ
π0N̄N ḡ(1)π ḡ(1) ′πNN ḡ(1)πNN ḡ1 g1 −ḡ1/Fπ
N̄

3τ3π0

− τ · π

N ḡ(2)π ḡ(2) ′πNN −ḡ(2)πNN ḡ2 g2 −ḡ2/3Fπ

(∂µπ) · N̄τSµN −2gA/Fπ −gπNN/mN −gπNN/mN −g/mN −g/mN −2gA/Fπ

of pions) representing the disappearance of the neutral pion into vacuum. Tadpoles can be eliminated by field redefinitions,
but for the left–right four-quark operator (2.28) a multi-pion vertex survives at leading order [23]. Although usually this is
of no consequence, it might give rise to a significant TVPV three-nucleon force.

The various hadronic interactions in Eq. (3.38) can be generated through the θ-term or any of the dimension-six CPV
operators introduced above that contains only quarks and/or gluons. The semileptonic four-fermion operators Qℓedq and
Q (1,3)
ℓequ will give rise to effective electron–hadron interactions. Concentrating on the electron–nucleon sector, we follow

roughly the convention of Ref. [13] to write

Leff
eN = −

GF
√
2


ēiγ5e ψ̄N


C (0)S + C (1)S τ3


ψN + ēe ψ̄N iγ5


C (0)P + C (1)P τ3


ψN

−ϵµναβ ēσµνe ψ̄Nσ
αβ

C (0)T + C (1)T τ3


ψN


+ · · · (3.40)

in terms of a relativistic nucleon field ψN . Normalizing to the GF = 1/(
√
2v2) allows us to make a straightforward

comparison with limits quoted in the atomic EDM literature. A conversion to the operators normalized to Λ appears in
Section 3.2.3 below. This interaction simplifies for a heavy nucleon field,

Leff
eN = −

GF
√
2


ēiγ5e N̄


C (0)S + C (1)S τ3


N − 8 ēσµνe vν N̄


C (0)T + C (1)T τ3


SµN


+ · · · . (3.41)

Here again, we neglect higher-derivative terms, operators containing more than two nucleon fields, and terms containing
explicit factors of the pion field as implied by chiral symmetry. Note that the electron scalar ⊗ nucleon pseudoscalar
operators vanish at lowest order in the heavy baryon expansion.7

3.1. Hadronic matrix elements

In order to determine the dependence of the hadronic couplings defined above on the underlying sources of CPV, one
must compute matrix elements of the various CPV operators introduced in Section 2. The result will be a set of expressions
of the form

dN = αN θ̄ +

 v
Λ

2 
k

β
(k)
N Im Ck, (3.42)

ḡ(i)π = λ(i) θ̄ +

 v
Λ

2 
k

γ
(k)
(i) Im Ck, (3.43)

C̄i = κi θ̄ +

 v
Λ

2 
k

δ
(k)
i Im Ck, (3.44)

where Ck denotes the Wilson coefficients for operator Qk, as appropriate, and the coefficients αN etc. embody the results of
the hadronic matrix-element computation. Note that for the three-gluon operator (2.23), here and in the rest of this review
Im Ck stands for CG̃. The coefficients αN and β(k)N have the units of electric charge times length, and wewill express all results
as e fm. The coefficients λ(i) and γ

(k)
(i) are dimensionless, while κi and δ

(k)
i have dimensions of fm3. We note that presently

very little is known about C̄1,2.

7 Note that we have introduced an overall minus sign on the right hand sides of Eqs. (3.40) and (3.41) tomatch the convention in Ref. [13] and elsewhere,
where the corresponding coefficients are defined for the Hamiltonian rather than the Lagrangian. Note also that an explicit−1 appears in front of the tensor
interactions in order to facilitate comparison with other work in which an opposite sign convention is used for ϵµναβ .
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For future purposes, it will be convenient to define the sensitivity of the other hadronic quantities to either δ̃q and δq or
dq and d̃q via v

Λ

2 
β

qG
N Im CqG + β

qγ
N Im Cqγ


= e ρ̃q

N d̃q + ρ
q
N dq =

 v
Λ

2 
e ζ̃ q

N δ̃q + e ζ q
N δq


, (3.45) v

Λ

2 
γ

qG
(i) Im CqG + γ

qγ
(i) Im Cqγ


= ω̃

q
(i) d̃q + ω

q
(i) dq =

 v
Λ

2 
η̃
q
(i) δ̃q + η

q
(i) δq


. (3.46)

Similarly, for the semileptonic interactions, we use GF = 1/
√
2v2; define g(i)S,P,T as the isoscalar and isovector form factors

in the limit of isospin symmetry

1
2
⟨N|


ūΓ u + d̄Γ d


|N⟩ ≡ g(0)Γ ψ̄NΓψN , (3.47)

1
2
⟨N|


ūΓ u − d̄Γ d


|N⟩ ≡ g(1)Γ ψ̄NΓ τ3ψN , (3.48)

where Γ = 1, γ5, σµν ; and write for C (0,1)S,P,T ,

C (0)S = −g(0)S

 v
Λ

2
Im C (−)eq and C (1)S = g(1)S

 v
Λ

2
Im C (+)eq (3.49)

C (0)P = g(0)P

 v
Λ

2
Im C (+)eq and C (1)P = −g(1)P

 v
Λ

2
Im C (−)eq (3.50)

C (0)T = −g(0)T

 v
Λ

2
Im C (3)ℓequ and C (1)T = −g(1)T

 v
Λ

2
Im C (3)ℓequ (3.51)

where we define the combinations

C (±)eq = Cℓedq ± C (1)ℓequ. (3.52)

For the dimension-six operators generated by BSM CPV, performing the hadronic computation entails two successive
steps of running and matching.

(i) One must first run the operators perturbatively from the BSM scaleΛ to the weak scale. After integrating out the heavy
SMdegrees of freedomwith appropriatematching,8 one then continues the running from theweak scale to the hadronic
scale. The quantities CqG, d̃q, δ̃, etc. are then defined at the hadronic scale Λχ ∼ 1 GeV where nucleon matrix elements
are then taken. They can be related to the quantities at the BSM scaleΛ through an appropriate ‘‘K -factor’’, as in

Im

g3 CqG


(Λχ ) = KqG Im


g3 CqG


(Λ), [g3 d̃q](Λχ ) = KqG[g3 d̃q](Λ),

[g3 δ̃q](Λχ ) = KqG [g3 δ̃q](Λ), (3.53)

where we follow the convention in the literature and bundle the strong coupling with the Wilson coefficients Im Ck etc.
The K -factors then relate the product of g3 and the Wilson coefficients at the two scalesΛ andΛχ .

(ii) Second, one must compute the relevant matrix element at the hadronic scale utilizing non-perturbative methods. For
the QCD θ-term, only the second step is required.

Carrying out the perturbative running is generally straightforward. In general, one must account for mixing among
various operators. The full anomalous dimensionmatrix that takes into account the EDM, CEDM, three-gluon and four quark
operators has recently been obtained in Refs. [46,47]. Prior to this work, efforts concentrated largely on the evolution of the
EDM, CEDM, and three-gluon operators[48–51]. Within this limited subset of operators, only the three-gluon operator is
multiplicatively renormalized. The resulting ‘‘K -factor’’, obtained after taking into account two-loop running and threshold
corrections, is given in the first line of Table 6. The three-gluon operator, however, will mix into the CEDM while the latter
will mix into the EDM. Consequently it is not generally possible to quote a single K -factor for the latter two operators. Since
the work of Ref. [50], however, it has often been the practice to do so in the literature. The reason is that in the MSSM, CG̃
arises at two-loop order, whereas the CEDM first occurs at one-loop. Thus, themixing ofQG̃ intoQqG is effectively higher loop
order. In the more general case, one must consider the full effects of operator mixing. Nevertheless, for illustrative purposes
we quote a K -factor for the CEDM to illustrate the magnitude impact made by QCD evolution from the weak to hadronic
scales. Under similar assumptions, the authors of Ref. [50] obtained the K -factor given in Table 6.

Performing non-perturbative computations is a more challenging task. Before reviewing the status of such calculations,
it is useful to delineate expectations for the hadronic matrix elements based on the chiral symmetry properties of the
operators, following the framework developed in Refs. [37,23]. For a parallel treatment in the context of chiral SU(3), see
Refs. [52,53]. We follow this discussion with a review of explicit computations utilizing various approaches.

8 Dimension-six operators containing heavy quark flavors may contribute to the light quark operators via this running and matching procedure.
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Table 6
Illustrative perturbative renormalization factors for dimension-six CPV operators, Q . As in
Eq. (3.53) the K -factors apply to the product of g3 with the Im Ck , etc. In general, only QG̃ is
multiplicatively renormalized,with the renormalizationK -factor given in the first row. For all
other operators, onemust take into accountmixing. Under the assumptionsmade in Ref. [50]
for the MSSM, approximate K -factor for the EDM and CEDM operators have been obtained as
quoted above. No analogous approximation has been made for the four-quark operators, so
we do not list corresponding entries. For a recent determination of the anomalous dimension
matrix, see Refs. [46,47].

Operator KQ Reference Remarks

QG̃ 3.30 [48–51] Mult Renorm
QqG 3.30 [50] Mixing neglected
QqV , V = B,W 1.53 [50] Mixing neglected

Q (1,8)
quqd Matrix [46,47]

3.2. Chiral symmetry and naïve dimensional analysis

In the limit of vanishing quark masses, the QCD Lagrangian is invariant under separate rotations of the right- and left-
handed fields. Specializing to the two lightest flavors, these rotations are given by

q → exp [iτ · (θRPR + θLPL)] q (3.54)

where PR(L) denote right- (left-) handed projection operators and θR(L) are three-component vectors of arbitrary real
numbers. For future reference, it is useful to re-express Eq. (3.54) in terms of vector and axial rotations:

q → exp [iτ · (θV + θAγ5)] q. (3.55)

The chiral SU(2)R × SU(2)L transformation embodied in Eqs. (3.54) and (3.55) are isomorphic to those of SO(4), and
for present purposes it is convenient to consider objects that have definite SO(4) transformation properties. For example,
four-component SO(4) vectors

V =


V
V4


(3.56)

change, under an infinitesimal transform, by

δV =


V × θV + V4 θA

−θA · V


, (3.57)

where θV ,A are presumed to be tiny.
Terms in the effective Lagrangian just above the hadronic scale, and in particular the CPV interactions in Eq. (2.1), break

chiral symmetry in specificways. In order to reproduce the corresponding Smatrix, the effective Lagrangianwritten in terms
of hadronic fields has interactions that break the symmetries in the same way. For example, instead of a component of a
chiral four-vector V [q] built out of quark fields, there will be a hadronic chiral four-vector V [π,N] built from nucleon and
pion fields. For a particular choice of pion fields, the latter can be related to one having no pions, V [0,N], by

V [π,N] = V [0,N] −
2π
DFπ


π

Fπ
· V [0,N] − V4[0,N]


, (3.58)

V4[π,N] = V4[0,N] −
2π
DFπ

·


π

Fπ
V4[0,N] + V [0,N]


, (3.59)

where D = 1 + π2/F 2
π .

The proportionality constant between the hadronic interaction strength and the interaction strength above the hadronic
scale is the hadronic matrix element. Hadronic interactions obtained from different components of the same object share
the same matrix element. When the matrix element is not known, it can be estimated using naïve dimensional analysis
(NDA) [54,26]. Because the short-distance physics incorporated in operators in the Lagrangian cannot be separated from
quantum-mechanical effects represented by loops in Feynman diagrams, one assumes that the natural size of the operator
coefficients is given by loop cutoff changes of O(1). If M denotes the scale of breakdown of the EFT, the dimensionless
‘‘reduced’’ coefficient (4π)2−NMD−4g of an operator of canonical dimensionD involvingN fields is assumed to beO(1) times
the appropriate powers of the reduced couplings of the underlying theory. When applied to chiral-symmetric operators,
which are characterized only by the reduced QCD coupling g3/4π , but to any power, consistency requires that we take
g3 ∼ 4π in matrix-element estimates.

Before proceeding with detailed applications, we consider two simple illustrations. First, when matching the CEDM
operators onto the nucleon EDMs, we note that both operators possess the same canonical dimension. In this case N = 3
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and D = 5 (as we are below the weak scale). Since d̃q and dN have dimensionM−1, we need only focus on the powers g3 and
4π . In this case, N = 3 implies that

ρ̃NDA
N =

g3
4π

∼ 1. (3.60)

On the other hand for the contribution of the three-gluon operator, which is D = 6 even below the weak scale, we require
one additional power of the hadronic scaleΛχ as in

β G̃
N =

eg3Λχ
4πv2

∼
eΛχ
v2

, (3.61)

where the factor of 1/v2 arises from the definition of β G̃
N .

A second simple example is provided by the quark mass effects on the proton and neutron masses. The quark mass
operators in Eq. (2.8) are components of two SO(4) vectors whose fourth component transform as a scalar or pseudoscalar
under parity,

S[q] =


−iq̄τγ5q

q̄q


and P[q] =


q̄τq
iq̄γ5q


, (3.62)

respectively. Replacing the light quark doublet in Eq. (3.62) by heavy nucleon fields and noting that the pseudoscalar
operators vanish to lowest order in the heavy nucleon limit, we obtain the corresponding nucleon SO(4) vectors:

S[0,N] =


0
N̄N


and P[0,N] =


N̄τN
0


. (3.63)

Using Eqs. (3.58) and (3.59) one finds that the fourth component of S[π,N] and third component of P[π,N] give
contributions from the average quark mass and mass splitting to the average nucleon mass, (m̄N)q, and nucleon mass
difference, (∆mN)q ≡ (mn − mp)q, respectively:

LN
mass = − (m̄N)q N̄N +

(∆mN)q

2
N̄τ3N. (3.64)

The reduced coefficients are (m̄N)q/Λχ and (∆mN)q/Λχ , which should be linear in m̄/Λχ and ϵm̄/Λχ , respectively, so that
from NDA one expects (m̄N)q ∼ m̄ and (∆mN)q ∼ ϵm̄.

These terms are linked by chiral symmetry to others that contain an even number of pion fields, which contribute to
pionic processes such as pion–nucleon scattering and pion production in nucleon–nucleon collisions. The two terms in
Eq. (3.64) can be seen as the isospin-symmetric and breaking components of the sigma term. The corresponding coefficients
have therefore been evaluated in lattice QCD and also extracted from data. Results are, by and large, in agreement. The
extrapolation of lattice results on octet baryon masses in 2+ 1 flavor QCD [55,56], for example, gives (m̄N)q = 45± 6 MeV,
which agrees with the venerable value from Ref. [57]. Other extractions from data give similar values (see, e.g., the
compilation in Ref. [58]; see also [59]), though the authors of Ref. [60] obtain a somewhat larger value. Similarly, the
lattice value (∆mN)q = 2.26 ± 0.57 ± 0.42 ± 0.10 MeV [61] is consistent with other lattice evaluations (see Ref. [62]),
with a determination of the electromagnetic splitting using dispersion relations [63], and with an extraction from pion
production [64].

For future purposes, it is useful to relate m̄ to the pion mass. Since the pion is the pseudo-Goldstone boson of
spontaneously broken chiral symmetry, its mass vanishes in the limit m̄ → 0. Away from this limit, the pion mass term
arises from a scalar SO(4) vector as in Eq. (3.63), but with N̄N → 1. It is thus proportional to m̄, and from NDA m2

π ∼ m̄Λχ .
It is convenient, as we do below, to estimate the coefficients of chiral-breaking operators stemming from the quark masses
in terms ofm2

π/Λχ .

3.2.1. Applications: θ̄-term
We now use these classifications to identify the expected scaling of various hadronic operators as they are generated by

underlying CPV interactions. We begin with the QCD θ̄-term, Lθ̄ (2.3), in the form of the quark bilinear (2.6).
This transformed θ-term is the fourth component of the same chiral SO(4) pseudovector as the quark mass term, and it

gives rise to the −2N̄τ · πN/Fπ term in Eq. (3.38) [37]. Thus, N̄τ3N and −2N̄τ · πN/Fπ (plus its chiral partners with more
pion fields) transform as the third and fourth components of the same SO(4) pseudovector at the hadronic level, and the
coefficient of the latter must be given in terms of matrix elements of the former:

ChadP[π,N] = ⟨had|P|had⟩, (3.65)

where the state |had⟩ contains appropriate nucleon and pion modes, viz.

⟨N|P3|N⟩ = ChadN̄τ3N and ⟨N|P4|Nπ⟩ = −2ChadN̄τ · πN/Fπ . (3.66)
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On the other hand, since

ϵm̄⟨N|P3|N⟩ =
(∆mN)q

2
N̄τ3N, (3.67)

we have that

Chad = (∆mN)q /2ϵm̄. (3.68)

Hence, the matrix element of the QCD θ-term operator is

−
m̄
2


1 − ϵ2


θ̄ ⟨N|P4|Nπ⟩ =

1 − ϵ2

2ϵ
(∆mN)q

Fπ
θ̄ N̄τ · πN ≡ ḡ(0)π N̄τ · πN. (3.69)

Thus, we obtain the prediction

ḡ(0)π =
1 − ϵ2

2ϵ
(∆mN)q

Fπ
θ̄ or λ(0) =

1 − ϵ2

2ϵ
(∆mN)q

Fπ
. (3.70)

If the matrix element (1 − ϵ2)(∆mN)q/ϵ is calculated, ḡ(0)π /θ̄ comes for free. As a rough estimate, taking (∆mN)q ∼ 2ϵm̄
and m̄ ∼ Fπ/20 one would expect ḡ(0)π ∼ 0.05 θ̄ , or λ(0) ∼ 0.05. We may also express the relationships in Eq. (3.70) as

λ(0) ∼
m2
π

ΛχFπ
. (3.71)

This expectation is given in Table 17 along with predictions for the same quantity using other approaches. The lattice value
for (∆mN)q given above implies

λ(0) = 0.017 ± 0.005, (3.72)

where the error is obtained by adding the lattice uncertainties in (∆mN)q in quadrature.
The foregoing reasoning leads [37] to analogous expectations for the other λ(i) as well as the hadronic coefficients αN ,

β
(k)
N , and γ (k)(i) . For example, the simplest way to produce the isovector TVPV πNN interaction π0N̄N in Eq. (3.38) is from a

tensor product of two pseudoscalar vectors, and as a consequence

λ(1) ∼
m4
π

Λ3
χFπ

, (3.73)

where we took ϵ ∼ 1. The isotensor πNN interaction in Eq. (3.38) is even more suppressed.
The analogous arguments for the short-range components of the nucleon EDM are more complicated because one needs

to account for the chiral transformation properties of the interaction between quarks and the photon field Aµ,

L
quark
charge = −

e
6
Aµ q̄γ µ (1 + 3τ3) q. (3.74)

While the first term is a chiral scalar, the second is the 3–4 component of an antisymmetric tensor. Taking the tensor product
with the pseudoscalar vector P , they give rise, respectively, to the isoscalar and isovector nucleon EDMs. Thus, one expects

d̄0,1 ∼ eθ̄
m2
π

Λ3
χ

or αN ∼ e
m2
π

Λ3
χ

∼ 0.2
m2
π

Λ2
χ

e fm, (3.75)

where the additional factors ofΛ−2
χ are simply a consequence of dimensional analysis.

3.2.2. Dimension-six operators
We now consider the dimension-six CPV operators appearing in Eq. (2.4) and arising from BSM physics [23]. The quark

CEDMs can be embedded in SO(4) vectors and pseudovectors:

SAµνGA
µν ≡


−iq̄σµνγ5τ T Aq

q̄σµνT Aq


GA
µν and PAµνGA

µν ≡


q̄σµντ T Aq
iq̄σµνγ5T Aq


GA
µν . (3.76)

Thus, the isoscalar and isovector CEDM operators transform as the P4 and S3 components of an SO(4) pseudovector and
vector, respectively. They contribute to ḡ(0)π and ḡ(1)π without any additional factors associated with chiral symmetry
breaking. Thus, we expect these two couplings to be comparable,

ḡ(0,1)π ∼
Λ2
χ

vFπ

 v
Λ

2
Im CqG or γ

qG
(0,1) ∼

Λ2
χ

vFπ
. (3.77)
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Again ḡ(2)π is a higher-order effect. However, since the EDM and CEDM Wilson coefficients carry an explicit factor of the
quark Yukawa couplings Yq ∼ mq/v ∼ m2

π/(vΛχ ), it is useful to express the ḡ(i)π in terms of the quantity δ̃q appearing in
Eq. (2.19) as well as the pion mass and QCD mass scales:

ḡ(0,1)π ∼
m2
πΛχ

FπΛ2
δ̃q or η̃

q
(0,1) ∼

m2
πΛχ

Fπv2
. (3.78)

Similarly, we obtain for the sensitivity of ḡ(0,1)π to the d̃q

ω̃
q
(0,1) ∼

Λ2
χ

Fπ
. (3.79)

From similar considerations, the CEDM contributions to the nucleon EDM requires no additional chiral suppression but
only an electromagnetic interaction, leading to

d̄(0,1) ∼
e
v

 v
Λ

2
Im CqG or β

qG
N ∼

e
v
, (3.80)

or, alternatively,

d̄(0,1) ∼
em2

π

ΛχΛ
2
δ̃q or ζ̃0,1 ∼

m2
π

Λχv2
(3.81)

and

ρ̃
q
N ∼ 1. (3.82)

For the effect of the quark EDMoperators, the logic is similar. The transformation properties of the isoscalar and isovector
quark EDMs are obtained by replacing the T A GA

µν in Eq. (3.76) by Fµν . Purely hadronic operators now require integrating
out high-momentum photons exchanged among quarks, which generates an additional factor of at least α/π . In particular,
for the ḡ(i)π we expect

γ
qγ
(i) ∼

α

π

Λ2
χ

vFπ
, ω

q
(i) ∼

α

π

Λ2
χ

eFπ
, and η

q
(i) ∼

α

π

m2
πΛχ

Fπv2
. (3.83)

This suppression renders these operators irrelevant for most purposes. In contrast, no such α/π factor is needed for the
quark EDM contribution to the nucleon EDMs since the photon is external. In this case, we expect

β
qγ
N ∼ β

qG
N , ρ

q
N ∼ ρ̃

q
N , and ζ(0,1) ∼ ζ̃(0,1). (3.84)

The situation for the three-gluon and four-quark operators is more subtle. Both the Q (1,8)
quqd and QG̃ are chiral-invariant

pseudoscalars. Using S and P from Eq. (3.62) we obtain

S · P = −q̄τiγ5q · q̄τq + q̄q q̄iγ5q = Q (1)
quqd. (3.85)

A similar result applies to the analogous definitions of S and P but with the SU(3)C generators T A included, yielding the
operator Q (8)

quqd. The CPV three-gluon operator is trivially a chiral pseudoscalar as the gluon fields do not transform under
SU(2)R × SU(2)L. Consequently, the contributions from these operators to the ḡ(i)π require explicit factors of m2

π/Λχ and
ϵm2

π/Λχ that reflect the chiral symmetry breaking needed to generate components of an SO(4) vector. Letting Ck denote the
Wilson coefficient for any one of these three operators we then expect

ḡ(0,1)π ∼
m2
πΛχ

FπΛ2
Im Ck or γ

(k)
(0,1) ∼

mπ

v

2 Λχ
Fπ
, (3.86)

with ḡ(2)π yet again at a higher order. Note that for such chiral-invariant TVPV sources the contact interactions in Eq. (3.38),
which are chiral invariant, can be generated without any suppression from m̄:

C̄1,2 ∼
Λχ

F 2
πΛ

2
Im Ck or δ

(k)
1,2 ∼

Λχ

F 2
πv

2
. (3.87)

In nuclei they can be competitive with one-pion exchange with one ḡ(0,1)π interaction, as the enhancement ∼m−2
π from a

pion propagator is compensated by them2
π in Eq. (3.86).

There is no suppression also when, in combination with the quark electromagnetic interaction, these sources produce
isoscalar and isovector components of thenucleonEDMtransforming as chiral scalar and antisymmetric tensor, respectively:

d̄(0,1) ∼
eΛχ
Λ2

Im Ck or βk
N ∼

eΛχ
v2

. (3.88)
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Matching the four-quark operator in Eq. (2.29) onto hadronic operators, we first observe that it is the 3–4 component of
a symmetric chiral tensor. Looking at the terms without color matrices T A, one may decompose them into two terms, each
having the form of the product of the third and fourth components of either S or P:

ūu d̄iγ5d − ūiγ5u d̄d =
1
2
[S3 ⊗ S4 + P4 ⊗ P3] . (3.89)

Similar relations hold for terms with T A.
The S3 ⊗ S4 structure leads directly to a contribution to ḡ(1)π . However, the presence of S3 signals vacuum instability, as it

generates also terms with an odd number of pions, including a neutral pion tadpole. Such a tadpole can be eliminated by a
chiral rotation, but it leaves behind a three-pion interaction that has not been well studied and is neglected here. After this
rotation, one finds also contributions to both ḡ(0)π and ḡ(1)π , and

ḡ(0,1)π ∼
Λ3
χ

FπΛ2

Im Cϕud
(4π)2

or γ
(ϕud)
(0,1) ∼

Λ3
χ

(4π)2v2Fπ
. (3.90)

As for CEDM, there is no suppression in the nucleon EDM,

d̄(0,1) ∼
eΛχ
Λ2

Im Cϕud
(4π)2

or β
(ϕud)
N ∼

eΛχ
(4π)2v2

. (3.91)

3.2.3. Semileptonic interactions
For the semileptonic matrix elements in Eqs. (3.49)–(3.51), we can follow similar considerations. Scalar and tensor

interactions aremost important at low energies, Eq. (3.41). The values of g(i)S follow straightforwardly from the contributions
of the light quarks to the nucleon masses (3.64):

g(0)S =
(m̄N)q

2m̄
, g(1)S =

(∆mN)q

4ϵm̄
. (3.92)

From the empirical and lattice values for (m̄N)q and (∆mN)q given in Section 3.2, one obtains

g(0)S = 6.3 ± 0.8, g(1)S = 0.45 ± 0.15, (3.93)

where the errors do not include the range of values for the light quark masses.
Similarly, the tensor matrix elements are related to those of the quark EDM,

g(0)T =
1
4


ρu
p + ρu

n + ρd
p + ρd

n


, g(1)T =

1
4


ρu
p − ρu

n − ρd
p + ρd

n


. (3.94)

In principle, we could adopt the chiral SO(4) approach to estimate the g(i)P . Instead, we find it useful to follow a variant
of the arguments discussed in Refs. [12,65]. Taking the divergence of

⟨N|ūiγµγ5u − d̄iγµγ5d|N⟩ = gAψ̄N


γµ +

2m̄N

m2
π − q2

qµ


γ5τ3ψN , (3.95)

employing partial conservation of the isovector axial current, using nucleon equations of motion, and observing that the
divergence of the isovector axial current is anomaly-free as well as the definitions of the g(k)P in Eq. (3.47) and (3.48) we
obtain

g(1)P =
gAm̄N

m̄


m2
π

m2
π − q2


, (3.96)

assuming exact isospin symmetry.9 Analogously, we can define for matrix elements of the remaining flavors

⟨N|Q̄Γ Q |N⟩ ≡ gQ
Γ ψ̄NΓψN , (3.97)

with Q denoting here s, c , b, or t . We will henceforth treat the strange quark separately and refer to c , b, and t as the heavy
flavors.

The scalar form factors g s
S can be obtained from analyses of the σ term. Defining

⟨N|mss̄s|N⟩ = σsN̄N (3.98)

9 The second term on the RHS of Eq. (3.95) arises from the pion pole and gives the leading contribution to the induced pseudoscalar form factor. We
thank B.R. Holstein and J.F. Donoghue for helpful conversations on this point.
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and

κs =
σs

220 MeV
(3.99)

as has been conventional in the recent literature (see, e.g. [12]), one has

g s
S = κs

220MeV
ms

(3.100)

with κs = 21 ± 6 MeV [56]. For heavier flavors a short derivation appears in Appendix A and we simply quote the result
here:

gQ
S =


66MeV
mQ


(1 − 0.25κs) . (3.101)

Note that the strange and heavy quark scalar form factors are isoscalar.
Again, the derivation for the pseudoscalar form factors is given in Appendix A and leads to

⟨N|mQ Q̄ iγ5Q |N⟩ = ψ̄N


gQ (0)
P + gQ (1)

P τ3


iγ5ψN , (3.102)

with

gQ (0)
P =

1
4


g(0)A


mN

mQ


+ gA


mu + md

mu − md

 
∆mN

2mQ


(3.103)

gQ (1)
P =

1
4
gA


mN

2mQ

 
mu − md

mu + md


. (3.104)

With these considerations in mind, we now review explicit computations of the hadronic matrix elements, referring to
the expectations based on considerations of chiral symmetry wherever possible. To date, first-principles computations have
been undertaken for the quantity αn; the scalar coupling g(0,1)S that can be obtained from σπN and the contribution from the
quark mass difference to the nucleon mass splitting as discussed above; direct computations of the isovector form factors
g(1)Γ for Γ = S, T using lattice methods10 (for a compilation and recent results, see Ref. [66]); and for the nucleon electric
dipole moment form factors using HBχPT. Indeed, HBχPT can provide considerable insight into the dependence of matrix
elements on light quark masses while implementing a consistent expansion of QCD in scale ratios as discussed above. On
the other hand, knowledge of the low-energy constants requires additional input, either from a lattice computation, direct
measurement, or a model estimate. The present state of the art still relies heavily on the latter approach. As a result, there
exists a considerable degree of model-dependent uncertainty in the values of the β(k)N , etc. One objective of this review is to
provide a set of benchmark values and theoretical uncertainties for these parameters. A compilation of existing results drawn
from various methods is given in Tables 17 through 22 appearing in Appendix B. We now review explicit computations of
the hadronic matrix elements, leading to the results quoted in these tables.

3.3. Chiral perturbation theory

At low energies QCD reduces to HBχPT, where the symmetries of QCD, including the considerations of Section 3.2, are
naturally expressed. The isoscalar and isovector electric dipole form factors (EDFF) of the nucleon are defined through the
TVPV electric current

JµTVPV(q, k) = 2

F0(−q2)+ F1(−q2)τ3

 
Sµv · q − S · qvµ +

1
mN

(Sµk · q − S · qkµ)+ · · ·


, (3.105)

where the outgoing photon momentum q = p − p′, and k = (p + p′)/2. The EDFF

Fi(Q 2) = di − S ′

iQ
2
+ · · · (3.106)

gives the EDM at zero momentum transfer, q2 = 0, and the term linear in q2 (the form-factor radius) provides an
electromagnetic contribution that cannot be separated from a short-range electron–nucleon interaction.

HBχPT provides themomentumand pionmass dependence of the EDFF in terms of the parameters appearing in the TVPV
Lagrangian (3.38) and in the Lagrangian encoding P-even, T-even interactions. The full nucleon EDFF has been calculated to
leading order (LO) [67–70,23] and next-to-leading order (NLO) [71,72,70,73,23] in the P/MQCD expansion for all sources
described above: the θ-term and the dimension-six CPV operators. (For related results in three-flavor χPT, see Refs. [74–77,

10 Note that the computations in Ref. [66] apply to the charged current form factors that are related to those of interest here by an isospin rotation. Note
also that the relative normalizations of the quantities here and in that work are given by gS,T = 2g(1)S,T .
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72,53].) The resulting contributions fall into two classes: (i) short-range contributions associated with momentum scales of
orderΛχ , encoded in the Lagrangian parameters and high-momentum part of pion loops; and (ii) long-range contributions
associated with scales of order mπ and below, which appear in the low-momentum part of loops and can be explicitly
computed. The arbitrary separation between Lagrangian parameters and high-momentum part of pion loops is controlled
by the regularization scheme, and after renormalization observables are regularization-scheme independent.

In this context, the short-range EDMs d̄i appear at LO for all sources. Long-range contributions resulting from pion loops
introduce a dependence on ḡ(0)π and ḡ(1)π . The specific chiral order at which a long-range contribution arises depends on the
chiral properties of the underlying source, as detailed above. For the θ-term, CEDM, and left–right four-fermion operators,
there are contributions proportional to ḡ(0)π at both LO and NLO, but at LO only to the isovector nucleon EDM. For the CEDM
and left–right four-fermion operators there are additional NLO terms proportional to ḡ(1)π as well. The dependence of loops
on the regulator, choice of renormalization scheme, and renormalization scale can be absorbed into a renormalization of the
d̄i. The momentum dependence, and in particular the contribution to the radius, is finite and set by 2mπ . For other sources,
the relative suppression of pion–nucleon couplingsmeans smaller loop contributions. Themomentumdependence becomes
a higher-order effect and the scale of its variation is determined byΛχ rather than 2mπ .

For the nucleon EDM one obtains to NLO:

d0 = d̄0 −
egA

16πFπ


ḡ(0)π


3mπ

mN
−

4(∆mN)q

mπ


+ ḡ(1)π

mπ

mN


(3.107)

and

d1 = d̄1(µ)+ δd̄1(µ)−
egA

(2π)2Fπ


ḡ(0)π


ln

m2
N

m2
π

+
5πmπ

4mN
−
∆m2

π

m2
π


− ḡ(1)π

πmπ

4mN


, (3.108)

where∆m2
π = m2

π± − m2
π0 is the (mostly electromagnetic) pion mass splitting and

δd̄1(µ) ≡ −
egAḡ(0)π
(2π)2Fπ


2

4 − d
− γE + ln

4πµ2

m2
N


(3.109)

in terms of the dimension of spacetime d, the renormalization scale µ, and the Euler–Mascheroni constant γE ≃ 0.577.
The µ dependence of δd̄1(µ) can be absorbed in d̄1(µ). One cannot separate parameter and loop contributions in a

model independent way, and since the same combination of loops and parameters appears when the nucleon is inserted
in a nucleus, it is simplest to redefine d̄0 and d̄1 to represent, respectively, the full isoscalar and isovector nucleon EDMs.
However, one expects no cancellations between loop contributions that are non-analytic in the quark masses and thusm2

π ,
and short-range pieces, which are analytic.11 In this case the magnitude of the non-analytic contributions at a ‘‘reasonable’’
renormalization scale serves as a lower bound for the redefined d̄i. For µ = mN , we expect for θ̄ [67], qCEDM [73] and
left–right four-fermion operators [23],

|d̄0| & 0.01

ḡ(0)π + 0.3 ḡ(1)π


e fm, |d̄1| ∼ 0.1


ḡ(0)π + 0.03 ḡ(1)π


e fm. (3.110)

Relying on the arguments leading to Eq. (3.70) for ḡ(0)π , for the θ-term we obtain |dN | & 2 · 10−3 θ̄ e fm, from which the
current bound on θ̄ arises. For the other sources one currently has to rely on NDA or model-dependent estimates, as we
discuss below.

3.4. Lattice QCD

Lattice QCD holds the promise of providing the various matrix elements for all relevant CPV mechanisms. However, to
our knowledge, calculations have focused on the nucleon EDM for the θ-term, the isoscalar scalar couplings g(0,1)S , and the
and tensor form factors. In the former case, the most recent published computations of the αN date back nearly five years or
more [78–83]. Generally, these computations have followed one of two approaches: (a) computing the shift in the nucleon
energy in the presence of an electric field, or (b) computing the nucleon electric dipole form factor by expanding to leading
non-trivial order in θ̄ . These calculations are carried out at unphysical values of the pion mass. The nucleon EDFF discussed
in Section 3.3 provides in principle the tool to extrapolate results to smallermomentum and pionmass. Here, we summarize
the most recently reported computations for each approach.

The most recent computation of the first method has been reported in Ref. [82]. Using a two-flavor dynamical clover
action, the authors considered the ratio of spin-up and spin-down nucleon propagators

R3(E, t; θ̄ ) =
⟨N1N̄1⟩

⟨N2N̄2⟩
=

1 + O(θ̄)


exp


−αN θ̄Et


, (3.111)

11 It is often conventional to retain only the non-analytic terms from loop computations and absorb all analytic terms into the parameters.
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Fig. 2. Lattice computation of nucleon EDMs induced by the QCD θ-term. The pion mass squared dependence of dn (left) and dp (right) obtained using
various approaches. Square symbols denote the results in external electric field method in Nf = 2 clover fermion [82], and circle symbols denote one in
form factor method [84] with same gauge configurations. Red bar denotes the bound of EDM in Nf = 2 domain-wall fermion in [80], and diamond is a
result from EDM form factor of imaginary θ method quoted in [83]. Note that the error bar about the diamond symbols may be an underestimate due to
large systematic error associated with chiral symmetry breaking with clover fermions. The triangle symbol gives a current algebra model estimate. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where the subscript σ on Nσ denotes spin, t denotes the time, and E gives the magnitude of the electric field along the
z-direction. The electric field is introduced via a replacement of the gauge link variables Uk(x) in the Dirac–Wilson action as

Uk(x) → eQqEktUk(x), (3.112)

where Qq is the quark charge and k labels the direction. For this computation, the replacement (3.112) was applied only
to the valence quarks; so-called ‘‘disconnected’’ insertions of the electric field on the sea quarks that enter through the
quark determinant have not been included.12 A corrected ratio Rcorr

3 was used to minimize the effect of insufficient statistics
associated with vanishing E and/or θ̄ . One then has

2αN θ̄E = ln

Rcorr
3 (E, t − 1; θ̄ )
Rcorr
3 (E, t; θ̄ )


. (3.113)

A 243
× 48 lattice with β = 2.1 and lattice spacing a ≈ 0.11 fm was employed, where the latter is set by the ρ-meson

mass mρ = 768.4 GeV. Results for αn obtained with a lightest quark mass corresponding to mπ = 0.53 GeV are shown in
Fig. 2, using θ̄ = 0.025 and E = 0.004/a2. The corresponding values are quoted in Table 17.

The authors also studied the dependence of αN on the light quark mass to determine if this coefficient vanishes in the
chiral limit as required. Results were obtained at mπ = 1.13, 0.93, 0.76 and 0.53 GeV. Results for the neutron are indicated
in Fig. 2. It is apparent that the computation does not exhibit the correct chiral behavior. The authors conclude that this
situation is likely due to the explicit breaking of chiral symmetry by the Wilson-type quark action and the relatively large
value of the lightest quark mass used. As the authors also emphasize, obtaining a significant, non-vanishing signal for the
nucleon EDM does not appear to require the presence of appropriate chiral behavior.

The most recent computation utilizing the form factor method has been reported in Ref. [83]. The computation was
performed by rotating θ̄ into the quark mass matrix and taking it to have an imaginary value:

θ̄ = −iθ̄ I , (3.114)

with θ̄ I being a real number. Simulations were performed using the Iwasaki gauge action and two-flavors of dynamical
clover fermions with β = 2.1, a ≈ 0.11 fm (again set by mρ), mπ/mρ ≈ 0.8, and several values of the imaginary vacuum
angle: θ̄ I = 0, 0.2, 0.4, 1.0, and 1.5. The EDM form factor F3 was obtained from the ratio of three- and two-point correlators:

R(t) =

GθΓNJµN(t
′, t; p⃗′, p⃗)

Tr

GθNN(t ′; p⃗′)Γ4

 , (3.115)

where t denotes the time co-ordinate for the insertion of the vector current Jµ, t ′ gives the time for the nucleon ‘‘sink’’, and
p⃗ (p⃗′) gives the nucleon momentum before (after) the vector current insertion.

12 In the limit of degenerate sea quarks in three-flavor QCD, the disconnected contribution is identically zero due to the vanishing trace over the quark
charges [82].
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Fig. 3. Lattice computation of θ̄-dependence of dn using the form factor method [83] for θ̄ I = 0.2. Shown is the squared momentum transfer dependence
at three mass parameters K = 0.1382–0.1367 which correspond tom2

π = 0.3–0.85 GeV2 . These are results in Nf = 2 clover fermion configurations.

Results at vanishing momentum transfer were obtained using two different extrapolation methods: (a) employing a
dipole ansatz for the q2-dependence of the form factor and (b) assuming the EDM and Dirac form factors have the same
q2-dependence and utilizing the latter (see Fig. 3). Both methods give consistent values for the EDM. Taking

dθN =
∂dθN
∂θ̄ I

+ c

θ̄ I
3

(3.116)

and using the coefficient of the linear term to define the EDM, the authors obtain the results indicated in Table 17. The results
agree with those of Ref. [82] (electric field method) within error bars.

In addition to the direct computations of dN , lattice QCD results provide input for the determination of λ(0) via
Eq. (3.70) and for the g(0,1)S,T . As discussed above, values of g(0,1)S maybe inferred from lattice computations ofσπN and (∆mN)q.
Alternately, one may obtain g(1)S,T from direct computations of the charge changing scalar and tensor form factors [66] via
isospin rotation. Taking into account the factor of two difference in normalization of these form factors, the preliminary
lattice values quoted in Ref. [66] imply

g(1)S (MS, µ = 2GeV) = 0.4(2) (3.117)

g(1)T (MS, µ = 2GeV) = 0.53(18). (3.118)

The computation of g(1)S was obtained using two different gauge field ensembleswith pionmasses in the ranges 390 < mπ <
780 MeV and 350 < mπ < 700 MeV, respectively. A chiral extrapolation was performed assuming a linear dependence on
mq. The value for g(1)T was derived by combining RBC/UKQCD and LHPC results, with a chiral extrapolation based on HBχPT
results. A comparison of the value for g(1)S with a result obtained using (∆mN)q is given in Table 23 below. For another recent
computation of these quantities, see Ref. [85].

3.5. QCD sum rules

In recent times, the most widely quoted hadronic computations of dn and the ḡ(k)π rely on the method of QCD sum rules
(QCDSR). (For an extensive review in the context of EDMs, see Ref. [14]; see Ref. [86] for a more recent discussion.) This
approach entails computing hadronic correlators at large virtuality where the operator product expansion (OPE) can be
rigorously applied and matching the result onto a phenomenological ansatz for the structure of the correlator at lower
virtuality. The reliability of this matching is improved by performing a Borel transform to the OPE and phenomenological
forms for the correlator.

In the present instance, the relevant correlatorΠ(Q 2) involves two nucleon sources ηN ,

Π(Q 2) = i


d4x eiq·x ⟨0|T {ηN(x)η̄N(0)} |0⟩, (3.119)

where ηN(x) contains combination of quark field operators that carry the nucleon quantum numbers, where Q 2
= −q2, and

where the Dirac indices onΠ have been suppressed for simplicity. In general, one uses a linear combination of two sources,

ηN = η1 + βη2, (3.120)
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where

η1 = 2ϵabcdTaCγ5ubdc and η2 = 2ϵabcdTaCubγ5uc (3.121)

with the subscripts a etc. denoting color. One computesΠ(Q 2) in a background that contains photon and pion fields as well
as the TVPV interactions introduced above and identifies various Lorentz structures that are invariant under chiral rotations
and that exhibit the appropriate spacetime symmetries associated with the EDM or πNN interactions:

EDM →


F̃ · σ , ̸q


,

πNN ↛q, (3.122)

where F̃ · σ ≡ F̃µνσµν . The corresponding phenomenological ansatz for the correlator at low virtuality is

Π(Q 2)pheno = −
1
2
fd(Q 2)


F̃ · σ , ̸q


+

1
2
fπ (Q 2) ̸q + · · · , (3.123)

with

fd(Q 2) =
λ2dnmN

(Q 2 + m2
N)

2
−

Ad(Q 2)

Q 2 + m2
N

+ Bd(Q 2), (3.124)

fπ (Q 2) =
λ2ḡ(k)π mN

(Q 2 + m2
N)

2
−

Aπ (Q 2)

Q 2 + m2
N

+ Bπ (Q 2).

The dependence of the fk(Q 2) on the quantities of interest here (dn, ḡ(k)π ) arises from the first (double pole) term on the RHS
of Eq. (3.124). As we discuss shortly, it carries an important universal dependence on the parameter λ. The single pole term
represents contributions associated with transitions between the neutron and excited states. Its strength, parameterized by
the quantities Ad,π is generally unknown, leading to one source of theoretical uncertainty. The continuum terms Bd,π are
generated by transitions between excited nucleon states and are also generally unknown.

For the OPE evaluation, one performs all possible contractions of the q and q̄ fields in the sources ηN and η̄N , leading to
an expression in terms of the quark propagators evaluated in the presence of a photon and CPV background. The OPE gives
the quark propagators in terms of various Wilson coefficients times condensates, viz.

S(x) = S(x)(0) + χ(x)χ̄(0)+ S(x)1 photon
+ S(x)1 gluon

+ · · · , (3.125)

where S(x)(0) contains the free quark propagator, S(x)1 photon and S(x)1 gluon contain dependences on the photon and
gluon field strength tensors, respectively, and the χ(x)χ̄(0) carries dependences on the condensate ⟨q̄q⟩ as well as tensor
condensates in the presence of the photon background that can be related to ⟨q̄q⟩ through various susceptibilities χ , κ ,
and ξ :

⟨q̄σµνq⟩F = Qqχ Fµν⟨q̄q⟩, (3.126)

gs⟨q̄Gµνq⟩F = Qqκ Fµν⟨q̄q⟩, (3.127)

2gs⟨q̄Gµνγ5q⟩F = iQqξ Fµν⟨q̄q⟩. (3.128)

After including the CPV interactions in the background, one obtains the dependence of χ(x)χ̄(0) on ⟨q̄q⟩, the susceptibilities
χ , κ , and ξ , and the quantities θ̄ , dq and d̃q. A detailed expression for the resulting correlatorΠ(Q 2)OPE goes beyond the scope
of this review but can be found in, e.g., Refs. [87–89,86].

Applying theBorel transformation to bothΠ(Q 2)pheno andΠ(Q 2)OPE andmatching the coefficients of the relevant Lorentz
structures then allows one to obtain dn and the ḡ(k)π in terms of the CPV parameters, susceptibilities, ⟨q̄q⟩ condensate, Borel
massM , and phenomenological parameters λ, Ad, etc. For example, for the neutron EDM one has [14,86]

λ2dnmN − AM2
= −Θ ⟨q̄q⟩

M4

8π2
em

2
n/M

2
, (3.129)

with

Θ = (4Qdmdρd − Qumuρu) χθ̂ + (4dd − du)+ (κ − ξ/2)

4Qdd̃d − Qud̃u


, (3.130)

and with the ρq carrying a dependence on ratios of the quark masses. In the absence of a PQ mechanism, one has θ̂ = θ̄ . As
discussed above, in the presence of the PQ mechanism the other QCD CPV interactions, such as the CEDM, lead to a shift in
the vacuum angle due to their effect on the axion potential. In this case, one must take θ̂ = θind, with θind being the shift due
to the additional axion potential contributions.

The most recent results [14,86] for the dependence of dn and the ḡ(k)π are indicated in Tables 17–21. We concentrate first
on the dependence of dn on θ̄ . Notably, the magnitude of αn obtained from the QCDSR computations are one to two orders



J. Engel et al. / Progress in Particle and Nuclear Physics 71 (2013) 21–74 43

of magnitude smaller than those obtained using lattice calculations. Moreover, the most recent QCDSR determination of
αn [86] is nearly a factor of six smaller in magnitude that the earlier work of Ref. [14]. This difference results, in part, from a
different value of λ used in the two analysis. The authors of Ref. [14] utilized the smaller value for λ obtained directly from
QCDSR studies, while Ref. [86] employed a value obtained from a lattice computation of proton decay matrix elements and
isospin symmetry, which is roughly two times larger.

The foregoing technique also provides the dependence of dn on the quark EDM and chromo-EDMs. Again, the analyses
in the two most recent computations [14,86] are similar, differing primarily in their extraction of λ. Illustrative results
are given in Tables 18 and 20 for the case when one assumes the presence of PQ symmetry. To our knowledge, the only
QCDSR computations of the dependence of the ḡ(i)π on θ̄ , d̃q, CG̃ and four-quark operators have been reported in Refs. [90,14].
As discussed above, one may extract the θ̄-dependence of ḡ(0)π using chiral methods, so we do not quote an additional
QCDSR result for this case. Moreover, the contribution of θ̄ to ḡ(1)π requires an additional power ofmq (orm2

π ) as indicated in
Eq. (3.73), so its impact will generally be negligible except for systems in which the effect of ḡ(0)π vanishes. Consequently, we
do not list any entry for λ(1).

For the contributions of other CPV operators, the situation is more subtle. In the case of CEDM contributions to the ḡ(i)π ,
the constraints of chiral symmetry imply the presence of two canceling contributions:

⟨N|


d̃q q̄gsσµνGµνq − m2

0q̄q


|N⟩ (3.131)

where the first term arises from the PCAC commutator term and the second is generated by the pion pole contribution. This
cancellation renders the computation susceptible to theoretical uncertainties, particularly associatedwith the choice of β in
the nucleon sources. For example, taking β = 1 yields a vanishing contribution through NLO under the assumption of pure
valence quark dominance. On the other hand, choosing β ≠ 1 yields a non-vanishing result. Assuming that the double-pole
term in Eq. (3.124) dominates, one obtains

ḡ(0)π ≈
3
10

4π2
|⟨q̄q⟩|m2

0

mNFπM2
F0(β)


d̃u + d̃d


, (3.132)

ḡ(1)π ≈
3
2

4π2
|⟨q̄q⟩|m2

0

mNFπM2
F1(β)


d̃u − d̃d


, (3.133)

where at leading order the Fk(β = 1) = 0 and Fk(β = 0) = 1. For the latter choice, one obtains a generically stronger CEDM
sensitivity of ḡ(1)π compared to that of ḡ(0)π . Going beyond LO, including uncertainties associated with additional condensates
that consequently appear, the choice of Borel mass M and variations with β , the analysis of Ref. [90] yields a ‘‘best value’’
and range for ḡ(1)π as well a broad range but no best value for ḡ(0)π quoted in Table 19.

Providing robust computations of the three-gluon and four-quark operators to the neutron EDM and the ḡ(i)π is evenmore
challenging, as one encounters additional unknown condensates as well as the presence of infrared divergences at lower
order in the OPE than for the other sources of CPV discussed thus far. It is possible, however, to estimate the contributions
to dn by relating the EDM to the nucleon magnetic moment through a CPV rotation of the nucleon wavefunction. One then
has, for example [91],

dn[CG̃] ∼ µn
9gsm2

0

32π2
ln

M2

Λ2
IR

  v
Λ

2
CG̃, (3.134)

where µn is the neutron magnetic moment and where the other prefactors in Eq. (3.134) arise from a QCDSR evaluation
of the correlator of two nucleon currents in the presence of the CPV three-gluon interaction. The latter evaluation is used
to determine the CPV rotation needed for relating dn and µn. Taking M/ΛIR = 2 and gs = 2.1 yields the estimate of the
coefficient β G̃

n given in Table 21.

3.6. Quark models

The constituent quark model (CQM) has proven remarkably successful in accounting for a number of static properties of
the lowest-lying baryons, most notably their magnetic moments. In the latter instance, one assumes each constituent quark
possesses a distinct magnetic moment that is proportional to its spin,

µ⃗Q = 2µQ S⃗Q , (3.135)

and computes the nucleon magnetic moment using the appropriate spin-flavor–color–spatial nucleon wavefunction,
resulting in

µp =
1
3
[4µU − µD] and µn =

1
3
[4µD − µU ] . (3.136)
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To the extent that the constituent up- and down-quark magnetic moments differ only by the overall charge of the quark,
one obtains for the ratio of nucleon magnetic moments µp/µn ≃ −3/2, in close agreement with the experimental value.

In the case of the EDM, the dimensionlessWilson coefficients Cqγ̃ and δq (or the equivalent dimensionful quark EDMs dq)
correspond to the EDMs of the current quarks of QCD rather than the constituent quarks of the quark model. Nevertheless,
one may make the bold ansatz that the coefficients of the constituent quark operators are given by the corresponding
coefficients for those of the current quarks after appropriate RG running from the scale Λ to the hadronic scale Λχ that
introduces the K factor in Table 6:

d⃗Q = 2dQ S⃗Q with dQ = dq(Λχ ) = Kdq(Λ)+ · · · , (3.137)

where the last relation may just as easily be expressed in terms of Cqγ̃ or δq and where the + · · · indicate contributions
associated with operator mixing. In this case, the computations of the nucleon EDMs proceed as in the case of the magnetic
moments, leading to

dp =
1
3
[4dU − dD] and dn =

1
3
[4dD − dU ] . (3.138)

Thus, one obtains

ρd
n = ρu

p = −4ρu
n = −4ρd

p =
4
3
. (3.139)

An alternate approach, first proposed in Ref. [92], is to retain the identity of the quarks as partonic degrees of freedom
and relate the nucleon matrix elements of q̄σµνqF̃µν to those of the quark axial vector currents q̄γµγ5q that contribute to
the nucleon spin:

1
2
⟨N|q̄γµγ5q|N⟩ = (∆q)N Sµ, (3.140)

1
4
⟨N|q̄σµνγ5q|N⟩ = (∆q)N N̄σµνN, (3.141)

so that the nucleon EDM is given by

dN =


q=u,d,s

dq (∆q)N , (3.142)

leading to a ‘‘parton quark model’’ (PQM) prediction

ρ
q
N = (∆q)N . (3.143)

Information on the (∆q)N can be obtained fromanumber of sources, including the determination of the axial vector coupling
gA that enters neutron decay,

gA = (∆u)p − (∆u)n , (3.144)

and studies of both inclusive and semi-inclusive polarized, deep inelastic leptoproduction,

(∆u)p = (∆d)n = 0.746, (∆d)p = (∆u)n = −0.508, (∆s)p = (∆s)n = −0.226. (3.145)

The CQM and PQM fail to provide guidance for the quark CEDM or three-gluon operator contributions to the nucleon
EDMs. They similarly offer no reliable means for estimating the contributions of these operators to the ḡ(i)π . In these cases,
one might complement quark model estimates with the NDA discussed in Section 3.2.

3.7. Saturation methods

Over the years, estimates of four-quark matrix elements have often been obtained by assuming certain intermediate
states dominate or ‘‘saturate’’ the dynamics. Here, we illustrate the application of the saturation approximation to estimate
two classes of matrix elements: (a) contributions to ḡ(1)π generated by the operator Qϕud and (b) the values of the TVPV
four-nucleon operator coefficients C̄1,2.

Starting with ḡ(1)π , we recall that the first term in Eq. (3.89) generates a contribution to ḡ(1)π . When the scale 1/Λ2 is
included, one expects ḡ(1)π ∼ ImCϕudΛχFπ/Λ2 as noted earlier. An explicit evaluation can be made using factorization and
vacuum saturation, partial conservation of the axial current (PCAC), and the πN σ -term. Vacuum saturation in this context
amounts to first relating the ⟨Nπ2|S3 ⊗ S4|N⟩ to the crossed matrix element ⟨π2|S3 ⊗ S4|NN̄⟩, inserting a complete set of
states between the S3 and S4 bilinears, assuming the dominant contribution arises from the vacuum, and then uncrossing
the N̄ . One then obtains

⟨Nπ2|S3 ⊗ S4|N⟩ ∼ ⟨N|S4|N⟩ ⟨π3|S3|0⟩. (3.146)
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Now, the matrix element of S4 is related to the pion–nucleon σ -term as

⟨N|S4|N⟩ = ⟨N|ūu + d̄d|N⟩ =
σπN

m̄
, (3.147)

while the second matrix element can be evaluated by taking the divergence of

⟨π3(p)|q̄τ3 γ µγ5q|0⟩ = −iFπpµ (3.148)

and taking the pion on-shell, leading to

⟨π3|S3|0⟩ =
Fπm2

π

m̄
. (3.149)

Using Eqs. (3.146)–(3.149) and including the coefficient of the four-quark operators appearing in Eq. (2.29) leads to

ḡ(1)π =

Im Cϕud

 mπ

Λ

2 FπσπN
6m̄2


, (3.150)

which is of orderΛχFπ/Λ2 as advertised. Using σπN ≈ 45 ± 6 MeV [55,56], m̄ ≈ 3.85 MeV [22] gives

ḡ(1)π = (3.3 × 10−5)×

Im Cϕud

  v
Λ

2
. (3.151)

The other approach is to assume the saturating states are the lowest available single-meson states. For example, a meson
of mass mm ≫ mπ that can be exchanged between two nucleons gives rise to a potential of range ∼1/mm, which is short
compared to typical nuclear distances ∼1/mπ ≫ 1/mm. In an expansion in powers of mπ/mm, such a potential can be
replaced by contact interactions with an increasing number of derivatives. In first order in the relevant TVPV parameter, the
meson couples through a TVPV coupling to one nucleon and a P-, T-even coupling to the other, resulting in TVPV contact
interactions such as the C̄1,2 terms in Eq. (3.38).

In this context, themesons that have been considered are the lightest: the pseudoscalarη and the vectormesonsV = ρ, ω
[93–95], with TVPV interactions given by

LTVPV
ψNπ

= ηψ̄N

ḡ(0)η + ḡ(1)η τ3


ψN +

ωµ

2mψN


ψ̄N


ḡ(0)ω + ḡ(1)ω τ3


iσµνγ5∂νψN + H.c.


+

1
2mψN

ψ̄N


ḡ(0)ρ τ · ρµ + ḡ(1)ρ ρ
0
µ + ḡ(2)ρ


3τ3ρ0

µ − τ · ρµ


iσµνγ5∂νψN + H.c.

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They lead to

C̄ (η,ω)1 =
1
mN


gηNN ḡ(0)η

m2
η

−
gωNN ḡ(0)ω

m2
ω


, (3.153)

C̄ (ρ)2 = −
gρNN
mNm2

ρ


ḡ(0)ρ + ḡ(2)ρ


, (3.154)

where mη and mV are meson masses, and gηNN and gVNN are P-, T-even meson–nucleon couplings, respectively the axial
coupling of the eta and the vector coupling of the vector meson. This type of meson exchange also produces other contact
interactions [95], which are, however, expected to be of higher order for CPV sources of dimension up to six.

SincemV ∼ Λχ and there is no reason for ḡ(0)V /ḡ(0)π to be particularly big or small, the size of vector-meson contributions
is comparable to the NDA expectations, with some suppression coming from the numerical smallness of the P-, T-even
rho-nucleon vector coupling gρNN ≃ 3.2 [96,97] compared to the analogous pion–nucleon coupling 2mNgA/Fπ ≃ 13.5. (In
contrast the same ratio for the omega is close to 1 [96,97].) For the eta meson, the enhancement due to the relatively light
mass is offset by the relative smallness of gηNN ≃ 2.24 [98]. Obviously the limitation of this type of saturation is that there
are no firmer estimates of the TVPV couplings ḡ(i)η and ḡ(i)V than for the C̄1,2.

3.8. Hadronic matrix elements: discussion

While there exists a solid body of work devoted to matching the θ-term and dimension six operators onto hadronic
quantities, there clearly exists considerable need for further advances. In what follows, we attempt to provide a sense of the
present range of theoretical uncertainty in sensitivity of various hadronic quantities to the underlying operator coefficients.
To that end, for each sensitivity coefficient (αn, λ(0), ζ̃

q
n , etc.) we provide a ‘‘best value’’ and ‘‘reasonable range’’. The

importance of attempting to quantify the theoretical uncertainty is two-fold. First, when using EDM search limits to derive
bounds on the underlying parameters such as θ̄ or δ̃q, previous studies have often included only the experimental uncertainty
while relying on a single hadronic computational framework. As a result, the quoted boundsmay be unrealistically stringent.
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Second, we anticipate that hadronic structure theorists involved in the relevant computations will find our benchmarks
helpful in setting goals for future refinements. In short, it is useful to knowwhere and towhat level reductions in theoretical
uncertainties are called for.

Before proceeding, we make an important caveat. In comparison with the analysis of experimental uncertainties, the
task of assigning theoretical error bars entails a greater degree of subjectivity. Consequently, the benchmarks we provide
below should be taken somewhat impressionistically rather than as quantitatively robust. Nevertheless, we believe they
offer reasonable guidance as to the present level of uncertainty as well as quantitative targets for further refinements.

With these considerations inmind,we nowdiscuss specifics. In setting the best values and ranges, wewill use the consid-
erations based on chiral symmetry/NDA aswell as the spread of current theoretical computations as guides. Chiral symmetry
and NDA are particularly helpful in determining if the results of specific computation are anomalously large. While one ex-
pects the chiral arguments to be realistic up to a factor of a few, a computation that yields a result an order of magnitude
larger would likely be open to question. On the other hand, it is quite possible that specific dynamics can suppress a given
quantity by more than a factor of a few. In general, our best values will be somewhere close to the mid-point of the range of
explicit computations and close to the magnitude indicated by chiral symmetry/NDA. When assessing the range of explicit
computations in a given framework, we will be rather inclusive, except when a given computation seems to be particularly
anomalous with respect to the chiral/NDA expectations. Hence, our reasonable ranges will be roughly consistent with the
spread of explicit computations and the factors of a few variation one might expect with respect to chiral/NDA arguments.

Table 7, then, gives these benchmarks. Generally speaking, we see that the quantities with the most narrow ranges
are:

(a) αn, the sensitivity of dn to θ̄ : QCD sum rule computations are quite in line with chiral symmetry/NDA expectations.
Moreover, a naïve scaling of the lattice results with m2

π would imply a value close to our best value.13 Note that since
the θ-term does not run, there exists no uncertainty associated with an incomplete analysis of RG evolution, in contrast
to several of the dimension-six operators.

(b) λ(0), the sensitivity of ḡ(0)π to θ̄ : the use of chiral symmetry and lattice results for (∆mN)q provide a relatively model-
independent result. Reduction in the errors on (∆mN)q and the light quark masses from the lattice will lead to a
corresponding narrowing of the theoretical range on this quantity.

(c) g(0)S , isoscalar scalar form factor that governs in part the sensitivity of atomic andmolecular EDMs to the combination of
coefficients Im(Cℓedq − C (1)ℓequ): a model independent value is obtained from σπN and the average light quark mass, m̄. To
the extent that the lattice uncertainties on these quantities are robust, one has a relatively narrow range for the isoscalar
scalar form factor.

(d) (βqγ
n , ρq

n , ζ
q
n ), the sensitivity of dn to the quark EDMs: results of explicit computations do not vary considerably from

expectations based on either chiral symmetry/NDA or the quark model. It is worth emphasizing, however, that a
complete analysis of the RG evolution of the quark EDMs from the weak to hadronic scales, taking into account mixing
with the CEDM and four-quark operators, has generally not been carried out.

Although further reductions in the uncertainties associated with these quantities would be welcome, we do not consider
them to have the greatest urgency. Those seeminglymost theoretically fraught are the sensitivities to the CEDM, three-gluon
operator, and four-quark operators.

(e) (βqG
n , ρ̃q

n , ζ̃
q
n ), the sensitivity of dn to the quark CEDMs: Here we take as best values the average of the existing QCD sum

rule results, which in the case of the d-quark CEDM is equal to the chiral/NDA expectation. The ranges here are rather
broad, spanning an order of magnitude. Moreover, as in the case of the quark EDMs, a complete implementation of
the RG evolution that includes mixing with the four quark operators remains to be performed. We also note that recent
studies of the CEDMcontribution to theρ-meson EDMusing the Dyson–Schwinger approach [99] raise further questions
about the reliability of matching of CEDMs onto hadronic quantities. Although the ρ-meson EDM is not of experimental
interest, the relatively simplicity of the ρ-meson bound state makes it a useful ‘‘laboratory’’ for various hadronic matrix
element computational methods. The results obtained with the Dyson–Schwinger framework imply that the ρ-meson
EDM is an order of magnitude more sensitive to the CEDMs than one would infer from the corresponding QCD sum rule
computation [100]. In contrast, both approaches yield similar sensitivities to the quark EDMs. Should a similar situation
emerge for dn, one would need to further inflate the theoretical uncertainty on the (βqG

n , ρ̃q
n , ζ̃

q
n ).

(f) (γ G
(i), ω̃(i), η̃(i)), the sensitivity of the ḡ

(i)
π to the quark CEDMs:Here the situation is evenmore uncertain. To our knowledge,

only two computations have appeared to date. The ranges quoted in Ref. [90] are consistent with the magnitudes
expected from chiral symmetry/NDA, but in the case of the contribution to ḡ(0)π encompasses zero as well. In the case of
the ḡ(1)π sensitivity, the range in Ref. [90] is narrower, and we have no present rationale to expand it, but the dearth of
analyses and the range for the ḡ(0)π sensitivity should give one pause.

13 One should note, however, that the lattice computations to date do not necessarily manifest the expected chiral scaling in other related observables,
so the result of naïve scaling may be a coincidence.
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(g) β G̃
n and γ G̃

(i), sensitivity of dn and the ḡ(i)π to the three-gluon operator: For this case, we possess a dearth of information. The

central value for β G̃
n given in the QCD sum rule work of Ref. [91] that is often quoted elsewhere is an order of magnitude

smaller than the chiral symmetry/NDA expectations. Consequently, we take a broad range for this parameter. For the
γ G̃
(i), we have only the chiral/NDA expectations, and, thus, employ the ‘‘factor of a few’’ criterion for this range. Note that

the three-gluon operator is multiplicatively renormalized, so the theoretical uncertainty is associated entirely with the
hadronic matching computations.

(h) Four-quark operators: hadronic matrix element computations for these operators is, if anything, even less advanced
than for the three-gluon operator. Apart from issue of RG evolution, explicit computations are few and far between. The
factorization computation used to match Qϕud onto ḡ(1)π gives a larger value for γ ϕud(1) than the chiral/NDA expectation.

Computations for the other operatorsQ (1,8)
quqd have been carried out using a combination of the quarkmodel, factorization,

and a relativistic meson loop approach [101]. However, the meson loop computation utilized in that work is not
consistent with the EFT power counting embodied in HBχPT and, thus, may overestimate the magnitude of the matrix
element by an order of magnitude. Consequently, we are reluctant to use the results in that work for guidance. Instead,
we start with the chiral/NDA estimates and give an order of magnitude spread based on the present dearth of consistent
computations, implementation of RG running, and comparison with the factorization estimate.

Table 7
Best values and reasonable ranges for hadronic matrix elements of CPV operators. First column indicates the coefficient of the operator in the CPV
Lagrangian, while second column indicates the hadronic matrix element (sensitivity coefficient) governing its manifestation to the neutron EDM. Third
and fourth columns give the best values and reasonable ranges for these hadronic coefficients. Fifth to seventh columns give corresponding result for
contributions to TVPV πNN couplings.

Param Coeff Best valuea Range Coeff Best valueb,c Rangeb,c

θ̄ αn 0.002 (0.0005–0.004) λ(0) 0.02 (0.005–0.04)
αp 0.002 (0.0005–0.004) λ(1) 2 × 10−4 (0.5 − 4)× 10−4

Im CqG βuG
n 4 × 10−4 (1 − 10)× 10−4 γ+G

(0) −0.01 (−0.03)–0.03
βdG
n 8 × 10−4 (2 − 18)× 10−4 γ−G

(1) −0.02 (−0.07)–(−0.01)

d̃q eρ̃u
n −0.35 −(0.09 − 0.9) ω̃(0) 8.8 (−25)–25

eρ̃d
n −0.7 −(0.2 − 1.8) ω̃(1) 17.7 9–62

δ̃q eζ̃ u
n 8.2 × 10−9 (2 − 20)× 10−9 η̃(0) −2 × 10−7 (−6 − 6)× 10−7

eζ̃ d
n 16.3 × 10−9 (4 − 40)× 10−9 η̃(1) −4 × 10−7

−(2−14)×10−7

Im Cqγ β
uγ
n 0.4 × 10−3 (0.2 − 0.6)× 10−3 γ

+γ

(0) – –
β

dγ
n −1.6 × 10−3

−(0.8 − 2.4)× 10−3 γ
−γ

(1) – –

dq ρu
n −0.35 (−0.17)–0.52 ω(0) – –
ρd
n 1.4 0.7–2.1 ω(1) – –

δq ζ u
n 8.2 × 10−9 (4 − 12)× 10−9 η(0) – –
ζ d
n −33 × 10−9

−(16 − 50)× 10−9 η(1) – –

CG̃ β G̃
n 2 × 10−7 (0.2 − 40)× 10−7 γ G̃

(i) 2 × 10−6 (1 − 10)× 10−6

Im Cϕud β
ϕud
n 3 × 10−8 (1 − 10)× 10−8 γ

ϕud
(1) 1 × 10−6 (5 − 150)× 10−7

Im C (1,8)quqd β
quqd
n 40 × 10−7 (10 − 80)× 10−7 γ

quqd
(i) 2 × 10−6 (1 − 10)× 10−6

Im C (−)eq g(0)S 12.7 11–14.5

Im C (+)eq g(1)S 0.9 0.6–1.2
a Units are e fm for all but the ρ̃q

n and ρq
n .

b We do not list entries for (γ±γ

(i) , ω(i) , η(i)) as they are suppressed by α/π with respect to (γ̃±γ

(i) , ω̃(i) , η̃(i)).
c The ω̃(0,1) are in units of fm−1 .

We do not include in Table 7 the semileptonic form factors apart from g(0,1)S . The manifestation of the pseudoscalar and
tensor form factors in atoms andmolecules is suppressed by several factors. The pseudoscalar interactions are higher order in
theHBχPT expansion,while the tensor charge does not receive a nuclear coherent enhancement.We note, however, that the
EDMof the diamagnetic atom 199Hg has roughly an order ormagnitude greater sensitivity to the tensor eq interaction than it
does to the scalar interaction. The value of g(0,1)T in this case is, thus, considerably more significant than in the paramagnetic
systems.

Two implications should be drawn from our theory uncertainty estimates. First, for BSM scenarios in which the CEDM,
three-gluon, and/or four-quark operators have significantWilson coefficients, it will be particularly important for any global
analysis to include the rather sizeable uncertainties at the hadronic level. Second, a concerted effort to refine the hadronic
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computations and reduce the uncertainties is clearly in order. We hope that our delineation of these best values and ranges
will spur future efforts in this direction.

4. Nuclear, atomic, and molecular scales

Composite systems are often the most amenable to experiments. But the EDMs of composite systems reflect few- or
many-body dynamics as well as the fundamental source of CP violation and QCD. For some experiments, completely ionized
light nuclei are useful, and for these caseswemust employ few-bodymethods to relate the nuclear EDMs to, e.g., θ̄ . In heavier
neutral systems a new phenomenon is important: the shielding of the EDMs of constituents of one charge (e.g. protons in the
nucleus) by those of the other (electrons). The transmission of CP violation through a nucleus into an atom must overcome
this shielding and its effectiveness in doing so is expressed by a nuclear Schiff moment, which we define shortly.

We begin by considering EDMs of light systems, potentially important for storage-ring experiments, and then move to
heavier systems, useful in experiments on immobilized atoms or molecules.

4.1. Light nuclei

In addition to the continuous improvement in experiments on neutral systems, a new, exciting prospect is the direct
measurement of the EDMs of charged particles in storage rings [102,103]. When a particle moves in an electric and/or
magnetic field, its spin will precess at a rate that depends not only on the magnetic dipole moment but also on the EDM.
The best bound on the muon EDM [104] comes, in fact, as a by-product of the BNL g − 2 experiment. It can be expected
that dedicated experiments in rings with optimized parameters will allow sensitive probing of the EDMs of light nuclei. For
example, it has been proposed [102,103] that for dp a sensitivity of 10−16 e fm can be achieved. Similar sensitivity could be
attained also for the deuteron (2H nucleus) and helion (3He nucleus) EDMs, dd and dh respectively. The triton (3H nucleus)
EDM, dt , might be accessible as well.

From a theoretical perspective, the EDMs of light nuclei can be calculated with relatively small uncertainty originating
in the P-, T-even strong interactions, as essentially exact calculations are possible. Moreover, with an effective field theory
approach based on HBχPT we can treat the nucleon and nuclear EDMs on the same footing, and explore the sensitivity
of nuclear EDMs to different combinations of TVPV hadronic interactions than that which appears in the nucleon EDM. In
particular, it has been argued that the deuteron EDM has some sensitivity to the CPV source [105,106], and that a combined
measurement of dn, dp, dd, dh and dt could be used to disentangle the various sources [107]. The reason for this is the different
relative strengths of the various couplings at LO in HBχPT [106,107], which are rooted in the different chiral symmetry
properties of the various sources, as discussed in Section 3.2. Likewise, experimental access to other TVPV moments, such
as the deuteron magnetic quadrupole moment, would be very useful as well for separating sources [106,108], but it does
not look feasible in the near future.

In a nucleus with A nucleons, certain P-, T-even inter-nucleon interactions need to be resummed in order to produce
a bound state and its associated wavefunction |ΨA⟩. (For a review of nuclear EFT, see Ref. [109].) A nuclear EDM dA
arises from the average with such a wavefunction of two TVPV mechanisms: (i) the TVPV electromagnetic current J0TVPV,
whose one-nucleon component is the nucleon EDM; and (ii) a combination of the TVPV potential VTVPV and the P-, T-
even electromagnetic current J0PT . We follow here Ref. [107], which we refer the reader to for more details. Because TVPV
interactions are so tiny, we can write in first-order perturbation theory

dA =


ΨA

D⃗TVPV

ΨA


+


ΨA

D⃗PT

 ΨA


+ c.c.


. (4.155)

The electric operators are obtained from the corresponding time-component electromagnetic current through D⃗ =

i limq⃗→0 ∇⃗q⃗J0(q). At the one-nucleon level

D⃗(1)PT =
e
2

A
i=1

τ
(i)
3 r⃗i, D⃗(1)TVPV =

A
i=1


d̄0 + d̄1 τ

(i)
3


σ⃗ (i), (4.156)

in intrinsic coordinates, which obey
A

i=1 r⃗i = 0. Themore complicated two- andmore-nucleon currents are expected to be
generically less important, although this is not always true, as discussed below. The first term in Eq. (4.155) represents the
contribution of the individual nucleons to the nuclear EDM, as well as the contribution from TVPVmany-body currents. The
second term in Eq. (4.155) is the contribution of the parity-admixed wavefunction |ΨA⟩, obtained from the TVPV potential
via

(E − HPT )|ΨA⟩ = VTVPV|ΨA⟩ where (E − HPT )|ΨA⟩ = 0, (4.157)

with HPT being the P-, T-even Hamiltonian.
Because of its long range, one-pion exchange (OPE) has long been recognized as a potentially important component of the

TVPV two-nucleon (NN) potential [110–112], and expressed in terms of the three non-derivative pion–nucleon couplings in
Eq. (3.38) [39]. In the literature, this potential is sometimes supplemented by the single exchange of heavier mesons, with
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the η [113], rho [114], and ω [114] being most popular. Allowing sufficiently many couplings of these mesons to nucleons
one can produce [115] the most general short-range TVPV NN interaction with one derivative [116]. Although a derivative
expansion is justified on general grounds, the relative importance of terms with various ranges, spin/isospin structures
and number of nucleons depends on the TVPV source. The potential obtained from HBχPT, which accommodates the most
important effect of each source, is discussed in detail in Ref. [38]. In configuration space, the NN potential corresponding to
the Lagrangian (3.38) reads

VTVPV(r⃗ij) =
gA
Fπ


ḡ(0)π τ(i) · τ(j)


σ⃗ (i) − σ⃗ (j)


+

ḡ(1)π
2


τ
(i)
3 + τ

(j)
3

 
σ⃗ (i) − σ⃗ (j)


+


τ
(i)
3 − τ

(j)
3

 
σ⃗ (i) + σ⃗ (j)


+ ḡ(2)π


3τ (i)3 τ

(j)
3 − τ(i) · τ(j)

 
σ⃗ (i) − σ⃗ (j)


·


∇⃗ Y (rij)


+

1
2


C̄1 + C̄2τ

(i)
· τ(j)

 
σ⃗ (i) − σ⃗ (j)


·


∇⃗δ(3)(r⃗ij)


+ · · · , (4.158)

where r⃗ij = r⃗i − r⃗j is the relative position of the two interacting nucleons and Y (r) = exp(−mπ r)/4πr is the usual Yukawa
function, so that

∇⃗ Y (rij) = −
r⃗ij

4πr3ij


1 + mπ rij


exp(−mπ rij). (4.159)

The short-range interactions can be thought of as accounting for heavier-meson exchange, as discussed in Section 3.7. For all
sources, few-body potentials are expected to generate smaller contributions, except for the left–right four-quark operator
(2.29), for which the effects of a three-nucleon potential originating in a LO three-pion vertex [107] proportional to ḡ(0)π
remain to be studied.

Eq. (4.155) has been evaluated in the literature for A = 2, 3, and the explosive growth in ab initio methods affords
ways to calculate the EDMs of larger nuclei if needed. Most existing work employs TVPV one-meson-exchange potentials,
with older references using simple P-, T-even wavefunctions and single-nucleon currents, and more recent ones, highly
developed phenomenological P-, T-even potentials and evenmeson-exchange currents. In HBχPT the non-analytic behavior
of the nucleon EDM in mπ and the dominance of OPE in nuclear observables can be accounted for simultaneously, with
chiral symmetry playing a central role. In principle full consistency can be achieved, but so far calculations are limited
to phenomenological P-, T-even interactions for HPT . At this stage leading contributions, with an uncertainty of roughly
∼mπ/Λχ ∼ 20%, are sufficient, and for the most part one can restrict oneself to the one-body currents and two-body
potential described above. For the θ-term the situation is more complicated because in nuclei with equal numbers of
protons and neutrons, N = Z , the isoscalar component of the P-, T-odd potential (4.158) gives a vanishing contribution
in combination with D⃗(1)PT (4.156) [110]. The latter is an isovector with a conserved third component, and can only contribute
to the EDM if there is a parity-admixed component of the wavefunction that differs from the ground-state wavefunction by
one unit of isospin. For dimension-six sources, where the leading NN potential is not expected to be dominantly isoscalar,
this is not of particular consequence. But, for the θ-term, ḡ(0)π is the formally leading part of the potential, and in N = Z
nuclei a non-zero result comes only from subleading parts of the NN potential as well as two-body currents.

Not all the seven parameters shown explicitly in Eq. (3.38) are important for every CPV source. In fact, as the discussion
in Section 3.2 shows, ḡ(2)π is expected to be small for all sources, and as a consequence the EDMs of light nuclei should be
described at LO in terms of the six parameters d̄0,1, ḡ(0,1)π , and C̄1,2 [107]. Results for the EDMs of light nuclei in terms of
these six LO parameters are reviewed below and summarized in Table 8. The first two rows are a reminder that we have
absorbed the loop contributions to the neutron and proton EDMs in d̄0,1, as discussed in Section 3.3. The potential-model
dependence in the subsequent rows is not larger than ∼25%, which is comparable with the LO HBχPT error. Exceptions are
the short-range contributions from the C̄i, which can only be considered order-of-magnitude estimates. As discussed below,
for the tri-nucleon system there are disagreements in the OPE estimates of about±50% in the values quoted. After discussing
specific results for the deuteron, helion and triton, we cast them in terms of the θ-term and dimension-six sources.

Table 8
Dependence of the EDMs of the neutron, proton, deuteron, helion, and triton on the six relevant TVPV low-energy constants at leading order. A ‘‘-’’ denotes
that the low-energy constant does not contribute in a model-independent way to the EDM at this order. For the potential-model dependence and other
uncertainties in the results, see text. The P-, T-even isospin-breaking pion–nucleon coupling β1 is not well known, β1 = (0 ± 9) · 10−3 [45,117].
Source: Adapted from Ref. [107].

LEC d̄0 d̄1 ḡ(0)π e fm ḡ(1)π e fm (F 3
π C̄1) e fm (F 3

π C̄2) e fm

dn 1 −1 – – – –
dp 1 1 – – – –
dd 2 0 −0.0002 + 0.07β1 0.2 – –
dh 0.83 −0.93 0.1 0.2 −0.01 0.02
dt 0.85 0.95 −0.1 0.2 0.01 −0.02
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4.1.1. Deuteron
The deuteron EDM has been investigated in the meson-exchange picture [118–120,115,121], with various degrees of

sophistication in the treatments of the P-, T-even interactionHPT . Refs. [115,121] found that differences in the EDMgenerated
by TVPV OPE are rather small among modern high-quality phenomenological potentials. Ref. [107] uses the calculation
scheme of Ref. [115] to obtain wavefunctions |Ψ2⟩ and |Ψ2⟩ for the potential (4.158), in conjunction with HBχPT currents,
for all CPV sources of dimension up to six. Ref. [52] also uses HBχPT and phenomenological potentials, but with slight
different dimensional estimates for the variousHBχPT contributions, in the particular case of the θ term. All these references
ignore relativistic corrections, which are absent from the phenomenological potentials they use. A fully consistent HBχPT
calculation exists [106], in which pions are treated perturbatively — a good approximation scheme in the loosely bound
deuteron. In this case the LO P-, T- even potential is just a delta function, so this is an effective field theory extension of
Ref. [120]. Results are consistent with Refs. [107,52], suggesting that a fully consistent calculation with non-perturbative
pions will not deviate significantly from the results obtained so far.

The simplest contribution to the deuteron EDM originates in the EDMs of its constituents. Since the deuteron has spin
S = 1 and isospin I = 0, the nuclear matrix element of D⃗(1)TVPV in Eq. (4.156) gives simply 2d̄0. Since there is no reason to
expect a cancellation with other contributions, 2d̄0 serves as a lower-bound estimate for the deuteron EDM. For the θ-term
in particular, using the long-range NLO contributions to the isoscalar nucleon EDM, Eq. (3.110), we expect [106]

|dd| & 3 · 10−4θ̄ e fm. (4.160)

In agreement with the more general argument for N = Z nuclei, the one-body operator D⃗(1)PT cannot bring the deuteron
wavefunction back to a (mostly) 3S1 wave once the isoscalar TVPV potential takes it to 1P1. In order for D⃗(1)PT to yield a
non-zero contribution, the parity-admixed component of the wavefunction has to be in the 3P1 state, to which only ḡ(1)π
contributes. The corresponding nuclear matrix element has been calculated several times in the literature. As summarized
in Ref. [52], there is agreement to better than 10% among modern NN potentials, and within 30% between them and a
simple delta-function potential. When OPE through the isotensor pion–nucleon coupling ḡ(2)π is included, it gives small
contributions [115], even when estimates about the small magnitude of ḡ(2)π are disregarded.

The expectation from HBχPT that two- and more-body currents give small contributions is corroborated by a model
calculation [115]. They can be neglected for all CPV sources except the θ-term. For the latter, because the formally LO
contribution vanishes, one has to go to NNLO. This brings in the same dependence on ḡ(1)π as for other sources. Additionally, a
dependence on ḡ(0)π emerges through the subleading potential and two-body currents, together with two P-, T-even isospin-
breaking parameters: the quark-mass component of nucleon mass difference, (∆mN)q in Eq. (3.64), which can be estimated
from lattice QCD aswe have done in Section 3.2, and the isospin-breaking pion–nucleon coupling (β1/Fπ )(∂µπ3)N̄SµN , with
β1 = O(ϵm2

π/M
2
QCD), for which only the bound β1 = (0 ± 9) · 10−3 [45,117] is known.

These results are summarized in the third row of Table 8.

4.1.2. Helion and triton
There have been fewer calculations of the trinucleon EDMs. A pioneering calculation [122] of the helion EDM for the ḡ(0)π

OPE (dominant for the θ-term) used an old phenomenological P-, T-even potential solved in the adiabatic approximation
of the hyperspherical-harmonics method, and found no nuclear enhancement compared to the neutron EDM. The era of
modern calculations began with Ref. [123], when the nuclear wavefunction was calculated using high-quality P-, T-even
potentials including the Coulomb interaction. A solution is found with the no-core shell model (NCSM) method, which
employs a model space made from Nmax properly antisymmetrized harmonic-oscillator wavefunctions of frequency Ω . At
large enough Nmax, results for the helion EDM, which are somewhat larger than Ref. [122] where they can be compared,
become independent ofΩ . Meson-exchange currents were neglected, as suggested by their smallness in the deuteron. For
mesonic couplings of equal magnitude, OPE is found to be dominant over shorter-range interactions. Ref. [107] adapted
this calculation to the TVPV ingredients from HBχPT, and calculated the EDM of triton for the first time. The two short-
range interactions from C̄1,2, which can be thought of as originating from, respectively, omega and rho meson exchanges
considered in Ref. [123], were regulated with Yukawa functions. Ref. [124] used similar input but solved Faddeev equations
instead.

Calculations with various realistic potentials agree within ∼25% for the nucleon EDM contributions. They give nuclear
matrix elements of roughly equal magnitude for d̄0 and d̄1, so that, as one might have expected, the helion (triton) EDM is
mostly sensitive to the neutron (proton) EDM,

For the contribution from the TVPV potential, results for triton are very similar in magnitude to those for helion. Both
Refs. [123,124] find a spread of ∼25% between different potentials, but they disagree by an overall factor of about two in
isoscalar and isovector TVPV terms (and a factor five in the subleading isotensor component). The reason for this discrepancy
is unclear at present, and it is a priority to resolve it. Additionally, in Ref. [107] the short-range contributions from the C̄i were
found to vary considerably with the explicit regulator mass from potential to potential (a factor ∼5 in the cases studied).
There is thus a much stronger potential dependence, and more solid numbers have to wait for a fully consistent calculation.

These results are summarized in the fourth and fifth rows of Table 8, where for OPE we took values in between those
of Refs. [123,107,124]. Note that there is yet no estimate of the effects of a three-nucleon TVPV potential, which could be
significant in the case of the left–right four-quark operator [23].
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4.1.3. Light nuclear EDMs: summary
Using the results of Section 3, we can obtain the sensitivity of each EDM to the underlying CPV sources. The orders of

magnitudes expected for these EDMs are given in Table 9 for each source. Recall that the Weinberg three-gluon operator
(2.23) and the two four-quark operators (2.25) present already at the electroweak scale are chiral invariant. As a consequence
they produce the same hierarchy of hadronic interactions and cannot be separated at low energies. For simplicity we use
the shorthand notation {CG̃, Im C (1,8)quqd } → Im Ck in Table 9.

Table 9
Expected orders of magnitude for the neutron EDM (in units of e/Λχ ), and for the EDM ratios proton to neutron, deuteron to neutron, helion to neutron
and triton to helion, for the θ-term and dimension-six sources. For chiral-invariant sources, Im Ck stands for CG̃ and Im C (1,8)quqd . Q represents the low-energy
scales Fπ , mπ , and

√
mNB, with B the binding energy.

Source: Adapted from Ref. [107].

Source θ-term CEDM Quark EDM Chiral-invariant Left–right
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The texture of this table underlines the argument [105–107] that light nuclei act as a ‘‘chiral filter’’ for the various CPV
sources. Of course, a measurement of the neutron EDM alone could be due to a θ-term of just the right magnitude, or to any
of the dimension-six sources, although if all dimensionless factors were equal, chiral-invariant sources or the ‘‘left–right’’
four-quark operator (2.28) would be favored because they require no chirality flip. Nuclear effects are most significant for
the θ-term, CEDMand left–right four-quark operator. Just on the basis of orders ofmagnitude, we see that a large tri-nucleon
EDM compared to a nucleon EDM would point to them as possibly dominant sources, while a large |dd| compared to |dN |

would be suggestive of just the CEDM and left–right four-quark operator. Bounds on light EDMs would provide tighter
bounds on this physics than comparable bounds on nucleon EDMs.

We can infer more information about CPV sources from Table 8 when we take into account that the relative importance
of various pion–nucleon and short-range interactions is not the same for all sources. For the CEDM and left–right four-quark
operators, the expected dominance of nuclear effects comes from pion exchange due to both ḡ(0,1)π couplings, while only
ḡ(0)π is present at LO for the θ-term. The isoscalar coupling ḡ(0)π approximately cancels in dh + dt , so while for the CEDM
dh + dt ≃ 3dd, for the θ-term dh + dt ≃ 0.8(dn + dp). Effects of the left–right four-quark operator can only be separated
from CEDM if its TVPV three-nucleon potential is significant. For the quark EDM, where nuclear effects are much smaller,
dh + dt ≃ 0.8(dn + dp) also holds but in addition one expects dh − dt ≃ 0.9(dn − dp). The situation is most complicated for
chiral-invariant sources, for which nuclear effects are significant for both A = 2, 3, but they depend in the deuteron only on
ḡ(1)π while in the tri-nucleon ḡ(0)π and C̄1,2 contribute as well. In this case dh + dt ≃ 3dd − 2(dn + dp). By confronting these
relations, measurements of light nuclear EDMs, particularly if they include the triton, could shed light on the mechanism of
CPV [107].

4.2. Heavy nuclei, shielding, and Schiff moments

Nuclear physics is important in determining the EDMs of neutral atoms. And the primary fact from which all other
considerations stem is expressed by the Schiff theorem [125], which states that in the limit of a point-like nucleus and
non-relativistic electrons any nuclear EDM is completely screened by the atomic electrons, so that the net atomic EDM is
zero.

We give a brief illustration of this result, following Ref. [126]. Consider a system of structureless components (a nucleus
and electrons), the kth of which has dipole moment d⃗k, interacting via the Coulomb force V (r), so that

H =


k

p2k
2mk

+


k

V (r⃗k)−


k

d⃗k · E⃗k

= H0 + i

k

(1/ek)

d⃗k · p⃗k,H0


.

The perturbing Hamiltonian (the last term above) shifts the unperturbed ground state |0⟩ to

|0̃⟩ = |0⟩ +


m

|m⟩⟨m|i

k
(1/ek)d⃗k · p⃗k|0⟩(E0 − Em)

E0 − Em
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=
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k
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
|0⟩. (4.161)

The induced dipole moment d⃗′ is then

d⃗′
= ⟨0̃|
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ej r⃗j,

k

(1/ek)d⃗k · p⃗k


|0⟩ = −


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d⃗k

= −d⃗, (4.162)

so that the net dipolemoment of the entire systemvanishes. The assumptions underlying this result are that the constituents
are point-like, non-relativistic, and non-interacting except via the Coulomb force. In real systems, none of these assumptions
hold fully. As we shall see immediately below, the finite nuclear size essentially leads to the replacement the nuclear dipole
operator by the nuclear ‘‘Schiff operator’’, which contains two extra powers of the nucleon coordinate.Moments due to finite
nuclear size are thus generically smaller by O


R2
nucl./R

2
atom


than the unscreened nuclear EDM. In diamagnetic atoms, the

nuclear physics ofwhich is discussed next, this suppression ismitigated by relativistic electrons and can be furthermitigated
by nuclear octupole deformation. In paramagnetic atoms, discussed in the next section, relativistic electrons can lead to a
large enhancement of the atomic EDM.

Further analysis leads to the result that the post-screening CP-violating nucleus–electron interaction is

H = 4π S⃗ · ∇⃗δ3(r⃗)+ · · · , (4.163)

where the omitted terms come from higher multipoles, e.g. the nuclear magnetic quadrupole (M2) and electric octupole
(E3) multipoles. The operator S⃗ is the nuclear Schiff operator, defined as

S⃗ = S⃗ch + S⃗N (4.164)

with
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e
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Z
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r2j
3
d⃗j


+ · · · . (4.166)

Here S⃗ch is due to the charge distribution of the nucleus (usually the dominant piece), S⃗N is due to the EDM of the nucleon, e
is the charge of the proton, ⟨r2⟩ch is the mean squared radius of the nuclear charge distribution, and d⃗j is the EDM of nucleon
j. The sum in Eq. (4.166) is over all nucleons, while that in Eq. (4.165) is restricted to protons. Rotational symmetry lets us
express the ground-state matrix elements of the three-vector Schiff operators in terms of a single quantity:

S ≡ ⟨Ψ0|Sz |Ψ0⟩, (4.167)

where |Ψ0⟩ is the member of the ground-state multiplet with Jz = J .
The charge-distribution part of the Schiff moment, Sch, can only be induced by an effective T− and P-violating inter-

nucleon interaction. Most studies have been dedicated to the OPE part of the TVPV potential (4.158). The nucleon moment
SN can have many sources, as we have seen, and can depend on other quantities besides the ḡ(i)π .

Eq. (4.165) is, as mentioned, only approximate. Corrections come from nuclear quadrupole deformation (which
introduces a term proportional to the nuclear quadrupole moment), from relativity in electronic wave functions (which
gives terms of order (Zα)2) [127,128], and more subtle electron–nucleus interactions [129], the complete forms of which
are still not entirely settled. Eq. (4.158) is also only approximate, representing the leading-order part of the chiral effective
potential. Higher-order pieces in effective field theory (which in heavy systems would be hard to control) or details of
heavier-meson exchange in older frameworks will modify VTVPV. At present, however, nuclear-structure theorists have not
incorporated any of these corrections save (occasionally) those of order (Zα)2 into their calculations of Schiff moments.

Beyond-the-standard-model and hadronic physics, as we have seen, determine the ḡ(i)π and the nucleon EDMs. The job of
nuclear-structure theory, within the framework just defined, is to determine the dependence of the Schiff moment on these
quantities. (Atomic physics in turn determines the dependence of the atomic EDM on the Schiff moment.) Here we examine
only the dependence on the ḡ(i)π ; the dependence on the nucleon EDMs can be computed as well, but is weaker. Only a few
of the calculations cited below (e.g., Ref. [130]) consider this weak dependence. We can parameterize the dependence on
the ḡ(i)π as follows:

S =
2mNgA
Fπ


a0 ḡ(0)π + a1ḡ(1)π + a2 ḡ(2)π


. (4.168)
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All nuclear structure information is thus encoded in the coefficients ai, which have units e fm3.
In what follows we discuss attempts to calculate the ai in several important nuclei. Most take advantage of the weakness

of VTVPV compared to nuclear energies and approximate S in Eq. (4.167), essentially perfectly, by

S =


i≠0

⟨Φ0|Sz |Φi⟩⟨Φi|VTVPV|Φ0⟩

E0 − Ei
+ c.c., (4.169)

where |Φ0⟩ is the ‘‘unperturbed’’ ground state – that obtained with VTVPV turned off – and the |Φi⟩ are the corresponding
excited nuclear states.

4.2.1. 199Hg
The atomassociatedwith this nucleus has for years had the best limit on its EDM, and so 199Hghas receivedmore attention

by nuclear-structure theorists than any other nucleus (though still not nearly enough, aswe argue below). Calculations range
from the extremely schematic to the very sophisticated. Table 10 quotes the results of four, with brief (and inadequate)
phrases signifying the techniques they employ. (A more extensive table, reporting several of the different estimates in,
e.g., Ref. [130] as well as earlier versions of the 225Ra numbers presented in a later table can be found in Ref. [131].) The first
nontrivial calculation was that of Ref. [132]; it approximated the unperturbed states in Eq. (4.169) by the eigenstates of a
simple one-body potential and then treated VTVPV approximately as a zero-range interaction between the valence nucleon
and the 198Hg core in first-order perturbation theory. Ref. [42] improved this treatment considerably by using the full finite-
rangeVTVPV and adding to the perturbative treatment the collective excitation of the core in the randomphase approximation
(RPA) by a simplified version of the residual strong nucleon–nucleon interaction. The resulting ‘‘core polarization’’ decreased
the sensitivity of S toVTVPV, as the table shows. Ref. [40] also used RPA to treat core polarization but in a diagrammatic version
of self-consistent Skyrme mean-field theory (also known nowadays as energy-density-functional theory). The calculation,
which contained of a self-consistent mean-field calculation in 198Hg before the treatment of core polarization, employed
several state-of-the-art Skyrme energy-density functionals, giving rise to the range of numbers in the table. Finally, Ref. [130]
carried out the self-consistent mean-field theory (again with a number of Skyrme functionals) directly in the odd nucleus
199Hg, implicitly including the effects of RPA core polarization by the valence nucleon. It also allowed for axially-symmetric
nuclear deformation and included O


(Zα)2


corrections to the Schiff moment. Its result for the coefficient a1 is noticeably

different from those of the other calculations, a fact that is hard to understand because the methods appear to includemuch
of the same physics, albeit in quite different ways (see Table 10).

Table 10
The coefficients ai in 199Hg from a variety of nuclear-structure calculations.

Ref. Method a0 a1 a2

[132] Schematic 0.087 0.087 0.174
[42,43] Phenomenological RPA 0.00004 0.055 0.009
[40] Skyrme QRPA 0.002–0.010 0.057–0.090 0.011–0.025
[130] Odd-A Skyrme mean-field theory 0.009–0.041 −0.027–+0.005 0.009–0.024

Which of the calculations is most reliable and what is the uncertainty in our knowledge of the coefficients ai? Even if all
the calculations included the same kinds of corrections to the naïve Schiff operator in Eq. (4.165), these questions would
be hard to answer. The calculations agree, more or less, on the size of a0 and a2, but do not even agree on the sign of a1.
Some possible reasons for the discrepancy between Refs. [40] and [130], which, as mentioned, seem to include essentially
the same many-body effects:

(a) One of the calculations is in error. Ref. [130] carried out several internal consistency tests, but did not agree with
Ph.D. thesis leading to Ref. [40] when repeating one of the calculations there. The authors suggest as a result that [40]
may contain an error. On the other hand, the results of [40] agree fairly well with those of the similar RPA calculations
in Ref. [42], suggesting that it is Ref. [130], if any, that has problems.

(b) Some of the mean-field solutions in Ref. [130] are metastable, though they are supposed to represent stable ground
states. But even those that are completely stable use the same Skyrme functional as [40], and – like the solutions in that
reference – correspond to spherical shapes, disagree with [40].

(c) The treatment of core polarization in the two kinds of calculations are equivalent only up to terms linear in the strong
interaction between the valence nucleon and the core, and only if that interaction is not density dependent. (It is in fact
density dependent in Skyrme functionals.) But it is hard to imagine higher-order effects or the density dependence being
very important. There are a few diagrams in Ref. [40] that have no counterpart in the odd-nucleusmean-field calculation
of [130], but their contributions are apparently small.

(d) The state of the valence nucleon is represented only approximately in [40]. Again, though, the approximation should be
reasonably good.
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In short, it is difficult to see how the calculations could disagree so seriously. The authors need to revisit their work.
Itmay be, however, that all the calculations just reviewed aremissing something important, and that the spread in results

reflects their inadequacy. 199Hg is a soft nucleus in which a single mean field, the dominance of which underlies all of the
results obtained thus far, is probably insufficient. It is, perhaps, unfortunate that 199Hg is such a difficult nucleus, but a better
job is not beyond the means of nuclear structure theorists; techniques to mix mean fields with different properties exist.
We contrast the state of affairs here with that in another important and complex nuclear-structure problem: calculating the
matrix elements that govern neutrinoless double beta decay in complicated nuclei such as 76Ge. Theorists believe that they
know thosematrix elements towithin a factor of two or three,mainly by dint of the number of varied and careful calculations
that have been carried out. The main theoretical problem with the Schiff moment in 199Hg is not the challenging nature of
the calculation, but rather that only a few groups have tried.

129Xe presents many of the same problems as 199Hg. Fortunately other nuclei, including the one we discuss next, are
better behaved.

4.2.2. 225Ra
This nucleus became the focus of experimental interest after it was shown [133–135] that the Schiff moments in nuclei

with asymmetric shapes could be enhanced by two to three orders of magnitude. 225Ra is octupole deformed, has favorable
atomic physics, and has nuclear spin 1/2, making the nuclear orientation insensitive to stray quadrupole fields. It is thus
presents a terrific opportunity to experimentalists.

Shape asymmetry implies parity doubling (see e.g. Ref. [136]), i.e. the existence in 225Ra of a very low-energy |1/2−
⟩

state (55 keV [137] above the |Φ0⟩ ≡ |1/2+
⟩ ground state, according to measurements). That low-lying excited state

dominates the sum in Eq. (4.169) because of the small energy denominator it introduces. In the (good) approximation that
the shape deformation is rigid, the ground state and its negative-parity partner are projections onto good parity and angular
momentum of the same parity-mixed and deformed ‘‘intrinsic state’’, which represents the wave function of the nucleus in
its own body-fixed frame. Eq. (4.169) reduces in these circumstances to [134]

S ≈ −
2
3
⟨Ŝz⟩

⟨V̂TVPV⟩

(55 keV)
, (4.170)

where the brackets indicate expectation values in the intrinsic state.
The results of a couple of Schiff-moment calculations appear in Table 11. Ref. [134], much like Ref. [132] in 199Hg,

obtained the intrinsic state by filling single-particle levels in a phenomenological octupole-deformed potential and using
a zero-range approximation to VTVPV, but using Eq. (4.170) instead of summing over many unperturbed states as in Eq.
(4.169). Ref. [41], like Ref. [130] in 199Hg, treated the (octupole-deformed) potential in completely self-consistent Skyrme
mean-field theory with several Skyrme functionals, leading to a range of values for the ai. It also included (and perhaps
exaggerated) the damping effects of short-range nucleon–nucleon repulsion. Even so, the octupole deformation makes the
resulting coefficients much larger than in Hg.

As we have alreadymentioned, these calculations in Ra are almost certainlymore reliable than those in Hg. The low 1/2−

energy implies that the octupole deformation is strong and rigid, so that a single mean-field shape accurately represents the
intrinsic density. There is thus little need to go far beyond mean-field theory here. Furthermore, experiments promise to
increase the calculations’ reliability. Theoretical work in progress [138] shows that intrinsic Schiff moments are strongly
correlated with E3 transitions, which have been measured in 224Ra [139] at ISOLDE and may be measured in 225Ra itself.
The resulting data will tightly constrain the factor ⟨Ŝz⟩ in Eq. (4.170), leaving ⟨V̂TVPV⟩ as the only real unknown. Although a
reliable calculation of that quantity is not trivial, it is far easier than calculating the transition matrix elements of both V̂TVPV

and Ŝz to all the excited states of 199Hg.

Table 11
The coefficients ai in 225Ra from two nuclear-structure calculations.

Ref. Method a0 a1 a2

[134] Octupole-deformed Woods–Saxon −18.6 18.6 −37.2
[41] Odd-A Skyrme mean-field theory −1.0–(−4.7) 6.0–21.5 −3.9–(−11.0)

4.2.3. Other nuclei
Theorists have calculated the Schiff moments of other nuclei as well, though not with as much care as they have in the

nuclei already discussed. 129Xe has and will be the subject of experiments, and so has received some attention; like 199Hg,
however, it is unfortunately soft. Researchers have also examined actinides other than 225Ra, including some which have
no static octupole deformation; the idea there is that dynamic deformation, i.e. octupole vibrations, may enhance the Schiff
moments [140]. They have also considered the spherical nucleus 211Rn, which is to be examined experimentally as the first
step in a project to work with heavier octupole-deformed Rn isotopes. Table 12 lists some of these results. We have omitted
nuclei that show little prospect of being studied experimentally.
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Table 12
The coefficients ai in some other nuclei of interest, from several nuclear-structure calculations.

Ref. Nucl. Method a0 a1 a2

[132] 129Xe Schematic −0.11 −0.11 −0.22
[43] 129Xe Phenomenological RPA −0.008 −0.006 −0.009
[43] 211Rn Phenomenological RPA 0.019 −0.061 0.053
[130] 211Rn Odd-A Skyrme mean-field th. 0.034–0.042 −0.0004–(−0.018) 0.064–0.071
[43] 213Rn Phenomenological RPA 0.012 0.021 0.016
[134] 225Ra Octupole-def. Woods–Saxon −25 25 −50
[134] 223Rn Octupole-def. Woods–Saxon −62 62 −100
[134] 223Fr Octupole-def. Woods–Saxon −31 31 −62
[140] 219Fr Octupole–quadrupole vibr. −0.02 −0.02 −0.04

4.2.4. Ranges and best values for Schiff moments
Table 13 lists best values and ranges for three important nuclei. We determined these in a somewhat subjective manner,

assessing the strengths andweaknesses of each calculation. The entries should be considered tentative, andwe cannot assign
a quantitativemeaning to our ranges; we simply consider it likely that the true values lie in them. For the case of a1 in 198Hg,
as already discussed, our range includes zero.

Table 13
Best values and ranges for the coefficients ai in three nuclei used in experiments.

Nucl. Best value Range
a0 a1 a2 a0 a1 a2

199Hg 0.01 ± 0.02 0.02 0.005–0.05 −0.03–(+0.09) 0.01–0.06
129Xe −0.008 −0.006 −0.009 −0.005–(−0.05) −0.003–(−0.05) −0.005–(−0.1)
225Ra −1.5 6.0 −4.0 −1–(−6) 4–24 −3–(−15)

5. CP and T at the atomic and molecular scales

As with the physics at the hadronic and nuclear scales, it is convenient to express the atomic and molecular EDMs in
terms of the operators that characterize physics at shorter distance scales. To that end, we first write down an expression
for a general atomic or molecular EDM dA in terms of the electron and nucleon EDMs, the nuclear Schiff moment, and the
Wilson coefficients for the dimension-six T- and P-odd electron–quark interactions. We subsequently express the electron
EDM in terms of either the Wilson coefficient Ceγ or the quantity δe. Doing so allows us to express dA in such a way as to
place all of the fundamental dimension-six operators on the same footing, and in the case of the electron EDM, take into
account the additional Yukawa suppression that accompanies this operator. Thus, we have

dA = ρe
A de +


N=p,n
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Z dN + κS S +
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where we may alternately express the electron EDM contribution as

ρe
A de = e ζ e
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eγ
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 v
Λ

2
Im Ceγ . (5.172)

Note that the dN and Schiff moment S may then be expressed in terms of θ̄ and the dimension-six quark and gluon operator
coefficients using Eqs. (3.42)–(3.46) and (4.168), allowing one to explicitly identify a common factor of (v/Λ)2 for all
dimension-six operators and, thereby, to place them on a similar footing.

To illustrate the relative sensitivities of various atomic and molecular EDMs to the quantities appearing in Eqs. (5.171)
and (5.172) we consider one paramagnetic atom (205Tl), one diamagnetic atom (199Hg), and one molecule (YbF) for which
the most stringent experimental limits have, thus far, been obtained. A summary for other cases is given in Tables 14 and
15. As a prelude, we first summarize a few features of the atomic and molecular computations, referring the reader to the
extensive reviews in Refs. [11,13] and the recent study in Ref. [141] for details.

The sensitivity of an atom ormolecule to the electron EDM is governed by corrections to the Schiff screening as described
above. In contrast to the corrections due to finite nuclear size or higher T- and P-odd nuclear moments, the relevant
corrections are relativistic and entail both a first and a second order energy shift proportional to de: ∆E(ẽ)(j) for j = 1, 2.
For our purposes, the explicit expressions are not particularly enlightening, and we again refer to Refs. [13,129] for details.
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The correction∆E(ẽ)(1) can be expressed alternately in terms of an electronic operator proportional to γ5 or γ0 − 1, indicating
the dependence on lower components of the electronic wavefunction that vanish in the non-relativistic limit. The second
order term∆E(ẽ)(2) entails polarization of the atomic cloud by the presence of de (again vanishing in the non-relativistic limit)
that is then probed by the external field. For heavy paramagnetic atoms, the polarization correction dominates, growing
as Z3.

The four-fermion, semileptonic interactions in Eq. (3.40) lead to an effective atomic Hamiltonian that takes on the
following form in the limit of an infinitely heavy nucleus:

Ĥatom
TVPV = ĤS + ĤP + ĤT (5.173)

where

ĤS =
iGF
√
2
δ(r⃗)


(Z + N)C (0)S + (Z − N)C (1)S


γ0γ5 (5.174)

ĤT =
2iGF
√
2
δ(r⃗)


N


C (0)T + C (1)T τ3


· σ⃗N · γ⃗ (5.175)

ĤP =
iGF

4
√
2mN


∇⃗, δ(r⃗)


N


C (0)P + C (1)P τ3


σ⃗N γ0 (5.176)

and where the Dirac matrices, δ(r⃗) and ∇⃗ act on the electronic wavefunctions.
Note that in arriving at the expression for ĤS we have performed the sum over all nucleons, using the fact that in the

non-relativistic limit the operator N̄N just counts the number of nucleons. For ĤT ,P , in contrast, the nuclear matrix elements
of the spin operators is more complicated. The results quoted below for heavy nuclei, which have N > Z , were obtained
assuming a single unpaired neutron contributes and using a single particle shell model result for the nuclearmatrix element
of σ⃗n. Thus, the values for the k(j)T ,P quoted below correspond only to the neutron contribution (or the difference k(0)T ,P − k(1)T ,P ).
For all paramagnetic atoms, all three interactions ĤS,P,T contribute. For diamagnetic atoms wherein all electrons are paired,
ĤS cannot induce an EDM except in tandem with the hyperfine interaction.

5.1. Paramagnetic atoms: thallium

According to the computations of Refs. [11,13] (see also Ref. [141] for a recent summary), the EDM of 205Tl has by far the
strongest dependence on the electron EDM and the ēiγ5eN̄N interaction of all paramagnetic atoms studied experimentally
to date. Compared to the latter, the dependence on tensor and nucleon pseudoscalar operators are suppressed by three and
five orders of magnitude, respectively. Numerically, one has [142]

ρe
A = −573 ± 20, β

eγ
A = 0.65 ± 0.02 e fm, eζ e

A = (1.9 ± 0.07)× 10−6 e fm, (5.177)

while

k(0)S = −(7 ± 0.3)× 10−5 e fm and k(1)S = 0.2k(0)S , (5.178)

and [13]

k(0)P = −k(1)P = 1.5 × 10−10 e fm and k(0)T = −k(1)T = 0.5 × 10−7 e fm. (5.179)

The numerical dominance of k(0)S implies that dA(205Tl)has the greatest sensitivity to Im C (−)eq , a somewhat reduced sensitivity
to Im C (+)eq and relatively little sensitivity to Im C (3)ℓequ.

It is interesting to compare the relative sensitivity of dA(205Tl) to δe and Im C (−)eq :

k(0)S

eζ e
A

≈ −37. (5.180)

To the extent that these two quantities have the same order of magnitude, the four-fermion semileptonic operator would
yield a far larger contribution to the thallium EDM than would the electron EDM.

The corresponding sensitivities for 133Cs [143–145], 85Rb [144], and 210Fr [146–148,141] are also listed in Tables 14 and
15. We have largely followed Ref. [141] in averaging the results for Cesium and in assigning error bars to the results for
Francium, for which only the analytic expressions in Ref. [147] have been used to obtain k(0)S .
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Table 14
Dependence of atomic and molecular EDMs on EDMs of the electron, proton and neutron and on the Schiff moment.

Atom ρe
A β

eγ
A eζ e

A ρp ρn κS
e fm 10−8 e fm 10−4 10−4 10−4 fm−2

205Tl −573(20) 0.65(0.02) 189 (7)
133Cs 123(4) −0.14(0.005) −41 (1.3)
85Rb 25.7(0.8) −0.03(0.0009) −8.5 (0.3)
210Fr 903(45) −1.02(0.05) −298(15)
199Hg 0.01 −1.13 × 10−5

−3.3 × 10−3
−0.56 −5.3 2.8

Molecule Hz/(e fm) Hz kHz

YbF −(1.1 ± 0.1)× 1012 (1.2 ± 0.1)× 109 (3.6 ± 0.3)
ThO −(4.6 ± 0.4)× 1012 (5.2 ± 0.5)× 109 (15.2 ± 1.4)

5.2. Diamagnetic atoms: Mercury

The diamagnetic nature of 199Hgmakes it farmore sensitive to T- and P-odd interactions at the purely hadronic level than
those involving electrons as compared to the paramagnetic thallium atom. From Refs. [11,13] we first obtain the sensitivity
to the nuclear Schiff moment:

κS = 2.8 × 10−4 fm−2 (5.181)

where the scale for the Schiff moment is e fm3. While it is possible to include the nucleon EDM contributions in the nuclear
Schiff moment, we find it helpful to separate these contributions out explicitly as in Eq. (5.171). From Refs. [11,13] we obtain

ρ
p
A = −5.6 × 10−5 ρn

A = −5.32 × 10−4, (5.182)

while the sensitivity to the electron EDM is given by

ρe
A = 0.01, β

eγ
A = −1.13 × 10−5 e fm, eζ e

A = −3.3 × 10−11 e fm, (5.183)

essentially five orders of magnitude less sensitive that 205Tl. The sensitivity to the four-fermion semileptonic interactions
N̄Nēiγ5e are similarly suppressed with respect to thallium:

k(0)S [
199Hg] ≈ 1.16 × 10−4

× k(0)S [
205Tl], (5.184)

while the sensitivity to the tensor and nucleon pseudoscalar interactions are somewhat enhanced:

k(j)P [
199Hg] ≈ 4 × k(j)P [

205Tl], j = 0, 1 (5.185)

k(j)T [
199Hg] ≈ 4 × k(j)T [

205Tl], j = 0, 1. (5.186)

The relatively weak dependence of dA(199Hg) on the scalar interactions reflects the suppression due to the presence of
the atomic hyperfine interaction that must be present to yield a non-vanishing result. Consequently, dA(199Hg) provides
a relatively more effective probe of Im C (3)ℓequ than does dA(205Tl). In a scenario where the only T- and P-odd effects arise
via semileptonic interactions, a comparison of results from mercury and thallium could allow one to disentangle between
various sources.

Before proceeding with the molecular EDMs, we observe that if a given BSM scenario generated only the dimension-six
quark EDM operators and not the four-quark, CEDM, or three-gluon operators, then the corresponding effect on dA(199Hg)
would be dominated by the induced neutron and proton EDMs. In this case, the present limit on dA(199Hg) could be
interpreted as a limit on dn at the 10−12 e fm level, roughly one order of magnitude weaker than the present direct neutron
EDM limit. On the other hand, using the latter, one could then infer a bound of roughly 10−10

− 10−11 e fm on dp.

5.3. Molecules: Ytterbium fluoride

In order to assess the sensitivity of the polar molecules to the underlying CPV operators, we first convert to the
conventions used in the theoretical literature. Following Ref. [149] we write the molecular Hamiltonian as

Hmol
TVPV =


Wdde + WS C̄S


S⃗ · n̂ (5.187)

where S⃗ is the electronic spin, n̂ is a unit vector along the axis of the YbFmolecule, and C̄S = (Z+N)C (0)S +(Z−N)C (1)S . We do
not at present include the dependence on the pseudoscalar or tensor interactions as, to our knowledge, the corresponding
evaluations of molecular sensitivities have not been performed.
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Fig. 4. Dependence of η(Eext) for YbF [150]. Vertical axis gives Eeff as a function of the applied field Eext . Scaling Eeff by twice its asymptotic value gives
η(Eext).
Source: Figure reprinted with permission from Phys. Rev. Lett. 89 023003 (2002).

Contrary to what onemight naïvely expect, the interaction in Eq. (5.187) contains no dependence on the external electric
field, E⃗ext. The experimental observable – a frequency shift – depends on the ground state (g.s.) expectation value in the
presence of the external field:

⟨g.s.|Hmol
TVPV |g.s.⟩Eext =


Wdde + WS C̄S


η(Eext), (5.188)

where

η(Eext) = ⟨g.s.|S⃗ · n̂|g.s.⟩Eext (5.189)

is an effective electric polarization that increasesmonotonicallywith Eext = |E⃗ext| and has amaximumvalue of 1/2. From the
first term in Eq. (5.187), then, one may interpret η(Eext)Wd as the effective internal electric field Eeff acting on an unpaired
electron that is induced by a non-vanishing Eext. For YbF, η(Eext) has been reported in Ref. [150] and is shown in Fig. 4.
The vertical axis gives Eeff as a function of Eext. The value of η(Eext) may be obtained by scaling Eeff by twice its maximum,
asymptotic value14.

For purposes of this review, it is useful to express Hmol
TVPV in terms of δe and the Im C (±)eq :

Hmol
TVPV =

 v
Λ

2 
eζ e

Aδe + g(0)S k(0)S Im C (−)eq + g(1)S k(1)S Im C (+)eq


S⃗ · n̂, (5.190)

where the quantities ζ e
A and k(0,1)S are determined by molecular structure. The results for Wd and WS are typically quoted

in units of Hz/(e cm) and cm, respectively. For the sensitivity to the electron EDM, the latest results in the compilation of
Ref. [141] yields

Wd = −(1.1 ± 0.1)× 1012 Hz/(e fm), β
qγ
A = (1.2 ± 0.1)× 109 Hz, eζ e

A = 3.6 ± 0.3 kHz (5.191)

where we identify ρe
A ≡ Wd. For the scalar interactions one has

k(0)S = 5k(1)S = −(92 ± 9) kHz, (5.192)

where we have adopted the ten percent theoretical error suggested in Ref. [141]. To compare with the thallium atom, one
has k(0)S /eζ

e
A ≈ −26, indicating a somewhat stronger relative sensitivity to the electron EDM. However, the sensitivities are

sufficiently similar that a combination of the present experimental limits in the two systems does not allow for a significant
individual limits on δe and Im C (−)eq .

Looking to the future, an effort to probe the EDM of ThO is underway. A value for Wd has been computed in Ref. [151].
The corresponding value forWS has been inferred from the ratio ofWd/WS computed analytically in Ref. [147]. A conversion
to eζ e

A and k(0)S appears in Tables 14 and 15. In both cases, we have arbitrarily assigned a ten percent theoretical uncertainty.
We note that the ratio k(0)S /eζ

e
A for ThO lies approximately midway between that of Th and YbF.

14 We thank T. Chupp and E. Hinds for helpful discussions on this point.



J. Engel et al. / Progress in Particle and Nuclear Physics 71 (2013) 21–74 59

Table 15
Dependence of atomic and molecular EDMs on T- and P-
odd semileptonic interactions.

Atom k(0)S k(0)P k(0)T
10−5 e fm 10−10 e fm 10−7 e fm

205Tl −7.0 ± 0.3 −1.5 −0.5
133Cs −0.78 ± 0.2 −2.2 −0.92
85Rb −0.110 ±

0.003
210Fr −10.9 ± 1.7
199Hg −8.1 × 10−4 6 4

Molecule kHz kHz kHz

YbF −92 ± 9
ThO −564 ± 56

6. Beyond the Standard Model: examples

The space of BSM scenarios that contain additional sources of CPV is vast, and it is not feasible to provide an exhaustive
review here. Instead, we will focus on several representative examples to illustrate the interplay of scales: supersymmetry,
modelswith extended gauge symmetry, and scenarioswith extra spacetimedimensions. Before doing so,we firstmake a few
general remarks. Perhaps most importantly, any new source of CPV will generally induce a contribution to the QCD vacuum
angle, which we denote as θ̄BSM. In the minimal supersymmetric Standard Model (MSSM) for example, such contributions
arise at one-loop order via corrections to the quark propagators. Given the already severe bounds on θ̄ , such contributions to
θ̄BSM by themselves imply stringent limits on the CPV phases in the absence of a mechanism to alleviate them. Possibilities
include invoking a new symmetry, such as the PQ symmetry or a flavor symmetry that yields a vanishing one-loop result.

Second, non-observation of atomic, molecular, and neutron EDMs generically imply that any new CPV phases φCPV must
be quite small if the BSMmass scaleΛ is sub-TeV. Conversely, allowing sinφCPV ∼ 1 implies thatΛ & few TeV. To illustrate,
dimensional analysis gives for the elementary fermion EDM

df ∼ e
mf

Λ2

 αk

4π
sinφCPV (6.193)

where αk is either the fine structure constant or strong coupling (evaluated at the scaleΛ). For αk = αem Eq. (6.193) gives

df ∼ sinφCPV

 mf

MeV

 
1 TeV
M

2

× 10−13 e fm. (6.194)

The present limit on the EDM of the electron, |de| < 10.5 × 10−15e fm [152] obtained from an experiment on the Yb-F
molecule15, then implies that

|sinφCPV| . (Λ/2 TeV)2 . (6.195)

Thus, for |sinφCPV| ∼ 1 one requires Λ & 2TeV. In order to allow for sub-TeV scale masses and O(1) CPV phases while
respecting present constraints, one must either invoke cancellations between different contributions [25] or a mechanism
that suppresses the one-loop EDMs. In the case of the MSSM, for example, taking the sfermions to have multi-TeV masses
can result in the leading contributions arising at two-loop order and involving the electroweak gaugino–Higgs/Higgsino
sector with sub-TeV masses [153,154]. Given the suppression of an additional loop factor, the resulting dependence on the
CPV phases is weakened and the present constraints are generally less severe. Alternate strategies can be employed in other
scenarios.

6.1. Supersymmetry

Supersymmetry (SUSY) remains one of the most strongly motivated BSM scenarios, providing an elegant solution to the
hierarchy problem, candidates for cold dark matter (the lightest neutralino or gravitino), and copious sources of CPV that
may drive the generation of the baryon asymmetry during the EWSB era. At the same time, SUSY CPV generically leads
to one-loop EDMs that exceed present experimental bounds, assuming that superpartner masses lie below one TeV [see
Eq. (6.195)], leading to the so-called ‘‘SUSY CP problem’’. The SUSY mechanism for solving the hierarchy problem leads one
to expect sub-TeV scale superpartnermasses, implying |sinφCPV| . 0.01−0.1. On the other hand, onemight naturally expect
sinφCPV ∼ O(1). Moreover, successful supersymmetric electroweak baryogenesis typically requires O(1) phases unless the
relevant portion of the superpartner spectrum is finely-tuned to contain near degeneracies.

Several solutions to the SUSY CP problem have been proposed:

15 This limit assumes vanishing contributions from the four-fermion semileptonic operators.
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(i) Heavy sfermions. It is possible, for example, that the fermion superpartners (sfermions) are considerably heavier than
one TeV, leading to a suppression of one-loop EDMs and allowing for O(1) phases [155,153,154]. Null results for
superpartner searches at the LHC may be pointing to this ‘‘split SUSY’’ scenario, as the generic mass bounds on gluinos
and first and second generation squarks are now at the TeV scale16. The electroweak gauge boson and Higgs boson
superpartners may still be relatively light, thereby allowing for a viable baryogenesis mechanism (see Ref. [1] and
references therein).

(ii) CP-conserving SUSY breaking. It is equally possible that themechanism of SUSY-breaking that is responsible for both the
splitting of SM masses from those of their superpartners (the ‘‘soft terms’’) and the CPV phases suppresses the latter.
This possibility has been emphasized in the work of [156] that considered an M-theory scenario on the G2 manifold in
which the only source of CPV at the SUSY-breaking scale is the CKMphase. The resulting effects on low-scale parameters
then enters through the RG evolution.

(iii) Cancellations. It was proposed some time ago [25] that contributions to EDMs from different CPV phases or those from
different dimension-six CPV operators may cancel leading to a suppression that again allows for O(1) phases and light
superpartners.

An extensive discussion of (i) and (iii) are given in the reviews of Refs. [14,27] and the more recent analysis of EDMs
in SUSY given in Ref. [92]. Given the comprehensive nature of these articles, we do not attempt to provide an exhaustive
review of EDMs in SUSY here. Instead, we summarize several generic features as well as developments that have appeared
since publication of these studies. For this purpose, we focus on the minimal supersymmetric Standard Model (MSSM) for
which one has the superpotential from which one derives the supersymmetric Lagrangian,

WMSSM = ˆ̄uYuQ̂ Ĥu −
ˆ̄dYdQ̂ Ĥd − ˆ̄eYeL̂Ĥd + µĤu · Ĥd. (6.196)

Here, the hatted quantities ˆ̄f and F̂ are the SU(2)L-singlet and doublet chiral superfields for fermion F while Ĥu,d are the
two Higgs doublet superfields. The Yf are 3× 3 Yukawamatrices. For purposes of this discussion, we omit possible R-parity
violating terms in the superpotential, which is tantamount to promoting the accidental global B−L conservation of the SM to
a symmetry of the MSSM. Note that superpotential introduces only one new parameter beyond that of the SM, namely, the
coefficient of the last term in Eq. (6.196). In addition, EWSB allows the two neutral Higgs scalars to have vacuum expectation
values, whose ratio defines the angle β: tanβ = vu/vd.

The soft SUSY-breaking Lagrangian responsible for splitting the SM and superpartner masses is

Lsoft = −
1
2
(M3g̃ g̃ + M2W̃W̃ + M1B̃B̃)+ c.c.− ( ˜̄uauQ̃Hu −

˜̄dadQ̃Hd − ˜̄eaeL̃Hd)+ c.c.

− Q̃ Ďm2
QQ̃ − L̃Ďm2

L L̃ − ˜̄um2
ū
˜̄u
Ď
−

˜̄dm2
d̄
˜̄d
Ď

− ˜̄em2
ē
˜̄e
Ď
− m2

Hu
H∗

uHu − m2
Hd
H∗

dHd − (bHuHd + c.c.). (6.197)

Here, the first line gives the gauginomassMi, i = 1, 2, 3 for the U(1)Y , SU(2)L and SU(3)C gauginos, respectively. The second
line gives the trilinear ‘‘A-term’’ that couples Higgs scalars with left- and right-handed squarks and sleptons. The third line
gives the scalarmassm2

q̃L,R
,m2

l̃L,R
, andm2

Hu,d
for squarks, sleptons andHiggs scalars, respectively. Aswith the Yukawamatrices,

the boldfaced quantities indicate matrices in flavor space. Finally, the last line is the bilinear b-term, which couples up- and
down-type Higgs scalar doublets. It is also important to emphasize that in nearly all SUSY analyses, one takes the af to be
proportional to the corresponding Yukawa couplings, thereby naturally suppressing flavor changing neutral currents:

af = Af Yf (6.198)

where Af becomes the effective trilinear soft parameter for each fermion species.
The various interactions in Lsoft introduce copious sources of both flavor violation and CPV. Here, we focus on the latter.

After performing an appropriate set of field redefinitions, Lsoft – together with the µ-term in the superpotential – includes
40 CP-violating phases beyond those of the SM (for a useful discussion, see, e.g., Ref. [157]). Unlike the CPV phase in the CKM
matrix, the effects of these new phases are not suppressed by the Jarlskog invariant [158] and light quark Yukawa couplings.
Consequently, the CPV effects need not be suppressed as in the SM, leading to the SUSY CP problem. The new phases can be
classified in terms of those that solely enter the gauge–Higgs sector:

φi ≡ Arg

µMib∗


φij ≡ Arg


MiM∗

j


(6.199)

where i, j run over the three gauge groups of the MSSM (leading to a total of three independent phases in this sector which
we take to be the φi), and those involving the sfermions:

φf ≡ Arg

AfM∗

i


φff ′ ≡ Arg


Af A∗

f ′


. (6.200)

16 It is still possible, however, that these strongly interacting superpartners are lighter than one TeV but have a compressed spectrum leading to presently
undetectable experimental signatures.
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Fig. 5. Illustrative one-loop (left) and two-loop (right) contributions to the fermion EDM and quark CEDM in the MSSM.

Given the large number of phases, one often invokes a phase universality assumption:

φ1 = φ2 = φ3 ≡ φµ (6.201)

φf = φf ′ ≡ φA. (6.202)

As we discuss below, this assumption is unlikely to allow for consistency between supersymmetric electroweak
baryogenesis and EDM constraints.

The CPV interactions in theMSSM give rise to three of the dimension six operators of interest in this article: the EDM and
CEDM operators arise at the one-loop level, while the three-gluon operator first enters at two-loop order. The four-fermion
operators are technically dimension eight, but can be enhanced for large tanβ . Illustrative contributions to the one loop
EDM and CEDM arise from the diagrams in Fig. 5.

Although not shown explicitly, the insertion of the Higgs fields as needed for electroweak gauge invariance enters in one
of two ways: (a) the mixing of left- and right-handed sfermions and (b) mixing of electroweak gauginos and Higgsinos. The
former is characterized by the sfermion mass-squared matrix:

M2
f =


M2

LL M2
LR

M2
LR M2

RR


(6.203)

with

M2
LL = m2

Q + m2
q + ∆f (6.204)

M2
RR = m2

f̄ + m2
q + ∆̄f (6.205)

with

∆f =


I f3 − Qf sin2 θW


cos 2βM2

Z (6.206)

∆̄f = Qf sin2 θW cos 2βM2
Z (6.207)

and

M2
LR = M2

RL =


v [af sinβ − µYf cosβ] , ũ − type sfermion
v [af cosβ − µYf sinβ] , d̃ − type sfermion.

(6.208)

Herem2
q is themassmatrix for the corresponding fermion; I f3 and Qf are the third component of isospin and fermion charge,

respectively; and v =


v2u + v2d . The explicit factor of v in the M2

LR = M2
RL corresponds to the Higgs insertion above the

scale of EWSB and leads to mixing between superpartners of the left- and right-handed fermions after EWSB. As a result the
incoming and outgoing fermions in Fig. 5 can have opposite handedness as needed for the EDM and CEDM operators. Note
that with the assumption of Eq. (6.198) the left–right mixing is proportional to the fermion Yukawa coupling, implying that
the contributions to the EDM and CEDM are as well.

A similar Higgs insertion is implicit in the mixing of the Higgsinos and electroweak gauginos. To illustrate we give the
chargino mass matrix for the charged fields ψ±

= (W̃+, H̃+
u , W̃

−, H̃−

d ):

MC̃ =


0 XT

X 0


; X =


M2

√
2sβMW√

2cβMW µ


. (6.209)
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Fig. 6. Illustrative MSSM contributions to the CPV three-gluon operator QG̃ .

whose mass eigenstates are the charginos χ±

i , i = 1, 2. Note that since MW = gv/2, the off-diagonal terms responsible for
gaugino–Higgsino mixing contain an implicit Higgs insertion. Thus, an incoming left-handed fermion in Fig. 5 that interacts
with the charged SU(2)L gaugino (the ‘‘wino’’) component of the χ±

i can lead to an outgoing right-handed fermion that
interacts with the Higgsino component due to this mixing. Since the latter interaction is given by the Yukawa interaction in
the superpotential, the corresponding effect on the EDM and CEDM is again proportional to the fermion Yukawa coupling.

A comprehensive set of expressions for the one-loop contributions to the fermion EDMs and quark CEDMs are given
in Ref. [92], so we do not reproduce them here. Instead, we give an illustrative set of expressions for δf and δ̃q under the
universality assumption of Eq. (6.201):

δe =
Qe

32π2


g2
1

12
sinφA −


5g2

2

24
+

g2
1

24


sinφµ tanβ


(6.210)

δq = −
Qq

32π2


2g2

3

9


sinφµ[tanβ]

±1
− sinφA


+ O(g2

2 , g
2
1 )


(6.211)

δ̃q = −
1

32π2


5g3

3

18


sinφµ[tanβ]

±1
− sinφA


+ O(g2

2 , g
2
1 )


(6.212)

whereQf is the fermion charge, where for simplicity we take SUSYmass parameters to be identical (Λ = |Mj| = |µ| = |Af |),
and where the upper (lower) sign corresponds to negatively (positively) charged quarks.

The expressions in Eq. (6.210) contain a linear combination of the two universal phases, allowing for the possibility of
some cancellation between various contributions. However, as noted in Ref. [14], it is unlikely that such a cancellation could
allow one to evade all EDM limits since the coefficients of sinφµ and sinφA differ for the various species of fermions as well
as between the EDM and CEDMs. Nonetheless, it is in principle possible to obtain a consistent fit to present EDM limits with
O(1) sinφCPV if one relaxes the universality assumption, a feature we discuss below.

Going beyond one-loop order, one encounters the first contributions to the three-gluon operator as indicated in Fig. 6
as well as the two-loop Barr–Zee graph contributions to the EDM and CEDM operators as indicated by the diagrams in
Fig. 5(right). In the limit of heavy sfermions, the Barr–Zee graphs containing electroweak gauginos in the upper loopwill give
the dominant contribution. Explicit expressions for the contributions generated by the graphs of Fig. 6 are given in Ref. [92],
along with those for a subset of the Barr–Zee graphs that contain exchanges of only the lightest CP-even Higgs scalar. In
Ref. [154], the remaining set of graphs containing electroweak gauginos and exchanges of the charged and CP-odd Higgs
as well as other gauge bosons were computed and found in some cases to give the dominant contributions to the fermion
EDMs in the heavy-sfermion regime. We note that in this regime, even the two-loop CEDM operators are suppressed, since
the upper loops in Fig. 5(right) contain only squarks.

Based on that work, the authors subsequently performed a global analysis of EDM constraints on CPV phases in the
MSSM [159], up-dating the SuperCPH2.0 code described in Ref. [92] to include the full set of two-loop graphs. Illustrative
results (obtained before publication of the YbF molecular EDM result) are indicated in Fig. 7 and Table 16, based on the use
of QCD SR to compute the hadronic matrix elements. In this context, the impact of the three-gluon operators is typically
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Fig. 7. Constraints on MSSM CPV phases implied by null results for the neutron, Thallium, and Mercury EDMs [159]. Red, blue, and black contours
correspond to first generation sfermion masses (MLL,RR)1 = 200, 500, and 1000 GeV, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Source: With kind permission from Springer Science+Business Media: J. High Energy Physics, ‘‘A comprehensive analysis of electric dipole moment
constraints on CP-violating phases in the MSSM’’, 08, 2010, p. 062, Y. Li, S. Profumo, M.J. Ramsey-Musolf, Fig. 10 (partial).

suppressed, as is the effect of the four-fermion operators in the low-to-moderate tanβ regime. The results in Table 16
were obtained assuming three independent phases contribute: φ1, φ3, and a common triscalar phase for the first generation
squarks: φu = φd. The impacts of φe and φ1 are sufficiently weak that one may omit them from the global analysis, though
the sensitivities of on-going and future EDM searches could allow one to probe these phases as well. Fig. 7 shows the relative
correlations between pairs of phases, obtained from a fit in each case including only those two phases.

It is particularly notable that the dA(199Hg) limit places severe constraints on φ3 while generating a strong correlation
between this phase and φu,d, both of which enter the CEDM operators at one-loop order. In contrast, the neutron and
ThalliumEDM limits have a relatively stronger impact onφ2, though at present the latter constraint is not strongly correlated
with any of the other phases. Future measurements with ∼100 times better sensitivity, however, would give rise to such
correlations.

Table 16
Summary of the combined bounds at 95% c.l. on three phases (φ2 , φ3 , φu,d) for tanβ = 3, 60 and first generation sfermion masses (MLL,RR)1 = 200, 500,
and 1000 GeV, obtained using current experimental limits on the neutron, Thallium, and Mercury EDMs [159].
Source: With kind permission from Springer Science+Business Media: J. High Energy Physics, ‘‘A comprehensive analysis of electric dipole moment
constraints on CP-violating phases in the MSSM’’, 08, 2010, p. 062, Y. Li, S. Profumo, M.J. Ramsey-Musolf, Table 4.

tanβ 3 60

(MLL,RR)1 200 GeV 500 GeV 1000 GeV 200 GeV 500 GeV 1000 GeV

|φ2| <2.1 × 10−3 <5.0 × 10−3 <1.5 × 10−2 <9.3 × 10−5 <2.5 × 10−4 <6.9 × 10−4

|φ3| <2.8 × 10−3 <9.7 × 10−3 <2.8 × 10−2 <3.1 × 10−4 <4.2 × 10−4 <1.5 × 10−3

|φu,d| <1.8 × 10−2 <6.0 × 10−2 <0.17 <1.7 × 10−2 <5.6 × 10−2 <0.21

6.2. Extended gauge symmetry

As with SUSY, the embedding of the SM gauge symmetry in a larger gauge group can allow for additional CPV phases in
both flavor diagonal and flavor non-diagonal processes at low energies. For purposes of illustration, we consider the well-
studied left–right symmetry model (LRSM) with the gauge group SU(2)L × SU(2)R ×U(1)B−L. Symmetry breaking proceeds
in two steps, with the first step breaking the left–right symmetry and generating a mass for the right-handed gauge bosons,
followed by a second step that breaks the SM gauge symmetry. Implementing this scenario requires augmenting the SM
Higgs sectorwith additional scalar fields: two complex triplets∆L,R that transform separately under the SU(2)L,R symmetries
and an eight-component bidoublet φ. New CPV phases arise from two sources. The extended gauge symmetry allows for a
complex phase α associated with the VEV of φ, corresponding to spontaneous CPV (SCPV):

⟨φ⟩ =


κ 0
0 κ ′eiα


. (6.213)
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In addition, new phases can arise in the fermion mixing sector owing to differences between separate rotations of the
left- and right-handed fermion fields, Im(V L

ijV
R ∗

ij ). Significantly, one requires only two generations of fermions rather than
three as in the case of the SM in order to obtain a CPV phase associated with mixing that cannot be removed through field
redefinitions.

Themanifestation of these newphases then enters through themixing of theWL,R gauge bosons into themass eigenstates
W1,2:

W+

1 = cos ξ W+

L + sin ξ e−iα W+

R (6.214)

W+

2 = − sin ξ eiα W+

L + cos ξ W+

R (6.215)

where the mixing angle is given by

tan ξ = −κκ ′/v2R ≈ −2
κ ′

κ


M1

M2

2

(6.216)

with vR being the vev of the neutral component of the ∆R and Mk being the mass of the W±

k boson. Interactions of the
latter with quarks and leptons can yield a variety of the dimension six effective operators introduced earlier. The resulting
contributions to the dq were first computed in Ref. [160] for the two-flavor case. In contrast to the SM, non-vanishing
contributions first arise at one-loop order, with the result

δq =

 gLgR
96π2


sin ξ Aq


rq cos θL cos θR sinα + rQ sin θL sin θR Bq


(6.217)

where cos θL,R is the ‘‘Cabibbo angle’’ for the left- and right-handed sectors, gL,R are the corresponding gauge couplings for
the two sectors,

ru = Yd/Yu rQ = Ys/Yu Au = 4 Bq = sin(α + δR − δL) (6.218)

rd = Yu/Yd rQ = Yc/Yd Ad = 5 Bq = sin(α − δR + δL) (6.219)

and where we replace v
Λ

2
→


v

M1

2 
1 −

M2
1

M2
2


(6.220)

in the definition of δq. Since M1 is the mass of the lightest W -boson, one encounters no explicit suppression due to the
heavy scale17. Note also that the EDM for a given quark flavor is proportional to the Yukawa coupling for the quarks having
opposite sign third component of IL,R.

The corresponding CEDM operator has been computed in Ref. [161]. One also encounters the four-quark operator of
Eq. (2.29) due to the exchange of theW1,2 between quarks [162,161,28,29]. Following the notation of Ref. [29] one obtains

ImCϕud
Λ2

=
2
√
2

3
GFK (−) sin ξ Im


e−iαV L

uqV
R ∗

uq


(6.221)

where we have included the contribution from only the exchange of theW1 and have extended the operator Qϕud to include
all down-type quarks q = d, s, b. The constant K (−) ≈ 3.5 is a QCD renormalization group factor associated with running
from the weak scale to the hadronic scale. Again specifying to the two generation case, we observe that the effect of the
phase in the quark mixing matrix will not enter the operators containing only u and d quarks, leaving only a dependence
on the SCPV phase. In this case, the contribution to ḡ(1)π will depend solely on this phase and not on δL − δR. Including the
second generation quarks would then require extending the arguments leading to Eq. (3.151) to account for the nucleon
matrix element of the s̄s and a coupling of the nucleon to the η meson. We leave this extension, as well as a consideration
of the CEDM and three-gluon operators, to future work.

Contributions to the neutron EDM in the LRSM have been carried out using a variety of approaches. Ref. [160] relied
on the quark model result to determine the dependence of dn on the dq. The authors of Ref. [162] also performed a
quark model evaluation of the contribution from the four quark operator (2.29). Pseudoscalar loops were included in Refs.
[161,29], where one of the pseudoscalarmeson–baryon vertices are induced by the underlying CP-violating quark and gluon
operators, while Ref. [29] also computed contributions to the nucleon wavefunction due to the CEDM. We note that the
pseudoscalar loop results in Refs. [161,29] were not performed using a consistent chiral power counting and are likely to
overestimate the corresponding contribution that is proportional to ḡ(1)π .

To illustrate the manifestation of LRSM CPV in EDMs, we consider (a) contributions from the dq to dn using the quark
model relation (3.138); (b) chiral loop contributions to dn induced by Qϕuq; (c) contributions to dA(199Hg) generated by

17 The suppression is implicit via Eq. (6.216).
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Qϕuq via the nuclear Schiff moment. Starting with the dq, we neglect the heavy quark contributions for simplicity and take
gL = gR = e/ sin θW, leading to

dn ∼ (1.13 × 10−7e fm)

1 −

M2
1

M2
2


sin ξ (5Yu + 4Yd) cos θL cos θR sinα. (6.222)

Noting that 5Yu + 4Ud ∼ 2.5 × 10−4 and that |sinξ | . 10−3 from tests of first row CKM unitarity [163], we see that

|dn|dq . (3 × 10−14e fm)

1 −

M2
1

M2
2


cos θL cos θR sinα. (6.223)

The present dn constraint is, thus, not sufficiently stringent to probe this contribution.
A potentially larger contribution may arise from chiral loops involving the isovector TVPV πNN interaction. Making the

same simplifying assumptions used above and using Eqs. (3.151), (6.221) one has

ḡ(1)π ≈ −10−4

1 −

M2
1

M2
2


sin ξ cos θL cos θR sinα. (6.224)

The corresponding one-loop contribution to dn is given by

dchiraln =
egAḡ(1)π
16π2

µn

Fπ
F(m2

π/Λ
2
χ ) (6.225)

whereµn = −1.91 is the neutron anomalousmagnetic moment and F(x) is a loop function. An early calculation reported in
Ref. [161] gave F(x) = 3/2−x+· · · ,where the ‘‘+ · · ·’’ denote contributions non-analytic in x. This computation, however,
did not utilize the consistent power counting obtained with HBχPT and, thus, should be considered unreliable. A consistent
HBχPT computation gives F(x) = −x ln x ≈ −0.1 [see also Eqs. (3.107), (3.108)], implying an order of magnitude smaller
neutron EDM contribution than one would infer from the computation of Ref. [161]. Taking |sinξ | . 10−3 we then obtain

|dn|chiral = (3 × 10−10e fm)

1 −

M2
1

M2
2


cos θL cos θR sinα, (6.226)

indicating roughly four orders of magnitude greater sensitivity to sinα than implied by the quark EDM contribution. One
may trace this difference to the combination of the quark Yukawa couplings 5Yu + 4Ud ∼ 2.5 × 10−4 that enters the quark
EDM contribution and that does not appear in the chiral loop contribution induced by Qϕuq. For cos θL ≈ cos θR ≈ 1 and
M1 ≪ M2 we then obtain |sinα| . 10−3 from this contribution.

Turning to dA(199Hg), we use the value of κS given in Eq. (5.184) and a representative value for a1 of 0.03 (midpoint of
the corresponding range in Table 13) to obtain

|dA(199Hg)| . (1.1 × 10−11e fm)

1 −

M2
1

M2
2


cos θL cos θR sinα, (6.227)

giving an even stronger sensitivity to the SCPV phase than dn, though subject to considerable nuclear theory uncertainties
associated with the computation of a1 as discussed above. However, given that the current bound on dA(199Hg) is three
orders of magnitude smaller than the limit on dn, the former is likely to provide the most stringent constraint on the LRSM
contribution even allowing for a possibly smaller magnitude for a1 than assumed here. For the benchmark value of a1 used
in this example, we would obtain |sinα| . 10−5 for cos θL ≈ cos θR ≈ 1 and M1 ≪ M2.

In the foregoing discussion, we have used the phenomenological constraint on the mixing angle ξ obtained from tests of
first row CKM unitarity [163]. An alternate approach has been followed by the authors of Ref. [29], who observed that one
may determine the elements of the right-handed CKMmatrix V R

uq in terms of V L
uq, the ratio κ ′/κ , sinα and the quark masses

by exploiting properties of the LRSMYukawamatrices, the hierarchy of quarkmasses, and theWolfenstein parameterization
of V L

uq. One then finds that

sin ξ Im

e−iαV L

uqV
R ∗

uq


(6.228)

can be expressed in terms of M2
1/M

2
2 and r sinα, where r = (mt/mb)(κ

′/κ) characterizes the ratio of the two bi-doublet
vevs. Illustrative constraints on M2 ≈ MWR and r sinα are indicated by the yellow points in Fig. 8. We note that the yellow
points were obtained using the value of F(x) given in Ref. [161] that is an order of magnitude larger than the HBχPT result.
Taking into account the latter reduction and utilizing the bounds on dA(199Hg) we conclude that the region allowed by the
199Hg limit is likely to be considerably broader than indicated by the yellow points in Fig. 8.

A future improvement in the sensitivity of neutron EDMsearches by twoorders ofmagnitude couldmake dn a comparably
powerful probe of LRSM CPV as dA(199Hg).
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Fig. 8. Constraints on right-handed W -boson mass and CPV parameter r sinα obtained from present constraints on the neutron EDM (yellow dots) and
neutral kaon mixing parameter ϵ for different representative values of the Higgs mass (MH = ∞, red triangle; MH = 75 TeV, blue square; MH = 20 TeV,
large green dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Reprinted from Nucl. Phys. B., 802, Y. Zhang, H. An, X. Ji, R. N. Mohapatra, ‘‘General CP violation in minimal left–right symmetric model and
constraints on the right-handed scale’’, p. 247.
© 2008, with permission from Elsevier

6.3. Additional spacetime dimensions

The study of EDMs in BSM scenarios involving extra spacetime dimensions, such as the Randall–Sundrum (RS) paradigm
for warped extra dimensions or flat but orbifolded extra dimensions, is considerably less advanced than in the case of SUSY
or extended gauge symmetries. To our knowledge, EDM estimates have been largely confined to the use of NDA, coupled
with an analysis of the flavor and CP structure associated with a given implementation of the RS paradigm.

For concreteness, we focus on the scenario RS1, wherein SM fields may propagate in the ‘‘bulk’’ of the fifth dimension
between two branes: the TeV brane and the Planck brane. The Higgs field is localized at the former while gravity lives at the
latter, ensuring that the natural scales for the EW and gravitational interactions are theweak and Planck scales, respectively.
The dependence on all mass scales in the fifth dimension follows from the ‘‘warping’’ associated with the dependence of the
metric on the fifth dimensional co-ordinate z as

(ds)2 =
1

(kz)2

ηµνxµxν − (dz)2


(6.229)

where xµ denotes the usual four dimensional co-ordinate vector and k is a warping factor.
Flavor structure arises from the z-dependence of the fermion wavefunctions rather than from the values of the Yukawa

couplings for the 5-dimensional theory. Assuming the latter to be ‘‘anarchical’’, the observed fermion mass hierarchy arises
when the light fermions are localized near the Planck brane and the top quark near the TeV brane. Since theHiggs is localized
near the TeV brane, its vev gives a significantly larger mass to the top quarks than to the light fermions. The Kaluza–Klein
(KK) modes for the light fermions are also localized near the TeV brane, generating a leading order suppression of flavor
changing neutral currents (FCNCs).

An early concrete application of this scenario to the flavor and CP problems was carried out in Ref. [164]. The
corresponding five-dimensional Lagrangian contains two components of interest:

(a) the bulk Lagrangian

Lfermion =
√
G

iψ̄Γ MDMψ + kCQud(Q̄ ūd̄)(Qud)


(6.230)

where all of the SM fields ψ propagate in the warped extra dimension (denoted by a co-ordinate z), where DM is the five
dimensional covariant derivative, and where CQud are 3 × 3 Hermitian matrices that determine the 5-D masses.

(b) the 5-D Yukawa interaction:

Lbrane = hδ(z − z0)λ5Du,dQ̄ (u, d) (6.231)

where λ5Du,d are the Yukawa matrices, h is the Higgs field, and z0 indicates the location of the TeV-brane.
Carrying out the Kaluza–Klein (KK) reduction of the 5D theory to an effective 4D theory on the TeV brane yields the SM

fields (zeromodes) and their KK partners. The quark zeromodemasses are then given bymq ∼ vFQλ5Du,dFu,d, where FQ ,u,d are
the values of the quark wavefunctions on the TeV brane. For purposes of the present discussion, the specific values of the
FQ ,u,d are not essential. However, due to the different profiles for the light fermion zero mode and KK modes, couplings
between the two go as λ5Du,dFq. Since these couplings are not aligned with the quark masses, non-trivial flavor and CPV
contributions may be generated at one-loop order. Representative diagrams that generate the quark EDMs are shown in
Fig. 9. In each case, an odd number of zeromode—KKYukawa interactions is needed to obtain the chiral structure associated
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Fig. 9. Representative contributions to the d-quark EDM and CEDM in the Randall–Sundrum scenario.

with the EDM. The gauge loops contain only one insertion while the Higgs loops contain three. In the former case for a down
quark–gluon loop, one has

dd[gluon,KK] ∼ kv

DĎ
LFQλ

5D
d FdDR


11

∼ [diag(md,ms,mb)]23 = 0, (6.232)

where DL,R rotate the left- and right-handed down quarks between the flavor and mass bases. In contrast, the Higgs
loop results are not aligned with the light quark mass matrix and, as shown in Ref. [164], lead to a non-vanishing EDM
contribution:

dd[Higgs,KK] ∼ 2k3v

FQ

λ5Du λ

5D Ď
u + λ5Dd λ

5D Ď
d


λ5Dd Fd


11
. (6.233)

Taking the phases that enter this expression to be maximal, the authors of Ref. [164] arrive at the NDA estimate

dn[Higgs,KK] ∼
e
6

 md

16π2

 2kλ5D

m2
KK


∼ (10−11 e fm)×


2kλ5D

4

2 3 TeV
mKK

2

(6.234)

An earlier analysis by the authors of Ref. [165] that included the contribution from the CEDM found a considerably smaller
sensitivity to the CPV parameters. In that study, the additional suppression results from a tiny coupling between the first
and third generation as well as constraints from the CPV parameter ϵK that enters the neutral kaon system.

In addition to the loop contribution, one expects contributions from operators that live on the TeV brane. This term
is UV-sensitive and, thus, depends on the cutoff of the effective theory on the TeV brane, obtained from the cutoff at the
Planck scale by warping:Λ ∼ Λ5D exp(−πkrc), where πkrc ∼ MPlanck/TeV to solve the hierarchy problem. From NDA one
anticipates

dn[brane] ∼ eCΛ
md

Λ2


∼ (10−11 e fm)× CΛ


2kλ5D

4

2 10 TeV
Λ

2

(6.235)

The value ofΛ depends on the specific realization, depending on whether the Higgs is placed on the TeV brane, in the bulk,
or in the bulk but localized near the TeV brane. For sinφCPV ∼ O(1), the resulting contribution to dn can be comparable to
the present experimental limit or comparable to the considerably larger loop contribution in Eq. (6.234).

One should bear in mind that the foregoing results are obtained using NDA and that loop computations in extra-
dimensional scenarios are subject to theoretical ambiguities. Nonetheless, one thus finds a situation similar to that in SUSY:
current EDM limits imply that either the CPV phases are suppressed or that the KK mass scale lies well above the TeV scale.
A variety of solutions to the RS CP problem have been proposed. In Ref. [166] a variant of RS1 was analyzed under the
assumption of 5D minimal flavor violation, leading to the vanishing of EDMs at one-loop order. Ref. [34] considered an RS1
scenario with spontaneous CPV, where the source of CPV was geometrically sequestered from the TeV brane by placing it
in the bulk. The model provides a natural suppression of θ̄ , while the dimension-six EDM operators first appear at two-loop
order.

These studies notwithstanding, it is evident that there exists considerable room for further work on EDMs in extra
dimensional models. To our knowledge, no computations of the three-gluon or dimension-six four-fermion operators has
appeared in the literature. Moreover, the limits on dA(199Hg)may imply more severe constraints on RS CPV than have been
obtained in these earlier studies, given the long-range π-exchange contributions to the nuclear Schiff moments sourced by
the CEDM operators. Even with the ambiguities associated with loop computations in d > 4 dimensions and with cutoff-
dependent TeV brane operators, a study of these additional CPV effects would be both interesting and potentially significant.
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7. Outlook

Among fundamental symmetry tests in the LHC era, searches for the permanent electric dipole moments of atoms,
molecules, nucleons, and nuclei will provide some of the most powerful probes of both BSM physics and the remaining,
as-yet unseen source of SM CPV — the QCD θ-term. Experimental sensitivity is poised to improve by as much as two orders
of magnitude in the near term and possibly more later on. The observation of a non-zero EDM would constitute a major
discovery, pointing to a non-vanishing θ̄ parameter and/or a CPV associatedwith new fundamental interactions. Conversely,
the non-observation of EDMs at the anticipated sensitivity levels would tighten the already stringent limits on θ̄ as well as
those on a variety of BSM scenarios. Either way, it is hard to overstate the implications for the fundamental laws of nature
and their consequences for the cosmic baryon asymmetry.

The challenge to theory is to provide the most robust framework for interpreting the results of EDM searches and
delineating their implications. Doing so entails analyzing physics at a variety of energy scales, from the short-distance
physics of CPV at the elementary particle level to longer-distance physics at the hadronic, nuclear, and atomic/molecular
scales. In this review, we have relied on effective CPV operators with mass dimensions four and six to bridge the gaps
between these various scales. While effective operators are not applicable in all circumstances, for instance as those in
which BSM CPV involves new light degrees of freedom, they nevertheless provide a useful and model-independent scheme
for the interpretation of EDM experiments. Considering only photons, gluons, and first-generation fermions, we encounter
thirteen presently undetermined CPV parameters at d = 4 and d = 6: θ̄ , the fermion EDMs, quark CEDMs, the three-gluon
operator, and several four-fermion operators. The task for theory, then, is to lay out the ways in which these operators may
be generated by BSM physics above the weak scale, to understand their evolution to the hadronic scale, and to accurately
connect them to the hadronic, nuclear, atomic andmolecular matrix elements that are directly related tomeasurable EDMs.

Several salient points emerge form our overview of this theoretical effort:

(i) The EDMs of paramagnetic atoms and molecules are dominated by two quantities: the electron EDM and one
combination of semileptonic, CPV four-fermion operators, characterized by the Wilson coefficient Im C (−)eq . Moreover,
when the former is characterized by the appropriate dimensionless parameter δe, the EDMs of these systems are an
order of magnitude more sensitive to Im C (−)eq than to δe. The level of theoretical atomic/molecular theory uncertainty
in either sensitivity is roughly 10% or better. For Im C (−)eq , the associated hadronic matrix element of the isoscalar scalar
density is under reasonable control, given that it can be obtained from the pion–nucleon σ -term and the average light
quark mass.

(ii) Diamagnetic atom EDMs are most sensitive to the nuclear Schiff moment, individual nucleon EDMs, and the
semileptonic four-fermion tensor operator with Wilson coefficient Im C (3)ℓequ.

(iii) Neither paramagnetic nor diamagnetic atoms provide a particularly sensitive handle on Im C (+)eq because the associated
isovector scalar and isoscalar pseudoscalar nuclear matrix elements are relatively suppressed.

(iv) Computations of the nucleon matrix of underlying CPV operators and nuclear Schiff moments need to be improved.
While the sensitivity of ḡ(0)π to θ̄ and the dependence of dN on the quark EDMs is now known fairly reliably, the
uncertainties associated withmatrix elements of the quark CEDMs, three-gluon operator, and four-quark operators are
large. Similar statements apply to the dependence of dN on θ̄ aswell as to the dependence of the nuclear Schiffmoments
on the ḡ(i)π . One of the primary challenges facing is now to achieve a more reliable set of hadronic sensitivities.

(v) Searches for the EDMs of diamagnetic atoms and nucleons are unlikely by themselves to disentangle the effects of the
quark CEDMs, three-gluon operator, and four-quark operators. Searches for EDMs of the proton, deuteron, triton and
helion in storage rings, however, would offer additional handles on these underlying sources of hadronic CPV based on
their chiral transformation properties.

(vi) Any global analysis of EDM-search results, whether performed in amodel-independentway through effective operators
or within a given BSM scenario such as supersymmetry, should take into account the significant theoretical uncertainty
associated with hadronic CPV.

Uncertainties aside, current EDM null results imply that any new CPV lies at the TeV scale or that CPV phases are
O(10−2) in magnitude or smaller. The next generation of searches will be sensitive to Λ & 10 TeV or equivalently
| sinφCPV| . O(10−4), putting their reach well beyond that of the LHC. Should the LHC observe only the SM Higgs boson (a
major discovery in its own right) by the end of this decade, then EDM searches will provide one of the most effective tools
for probing the next piece of terrain in the high energy desert. If they are, the theoretical issues summarized above will be
all the more important. We hope that our discussion of the rich array of physics associated with EDMs will spur new work
to address the issues.
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Appendix A. Scalar and pseudoscalar form factors: heavy quark contributions

The gQ
S for the heavy flavors can be obtained by using the trace anomaly for the energymomentum tensor θµν andnucleon

mass and by integrating out the heavy quarks [167,168]. We first have

mN ψ̄NψN = ⟨N|θµµ |N⟩ =


q=u,d,s

⟨N|mqq̄q|N⟩ +
β̃(αs)

2αs
⟨N|Tr


GµνGµν


|N⟩, (A.237)

where

β̃(αs) = −9α2
s /2π (A.238)

and where we have used the result that integrating out each heavy quark leads to the replacement

⟨N|mQ Q̄ Q |N⟩ = −
2
3
αs

4π
⟨N|Tr


GµνGµν


|N⟩. (A.239)

Using Eqs. (3.92), (3.100) we may solve for ⟨N|Q̄ Q |N⟩ and, thus, gQ
S :

−
9αs

4π
⟨N|Tr


GµνGµν


|N⟩ =


mN − (m̄N)q − 220κs


ψ̄NψN , (A.240)

so that from Eq. (A.239) we obtain Eq. (3.100).
For the gQ

P of heavy flavors, we follow [167,12,65] and exploit the U(1)A anomaly. Letting

Jµ5 =


q=u,d

q̄γµγ5q +


Q=s,c,b,t

Q̄γµγ5Q (A.241)

and

⟨N|Jµ5|N⟩ = g(0)A ⟨N|N̄γµγ5N|N⟩, (A.242)

we have

⟨N|∂µJµ5|N⟩ = 2mNg
(0)
A ⟨N|N̄iγ5N|N⟩ = 2


q=u,d

⟨N|mqq̄iγ5q|N⟩

+ 2


Q=s,c,b,t

⟨N|mQ Q̄ iγ5Q |N⟩ + 6⟨N|
αs

4π
Tr

GµνGµν |N⟩. (A.243)

Using

⟨N|mQ Q̄ iγ5Q |N⟩ = −
αs

8π
⟨N|Tr


GµνGµν |N⟩ (A.244)

and the expressions for matrix elements of ūiγ5u ± d̄iγ5d in terms of g(0,1)S we obtain

⟨N|mQ Q̄ iγ5Q |N⟩ = N̄

1
4


g(0)A

mN

mQ
+ g(0)P

2m̄
mQ


+

1
4
g(1)P

∆mq

mQ
τ3


iγ5N (A.245)

≡ ⟨N|


gQ (0)
P + gQ (1)

P τ3


iγ5N, (A.246)

with the result in Eq. (3.104).

Appendix B. CPV parameter sensitivities: a compilation

See Tables 17–23.
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Table 17
Dependence of hadronic quantities on θ̄ .

CPV parameter Coefficient Method Value Remarks

θ̄ αn ChPT/NDA ∼0.002 e fm See Eq. (3.75)
θ̄ αn Lattice QCD [82] −0.040(28) e fm mπ = 0.53 GeV
θ̄ αp Lattice QCD [82] 0.072(49) e fm mπ = 0.53 GeV
θ̄ αn Lattice QCD [83] −0.049(5) e fm mπ ≈ 0.61 GeV
θ̄ αp Lattice QCD [83] 0.080(10) e fm mπ ≈ 0.61 GeV
θ̄ αn QCD Sum Rules [88,87] (0.0025± 0.0013) e fm λ from QCD SR
θ̄ αn QCD Sum Rules [86] (0.0004+0.0003

−0.0002) e fm λ from lattice

θ̄ λ(0) ChPT/NDA ∼m2
π/Λχ Fπ ∼ 0.05 See Eq. (3.71)

0.017 ± 0.005 See Eq. (3.72)
θ̄ λ(1) ChPT/NDA ∼m4

π/Λ
3
χ Fπ ∼ 0.0005 See Eq. (3.73)

Table 18
Dependence of nucleon EDM on quark CEDMs expressed in terms of the quantities Im CqG , d̃q , or δ̃q .

CPV parameter Coefficient Method Value Remarks

Im CqG βuG
n ChPT/NDA ∼e/v ≈ 8 × 10−4 e fm

Im CuG βuG
n QCD SR [89] −(0.6 ± 0.3)× 10−3 efm PQ assumed

Im CdG βdG
n QCD SR [89] −(1.2 ± 0.6)× 10−3 e fm PQ assumed

Im CuG βuG
n QCD SR [86] −(0.20+0.15

−0.08)× 10−3 e fm PQ assumed
Im CdG βdG

n QCD SR [86] −(0.40+0.31
−0.17)× 10−3 e fm PQ assumed

Im CuG βuG
n QM/NDA ∼1 × 10−4 e fm Includes KqG

Im CdG βdG
n QM/NDA ∼ − 4 × 10−4 e fm Includes KqG

d̃q ρ̃
q
N ChPT/NDA ∼1

d̃u ρ̃u
N QCD SR [89] 0.55 ± 2.8 PQ assumed

d̃d ρ̃d
N QCD SR [89] 1.1 ± 0.55 PQ assumed

d̃u ρ̃u
N QM/NDA ∼−0.09 Includes KqG

d̃d ρ̃d
N QM/NDA ∼0.36 Includes KqG

δ̃q eζ̃N ChPT ∼5 × 10−8 e fm
δ̃u eζ̃ u

N QCD SR [89] −(0.9 ± 0.5)× 10−8 e fm PQ assumed
δ̃d eζ̃ d

N QCD SR [89] (−3.6 ± 1.8)× 10−8 e fm PQ assumed
δ̃u eζ̃ u

N QM/NDA ∼0.2 × 10−8 e fm Includes KqG

δ̃d eζ̃ d
N QM/NDA ∼ − 0.8 × 10−8 e fm Includes KqG

Table 19
Dependence of TVPV πNN coupling on quark CEDMs expressed in terms of the quantities CqG , d̃q , or δ̃.

CPV parameter Coefficient Method Value Remarks

Im (CuG ± CdG) γ G
(0,1) Chiral/NDA ∼0.03

Im (CuG + CdG) γ G
(0) QCD SR [90] (−1.7 ↔ 0.6)× 10−2 PQ assumed

Im (CuG − CdG) γ G
(1) QCD SR [90] −(2.3+1.2

−4.5)× 10−2 PQ assumed

d̃q ω̃(0,1) Chiral/NDA ∼ − 26
d̃u + d̃d ω̃(0) QCD SR [90] (−5 ↔ 15) fm−1 PQ assumed
d̃u − d̃d ω̃(1) QCD SR [90] 20+40

−10 fm−1 PQ assumed

δ̃q η̃(0,1) Chiral/NDA ∼1.9 × 10−6

δ̃u + δ̃d η̃(0) QCD SR [90] (−3.5 ↔ 1.2)× 10−7 PQ assumed
δ̃u − δ̃d η̃(1) QCD SR [90] (−4.6+2.3

−9.2)× 10−7 PQ assumed

Table 20
Dependence nucleon EDM on quark EDM expressed in terms of the Wilson coefficients Cqγ (Λχ ), individual quark EDMs
dq(Λχ ), or dimensionless quantities δq(Λχ ).

CPV parameter Coefficient Method Value

Cqγ β
qγ
n Chiral/NDA ∼e/v ≈ 8 × 10−4 e fm

Cuγ β
uγ
n QCD Sum Rules [14] (0.4 ± 0.2)× 10−3 e fm

Cdγ β
dγ
n QCD Sum Rules [14] −(1.6±0.8)×10−3 e fm

Cuγ β
uγ
n QCD Sum Rules [86] (0.13+0.10

−0.06)× 10−3 e fm
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Table 20 (continued)

CPV parameter Coefficient Method Value

Cdγ β
dγ
n QCD Sum Rules [86] −(0.53+0.41

−0.23)×10−3 e fm
Cuγ β

uγ
n Quark model 0.4 × 10−3 e fm

Cdγ β
dγ
n Quark model −1.5 × 10−3 e fm

Cuγ β
uγ
n PQM [12,92] 0.6 × 10−3 e fm

Cdγ β
dγ
n PQM [12,92] −0.8 × 10−3 e fm

dq ρ
q
N Chiral/NDA ∼1

du ρu
n QCD Sum Rules [14] (−0.35 ± 0.17)

dd ρd
n QCD Sum Rules [14] (1.4 ± 0.7)

du ρu
n QCD Sum Rules [86] (−0.11+0.09

−0.05)

dd ρd
n QCD Sum Rules [86] (0.47+0.36

−0.2 )

du ρu
n Quark model −1/3

dd ρd
n Quark model 4/3

du ρu
n PQM [12,92] (∆u)n = −0.508

dd ρd
n PQM [12,92] (∆d)n = 0.746

ds ρd
n PQM [12,92] (∆s)n = −0.226

δq eζ q
N Chiral/NDA ∼5 × 10−8 e fm

δu eζ u
n QCD Sum Rules [14] (0.8 ± 0.3)× 10−8 e fm

δd eζ d
n QCD Sum Rules [14] (−3.2±2.3)×10−8 e fm

δu eζ u
n QCD Sum Rules [86] (0.27+0.2

−0.1)× 10−8 e fm
δd eζ d

n QCD Sum Rules [86] (−1.1+0.8
−0.5)× 10−8 e fm

δu eζ u
n Quark model 0.8 × 10−8 e fm

δs eζ s
n Quark model −3.2 × 10−8 e fm

δu eζ u
n PQM [12,92] 1.2 × 10−8 e fm

δs eζ s
n PQM [12,92] −1.7 × 10−8 e fm

Table 21
Dependence of hadronic quantities onWeinberg three-gluon operatorWilson
coefficient. Note that Ref. [91] uses g3(1 GeV) = 2.1.

CPV parameter Coefficient Method Value

Im CG̃ β G̃
n Chiral/NDA ∼40 × 10−7 e fm

Im CG̃ β G̃
n /g3 QCD SR [91] 2.0 × 10−7 e fm

Im CG̃ γ G̃
(i) Chiral/NDA ∼2 × 10−6

Table 22
Dependence of hadronic quantities on CPV four-quark operators. The Saturation result
for βϕudn has been obtained by first computing ḡ(1)π and then employing the NLO result
from ChPT given in Eqs. (3.107), (3.108).

CPV parameter Coefficient Method Value Remarks

Im C (1,8)quqd β
(1,8)
n Chiral/NDA ∼40× 10−7 e fm

Im Cϕud β
ϕud
n Chiral/NDA ∼3 × 10−8 e fm

Im Cϕud β
ϕud
n Saturation/ChPT 1.3 × 10−10 e fm NLO

Im C (1,8)quqd γ
(1,8)
(0,1) Chiral/NDA ∼2 × 10−6

Im Cϕud γ
ϕud
(0,1) Chiral/NDA ∼10−6

Im Cϕud γ
ϕud
(1) Saturation 3.3 × 10−5

Table 23
Form factors entering semileptonic CPV interactions.

Form factor Method Value Remarks

g(0)S Lattice QCD 6.3 ± 0.8 Eq. (3.92) and [55,56]
g(1)S Lattice QCD 0.45±0.15 Eq. (3.92) and [61]
g(1)S Lattice QCD 0.4 (2) Isospin and [66]
g(1)T Lattice QCD 0.53(18) Isospin and [66]
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