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We describe the elastic scattering of weakly interacting dark matter particles from nuclei,
with laboratory detection in mind. We focus on the lightest neutralino (a neutral fermion
predicted by supersymmetry) as a likely candidate and discuss the physics needed to
calculate its elastic scattering cross section and interpret experimental results. Particular
emphasis is placed on a proper description of the structure of the proposed detector
nuclei. We include a brief discussion of expected count rates in some detectors.

1. Introduction

Dark matter is a term that describes nonluminous material in galaxies, clusters
of galaxies, and possibly on even larger scales. A considerable body of evidence
points to its existence; in fact, dark matter is probably more abundant than the
familiar baryonic matter in stars, dust and gas, i.e. in objects that are accessible to
traditional astrophysical observation. In a metaphorical sense, the adjective “dark”
represents our ignorance of nearly everything about the subject. Contemporary
physics is challenged even by such basic questions as: What is the dark matter
made of, how much is there, and is it the same on all scales?

In this review we describe some of the theoretical background relevant to terres-
trial dark matter detection. In Sec. 2 we briefly review the evidence for dark matter,
and then discuss candidates that have been proposed for the dark matter in our
galaxy. We argue that a hypothetical neutral particle predicted by supersymmetry,
the “lightest neutralino”, is one of the few viable candidates. If they indeed exist
in the right abundance, neutralinos may be observable through elastic scattering
from detector nuclei. In order to plan experiments and eventually interpret their
results, however, we need to model neutralino-nucleus cross sections as accurately
as possible. This requires first determining how neutralinos interact with nucleons,
an endeavor in “particle physics”, and then folding in the structure of the target
nucleus. In Sec. 3, we discuss the relevant particle physics, first describing the
supersymmetric theories that give rise to the neutralino hypothesis and then dis-
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cussing the fundamental interactions of neutralinos with quarks and subsequently
with nucleons. To set the stage for the detailed nuclear physics discussion to follow,
we then present in Sec. 4 the formalism necessary to calculate elastic neutralino
scattering cross sections from detector nuclei.

Sections 5 and 6 contain the main topic of our paper, the nuclear structure
physics required for a description of neutralino elastic scattering. The interaction
of neutralinos with matter can be classified according to two currents: scalar and
axial vector. The cross sections that arise from the scalar current are fairly straight-
forward for any target nucleus and are discussed in Sec. 5. The cross sections from
the axial current, on the other hand, require more detailed nuclear structure in-
formation. In Sec. 6, we describe the various methods that have been applied so
far to this problem. These include both phenomenological methods, which provide
information on the nuclear response only at low momentum transfer, and more
microscopic treatments that also yield the finite momentum response. To date,
calculations have been carried out for several viable detector nuclei, the most no-
table exception being ">Ge, which we discuss briefly. We then conclude in Sec. 7 by
presenting examples of expected count rates in some of the proposed detectors.

The subject of dark matter detection has been reviewed several times previously,
most recently in Refs. 1, 2 and 3. Numerous conferences and workshops have
also addressed particular aspects of the subject and the interested reader can find
additional information in recent proceedings.* To our knowledge, however, none of
the earlier reviews covers the nuclear physics of the problem in any detail.

2. Preliminaries on Dark Matter

2.1. Evidence for dark matier

It is customary to express the amount of matter of the universe in terms of the
ratio Q@ = p/po, where p is the average density and po is the critical density that
separates models in which the universe expands forever (p < po) from those in which
it ultimately recollapses (p > po). The critical density is related to the present value
of the Hubble parameter Hg by po = 3Ho/87Gn.

Purely theoretical arguments are often invoked in support of the value Q = 1 for
which the universe is barely open. These are based in large part on “naturalness”,
realized appealingly in the inflation hypothesis. It is important to bear in mind,
however, that theoretical prejudice is by no means essential to the conclusion that
dark matter exists and is indeed prevalent in the universe.

Figure 1 reviews the empirical situation > with regards to Q. It includes infor-
mation from many different observations at a variety of scales. The total luminous
matter observed in galaxies (in stars, gas, and dust) accounts for only about 1% of
the critical density. Since the luminous matter is composed primarily of baryons,
these observations provide a lower limit on the total amount of baryonic matter in
the universe, labeled Qp in the figure.
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Fig. 1. Estimates of total density Q and baryonic component Qp.

An independent estimate of Qp is provided by considering primordial nucle-
osynthesis. Combining relative-abundance measurements for the very light nuclei
°{ 3He, *He and 7Li with calculations of the synthesis of these nuclei shortly after
the big bang,® one can roughly determine the overall photon to baryon ratio in the
iniverse and therefore Qp. By comparing these estimates with those for luminous
baryonic matter, we can conclude that (most likely) not all of the baryons in the
universe are shining, i.e. some baryonic dark matter exists.

Dark matter, whether baryonic or nonbaryonic, manifests itself through its grav-
itational effects on nearby luminous matter. Results for the total matter densities at
galactic and larger scales are summarized in the remaining two entries of the figure,
labeled Q... Evidence on very large scales, most notably from the IRAS survey,
suggests values for the total density that are consistent with Q = 1. Furthermore,
this range of values for ¢ indicates that at large enough scales nonbaryonic dark
matter not only exists but actually predominates over baryons.

Since the discussion to follow will center around terrestrial detectors, our primary
concern is dark matter within our own galaxy. Indeed, the evidence for galactic dark
matter is particularly compeling. Figure 2 (Ref. 7) shows a “rotation curve” — a
plot of velocity versus distance from the galactic center for luminous objects in a
sample spiral galaxy. The velocities are obtained from red-shift analyses of e.g. the

1 c¢m hydrogen line. The figure also ‘shows the curve that would obtain if the
luminous matter alone were responsible for the gravitational forces. Beyond the
edge of the galaxy, where only a few scattered luminous objects exist, this curve
falls off roughly like =12 The actual curve shows no sign of such a drop, implying
that the mass distribution extends well beyond the light distribution. In fact, of
the many measured rotation curves, none displays any discernible falloff. It follows
that at least 70-90% of the matter within galaxies is dark. Additional evidence,
albeit weaker, suggests that these dark “halos” are roughly spherical in shape, with
densities that eventually fall off as 1/r2. The constraints in Fig. 1 do not yet allow
us to decide conclusively whether some or all of the halo dark matter is baryonic.
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Fig. 2. Example of a rotation curve. The upper part shows the luminosity distribution for the
galaxy NGC 3198. In the lower part the dots with error bars are the observed velocities. The pre-
dicted rotation curves based on the star and hydrogen gas distribution, are shown also. (Adopted
from Ref. 7).

Whatever its composition, the dark matter’s kinematics in our own galaxy are
determined entirely by gravitational binding. Rotational velocities have been mea-
sured to about three times the distance between the center of the galaxy and the
sun, implying that inside that distance (= 20 kpc) the dark halo contributes roughly
three times more mass than the luminous material. The local halo density, ob-
tained by extrapolation from larger distances,? is phalo = 6 X 10% g cm™2 or
0.4 GeV cm=3. If the halo is flattened somewhat, its density could be larger by
a factor of about 1.5. The halo constituents are usually assumed to have a spheri-
cally symmetric Maxwellian distribution of velocities (cut off at some point), with
Vems 2 270 km s~! ~ 1073¢. By comparison, the sun moves in the galactic coor-
dinate system with a velocity in the range 220-250 km s~! and the earth orbits
the sun at about 30 km s~!. As we shall see shortly, the dark matter’s kinematics
constrain strategies for detecting and identifying it.

2.2. Candidates for galactic dark matier

As we have already noted, the dark matter in our galaxy could be composed entirely
of baryons. However most ordinary objects, such as clouds of gas or dust, emit some
form of radiation and are therefore not dark. Baryonic dark matter can only exist
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as Massive Astrophysical Compact Halo Objects (MACHOs 8), a generic category
that includes large planets, brown dwarfs and black holes.

MACHOs can be detected through the characteristic brightening of stars di-
rectly behind them caused by gravitational microlensing.® Experiments to look for
the time-dependent brightening of a great number of stars in the Large Magellanic
Cloud 191! are currently under development. Obviously, if MACHOs are found —
results from the first MACHO searches are expected in ~1993 — the prospects
for nonbaryonic galactic dark matter will be diminished. For now, however, in the
absence of data, it is difficult to understand how enough MACHOs could be formed
to account for all the dark matter and why they would be distributed spherically in
halos. We shall assume from now on, therefore, that the halo dark matter is non-
baryonic and exists as elementary particles. Before discussing specific candidates,
we need to touch briefly on the evolution of particle densities in the early universe.

Most candidates fall under the rubric “thermal relics”. These are massive par-
ticles that were in thermal equilibrium at cosmologically early times (when the
temperature T was high) in numbers comparable to that of the photon. As the
universe cooled, the abundance tracked equilibrium values until the “freeze out”
temperature Tr, when the particle interaction rate dropped below the expansion
rate of the universe.'? At that point annihilation ceased and thereafter the pumber
of particles per comoving volume did not change from its equilibrium value at TF.
The present abundance of a thermal-relic species is therefore comnpletely specified
by its mass and annihilation cross section.

Roughly speaking, thermal relics can be further subdivided into two classes
— hot and cold. Hot relics were relativistic at freeze out and exist with present
aumber densities, comparable to that of photons, that are essentially independent
of the value of Tr. A light neutrino {m <1 MeV) is perhaps the most attractive
hot-relic candidate. A neutrino of mass my, (in eV) would today contribute to Q

an amount 2

Q, = m, /(23h%,) , (2.1)

where hgo is the Hubble parameter in units of 50 km s~ ! and is generally believed to
lie in the range 0.8 < hsp < 1.3 Light neutrinos of mass 10-50 eV could therefore
provide a significant fraction of the critical density. Unfortunately, other consider-
ations make it difficult to believe that galactic halos consist of light neutrinos. The
Pauli principle limits the number of light fermions that can be packed into a space
the size of a galaxy. Furthermore, all hot relativistic relics, peutrinos included,
tend to erase galaxy-sized density fluctuations in the early universe, making the
formation of galaxies a difficult proposition. While neither of these arguments is
conclusive, they do weigh against hot dark matter.

Cold relics, on the other hand, were already nonrelativistic by the time of freeze
out, usually because they are much heavier, and are considerably less abundant
today than photons. The sparse, heavy, slow-moving particles are not vulnerable
to either of the objections above. 4
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Coincidentally, if a particle weighing a few GeV is to provide the critical density
its annihilation cross section must be on the order of 1037 ¢m?, close to typical
weak—interaction values. Heavy neutrinos are the most obvious cold relic candi-
dates. None of the three known neutrinos is heavy, however, and the SLC/LEP
measurements > of the width of Z° preclude a fourth generation. A more viable
cold relic candidate — the object of our focus from now on — is the lightest neu-
tralino, a hypothetical particle predicted by supersymmetry. We shall describe the
properties of neutralinos in the next section. Here we stress only that they are sta-
ble and that their mass and annihilation cross sections completely determine their
present density. Since neutralino masses and couplings are designed to lie near the
weak scale, their relic densities are significant no matter what the details of the
supersymmetry model.

We will not discuss nonthermal relics in this review. Before moving on though, .
we should note that a particle from this class — the axion — is one of the more
appealing dark matter candidates. Most of axion parameter space has already been
ruled out but a window remains for dark-matter axions of mass 107% eV < m, <
10~3 eV. Even though they are very light, a considerable fraction of such axions
would be nonrelativistic or cold and thus consistent with the requirements of galaxy
formation. Some experiments to detect these light bosons are underway but are not
yet conclusive. For information and further references on axions, see the book of
Kolb and Turner. !?

3. Neutralinos and their Interactions
3.1. Supersymmeiry and neutralinos

Neutralinos are considered good dark matter candidates partly because the theories
that predict them were invented to address shortcomings in the Standard Model,
without attention to the issue of dark matter; the link was only made later.}®1®
The Standard Model is commonly assumed to be the low energy limit of some more
fundamental theory that applies at or before the Planck scale Mp = (he/GNn)Y? =
192 x 10'° GeV. Radiative corrections tend to give the Higgs boson a mass at
this very large scale; keeping the physical Higgs much lighter requires an awkward
fine-tuning of parameters in the more fundamental Lagrangian at each order of
perturbation theory. Supersymmetry ameliorates this “hierarchy problem” by in-
troducing a partner with equal mass but opposite statistics for every particle in the
Standard Model. Quadratic divergences in the Higgs propagator are then canceled
exactly by contributions from the new particles. The symmetry is obviously slightly
broken in the real world, but for the scheme to solve the hierarchy problem the new
particles must have masses at roughly the weak scale. If supersymmetry is not seen
below 1-10 TeV, its appeal largely disappears.

With this accepted, the neutral color-singlet superparticles become natural can-
didates for dark matter. In the minimal supersymmetric extension of the Standard
Model, there are only a few of these objects: sneutrinos (the scalar partners of
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neutrinos) and neutralinos, the spin 1 /2 partners of the colorless gauge and Higgs
bosons. For technical reasons, supersymmetric theories must include two Higgs
doublets, responsible separately for the masses of the up- and down-type quarks,
and thus there are at least 4 neutralinos: the W-ino (W3), the B-ino (ﬁ), and two
Higgsinos (ﬁl and H,). The sneutrino carries vector current and as a result in-
teracts strongly enough with heavy nuclei to be ruled out as the halo dark matter
" by existing experiments. ! Neutralinos are Majorana fermions and as a consequence
carry no vector current, a fact that (as we shall see) severely limits the strength of
their interactions with ordinary matter.

To be a significant component of the dark matter, the lightest neutralino — a
linear combination of the 4 objects above — must be stable. In many supersymmet-
ric models, this is insured (provided all “charginos” are heavier) by the conservation
of a multiplicative quantum number called R-parity 16 that is given for any particle
with spin s, baryon number B, and lepton number L by R = (—1)»+3B+L A
single neutralino has R = —1 and cannot decay entirely into ordinary particles, all
of which have R =1.

In the simplest models, the particular linear combination that defines the lightest
neutralino follows from the values of four parameters in the superlagrangian (we
adopt with minor modifications the notation of Ref. 16). Two of these, called M
and M’, specify the strength of supersymmetry breaking terms. A third, tan 8,
is given by the ratio of vacuum expectation values of the two Higgs scalars, and
the final parameter y is a Higgsino mass. The overall neutralino mass term can be
written as —%1/)TY1/) , where

w:(WSag)H]JHZ) (32)
and
M 0 — Mg cosB,sinfy Mzsing,sinfw
v = 0 M My cosf, cosfw Mgz sinf, cosfw
= | =Mz cosb,sinfw Mz cosb, cos Ow 0 —u
Mgsinf,sinfw —Mzsinf, cos fw — 0
(3.3)

Here My is the Z mass and fw is the Weinbérg angle. We will denote the
lowest-energy eigenvector of the matrix Y by

X = 21§ -+ Zng + Zafll + Z4ﬁ2 . (34)

If the theory is embedded in a simple Grand-Unified group, the parameters M and
M’ are related by M’ = %Mtan2 8w . In the canonical model, then, only three
parameters completely determine the structure and mass of the lightest neutralino.
Figure 3 shows the neutralino mass and composition for a wide range of and M
at a fixed value of tan 8, = 8. In most of the available parameter space, particularly
if the neutralinos are heavier than 50-100 GeV, the lightest neutralino turns out 17
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to be either a nearly pure B or a nearly symmetric (or antisymmetric) combination
of H, and H,. This point is important because recent experiments '3 at LEP have
significantly reduced the chances that neutralinos are lighter than the Z.
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Fig. 3. Neutralino mass and composition versus  and M. The dashed lines are contours of constant
mass M, in GeV, and the solid lines are contours of constant “gaugino fraction” (Z7 + Z2).

3.2. Neutralino interactions

Neutralinos interact with ordinary matter via diagrams of the type shown in Fig. 4;
the intermediate particles can be normal gauge bosons, Higgs bosons, or squarks.
These diagrams determine not only the scattering of halo neutralinos from ordi-
nary matter, which we discuss in detail below, but also (in part) the annihilation
rates of neutralinos in the early universe. One reason neutralinos make attractive
dark-matter candidates, as mentioned previously, is that for a wide range of super-
symmetry parameters their residual abundance after freezing out of equilibrium is
consistent with £ ~ 1.

The diagrams in Fig. 4, once evaluated (see Ref. 16), result in a low-momentum-
transfer effective neutralino—quark Lagrangian density of the form

’ - - _ my — _ _
£= =25 (v vsx ByrulVs + Agvslby +Xx Saqpy e +X05x Py Y157 )
2MG, < Mw

(3.5)

The quark axial-vector and scalar current coefficients are given by 1920

1 2
Ag = 5Tae(%5 - Z3)

M2 2 ” 2m2d?
— ‘/T[.ugi ([quZ2 — tan BW (T3q - Bq)Zl] + tan” 9W 63 Z.IZ -+ 4]\4‘95‘/’1 ) ,
q
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2 2 2

Sq = é‘(Zg —tanfw Z1) {—AA—%I%QHz kgz) + %gyx k'gl) + ﬂﬂl—j\;ﬁ&], (36)
where § is a squark (the scalar partner of a quark); T3, is weak isospin; e, is the
charge; d; = Z4/sinb,, k,(ll) = sina/sind,, and kgz) = cos o/ sin 8, for up-type
quarks (« is an angular function of the Higgs masses specified in Ref. 21); dy =
—Z3/ cos by, kgl) = cos ¢/ cos §,, and ng) = —sina/ cos b, for down-type quarks;
gu, = Zasina + Zycosa; gy, = Zzcosa + Zysina (Hy and Hy are the lightest
and heaviest neutral Higgs scalars respectively); and ¢ is the sign of the lightest-
neutralino mass eigenvalue. We do not give expressions for V; and P, because, as
we show below, they contribute negligibly to scattering in the nonrelativistic limit.
As is clear from Eq. (3.6), the effective axial-vector current results from Z and
squark exchange, while the scalar current is due to Higgs and squark exchange. The
strengths of the interactions depend on the masses of these exchanged particles, as
well as on the coefficients Z; that specify the composition of the lightest neutralino.

Fig. 4. Feynman diagrams describing neutralino—quark scattering.

3.3. Effective interaction of neutralinos with nucleons

Because the galactic neutralinos move so slowly (7 ~ 10~3¢), the time component of
their axial current can be neglected compared to the space components. Thus, at the
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nucleon level, only the space components of the hadronic current need be considered.
But the space components of the nucleonic vector current are suppressed compared
to those of the axial current by factors of vy /c 2 0.1, (N stands for nucleon) or
q/Mnc (g is the momentum transfer), which as we will discuss shortly, must also be
small except in very heavy nuclei. The vector interaction can therefore be neglected,
as, for similar reasons, can the pseudoscalar interaction.

As a consequence, we can write the effective Lagrangian for the interaction of
nucleons with neutralinos in the form

2
L= 2;74%/ /d"x[ﬂ“‘rsx J,f(x)+7x8(x)} : (3.7)
where
Ti@) = D A (2)1u75%4(2) (3.8)
q
and
§() =Y SaqpPa(@ha(=) (3.9)

are the axial-vector and scalar hadronic currents, respectively. Our next task 1s to
evaluate the nuclear matrix elements of these objects.

We will make the usual assumption that a nucleus is just a collection of inter-
acting nucleons, so that the nuclear matrix element of any current operator can be
obtained from its one-nucleon matrix element and a nuclear wave function. Since
the axial-vector and scalar currents do not interfere in the cross section, we can
consider each independently.

With some further quite reasonable assumptions described below, the one-
nucleon axial-current matrix elements ([N1p, s| Ji(z) |[N]p',s'), where p and p’ are
on-shell four momenta and s and &' are spin labels, can be extracted from experi-
mental data. Lorentz invariance and the requirement that second class currents are
absent restrict the matrix element to the form

([N1p, 5| T3 (&) [INIP', ') = —UTN(I%S)% [(ao + a173)7uYs + (bo + b173)4,7s]
x Un(p',s)er ™, (3.10)

where Uy is a nucleon spinor, ¢, = (p—p')p and ao, bo and ai, by are isoscalar and
isovector coefficients, respectively. At ¢ =0, the second term drops out and the a’s
are completely determined by the Ay and three numbers Aq (for ¢ = u, d and s
quarks) defined by

Ags* = (p,s| P71 75%q I 5) (3.11)
where the matrix element is for the proton, and s# is the spin vector defined in the
usual way. 2% Specifically,

o = (Au + Ad)(Au+ Ad) + 24A,As

a; = (Au —_ Ad)(Au— Ad) . (3.12)
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The Ag represent the fractional spin of the proton carried by quarks of type g¢.
Assuming flavor SU(3) symmetry, one can extract two independent combinations
of the three Ag, denoted by F and D, from the observed semileptonic decay rates
of baryons in the lowest octet (the axial coupling constant of the neutron, g4, is
represented in this scheme by F + D). Fits to all the decays indicate that SU(3)
symmetry for the axial current operators is in fact reasonably good ?? and fix F' and
- D at

F=1/2(Au— As)=047£0.04,

(3.13)
D =1/2(Au—2Ad + As) = 0.81 £0.03 .

A third combination, (1/9)(4Au + Ad + As) = 0.175 £ 0.018, has been measured
in polarized electron and muon scattering experiments,?>?* but here the results
must be regarded with a little caution. The measurements were actually made at
4 momentum transfer in or near the scaling regime; the assumption that the result
does not change significantly below Q? =1 GeV?, when the strong interaction
becomes strong, has not been completely proved. Taken along with the above
values for F and D, the EMC muon measurement implies

Au=0.78+0.08,
Ad=~050%+0.08, (3.14)
As = —0.160.08 .

The nonnegligible value for the strange quark matrix element has aroused consid-
erable attention, as has the fact that the three numbers sum almost to 0, implying
that gluons carry all the proton’s spin. The conventional nonrelativistic constituent
quark model (that identifies quarks as QCD partons) predicts instead Au = 0.97,
Ad = —0.28, As = 0, though with reasonable modifications **?° the model can be
made consistent with the EMC data. We will use the numbers in Eq. (3.14) as best
estimates based on current knowledge.

The b coefficients can be estimated from PCAC, just as they are for the axial
weak current; the second term is induced by the exchange of virtual mesons. The
isoscalar mesons are heavy enough to set by & 0 and pion exchange induces an

isovector coefficient
mpyay

Lt W 3.15
L o (19

where my is the nucleon mass, go has been assumed to be small and an analog of the
Goldberger~Triemann relation has been used. The b; term contributes significantly
to the scattering for ¢ 2 m,.

Turning now to the scalar interaction, we note that the coeflicients S, are mul-
tiplied by my/Mw . Since the proton is constructed nominally from up and down
quarks, which are light compared to the W, the scalar term would seem to con-
tribute negligibly. This conclusion is too hasty, however, for several reasons. The
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strength of the coupling is determined by the nucleon matrix elements of the scalar
current

([Np, s| S(z) |[N1p', s) = Un(p,s)(co + arm)Un(p',s)ed ", (3.16)

where the coefficients co and c; are functions of the Sy in Eq. (3.8) and several new

numbers A, defined by
m

Ag = (p, sl ~——M;’V¢q¢q Ip, 5) - (3.17)
From the measured “o-term” in the pion—nucleon scattering amplitude and SU(3)
considerations, 27 it follows that strange quarks are substantially present in the
proton, viz.

A, = 0.0017 . (3.18)

Furthermore, 28 each flavor of heavy quark contributes an effective matrix element
A =~ 0.0005 . (3.19)

The quantities A; and A are still fairly uncertain; we neglect the consistency
requirement between them as well as the small contribution from up and down
quarks.?® Assuming the strange (and heavy) matrix elements are equal in the pro-
ton and neutron, the isospin structure of the scalar current is

Co = SsAs + ShAn
Zh: (3.20)

cl-:().

Though the coefficient cq is small, the scalar interaction is “constructively” coherent
and the cross section for scattering from nuclei acquires a factor of A?, where A is
the number of nucleons. The scalar contribution can therefore be comparable to or
larger than the axial-current cross section in heavy nuclei, particularly if one of the
Higgs bosons is relatively light.

Before deriving scattering cross sections, let us look briefly at the nonrelativistic
limit of the one-nucleon current matrix elements (an appropriate limit since the
nucleon velocity is typically about 0.lc). As mentioned, the time component of ~
the axial vector current is irrelevant since it contracts with the very small time
component of the neutralino current. For the spatial and scalar currents, we have,

from Egs. (3.9), (3.14), (3.15) and (3.19)

, 1 lo-qaims :
(V. 7@ VI8, #) — (Wl 50 +arm)e 5075 1)
e—i(@X—wt)
(IN]p, 5| S(2) [N1p, ') — 6,srcoe™(AXT1) (3.21)
where |[IV]s) and |[N]s") are nonrelativistic two-component spinors. The coefficients
ao, a1 and ¢o vary in principle with ¢ but we shall assume the variation is slow
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enough to ignore. In the limit ¢ = 0 the axial current is just the nucleon spin
and the scalar current simply counts nucleons. The axial current therefore gives
rise to “spin—dependent” scattering and the scalar current to “spin—independent”
scattering. We will use the two sets of terminology interchangably from now on.

4. Neutralino Scattering from Nuclei

At present, two promising methods for detecting neutralinos are under develop-
ment. The first is indirect, involving the detection of high-energy neutrinos from
the sun 28 or the center of the earth. 3% The particles lose energy through collisions
in the sun or earth and are trapped; subsequently they occasionally find one an-
other and annihilate producing the neutrinos, muons from which can be observed
in water Cerenkov detectors. Though these experiments are interesting, we will not
discuss them here. The second method measures the effects of neutralino-nucleus
collisions in detectors on earth. The neutralino kinetic energies are low enough
so that most detectors will register only the nuclear recoil associated with elastic
scattering. We note, however, that some authors have considered the possibility of
inelastic excitation of low-energy nuclear states.3! Their conclusions are generally
pessimistic, largely because of reduced phase space, and we will restrict ourselves
here to elastic processes.

In the elastic scattering of a projectile of mass M, off a target of mass My,
the maximum momentum transfer to the target is gmax = 2Mpv, where Mg is the
reduced mass of the system and v is the laboratory velocity of the projectile. If the
kinematically allowed momentum transfers are small compared to the inverse size
of the nucleus, i.e. if gmaxR << 1, the projectile can only probe average nuclear
properties. If, on the other hand, gmac R is of order unity or larger, details of the
radial distribution of nucleons may be important. A simple set of rules summarizes
these considerations. For neutralino velocities of order 107 3¢, the quantity gmaxR <
1 provided that (i) A < 28 (for any mass neutralino) or (i) M, < IOOA/(I.QAA‘/3 +
100) GeV. One obvious implication is that finite g effects are never important in
light nuclei. Early calculations of detector response to neutralinos were restricted
to ¢ = 0, where the only nuclear information of relevance, as we show shortly, is the
total nuclear mass (for the scalar current) and the total proton and neutron spin
(for the axial current). For heavy neutralinos the maximum momentum transfer is
not necessarily small if A 2 30 and the issue of finite momentum transfer and the '
associated form factors must be addressed.

With the assumption that the nucleus is a collection of nucleons interacting via
static potentials, it is straightforward to derive expressions for neutralino-nucleus
scattering for all momentum transfer ¢. In the impulse approximation, we have

do __Gr >o 0 [IMal + IMsP] (4.22)
dg®>  w(2J +1)v? onl M ’
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where J is the ground state angular momentum and

MA = (S‘GX 15’) '/d3:17 (JIMIJ(X) IJMI> eiq-)( ,
(4.23)
Ms = 55,31/d3::(JM|S(x) |JM') el dX

In the above, the currents J and S are understood to be the sums of objects with
the one-nucleon matrix elements given in the previous section. The time variable
has been integrated out to give overall energy conservation. To evaluate Eq. (4.22),
we expand the currents in vector spherical harmonics

do 8G2
i = (_23—-{-—}1-)1;5 (Sala) + Ss(9)]
Sa@) = 3 (WITEB@INP + KILL@ITIN)P) (4.24)
L odd
S = 3 WICL@IN?,
L even

where T7¢%(q) and L£3(q) are the transverse electric and longitudinal projections of
the axial current, defined generally e.g. in Ref. 32 and C'is the “Coulomb projection”
(we have abused the notation somewhat because we are projecting from a scalar
object rather than the time component of a four vector, as is more usual). In our
context, these operators can be written in the explicit form

Crig) = ZCDjL(qTi)YL(f'i) ,

1 1 . _ o
T:%(9) = E—Z:-t—:lz 5 (a0 + a173) [~v/IMy pya(grs) + VI F IML o1 (gms)]

i

1 1 a;m2 7 N _
£5(g) = ——— —a+———’f—3> L+ 1M ;) +/IMy 1 1(gr:)]
0= ey g (0 g ) VT T (an) 4 VM s (0)
(4.25)
where My, 1/(qr;) = i (gr) (Yo (75)o:]% (the brackets indicate angular momentum
coupling) and the sum is over individual nucleons ¢.
At g = 0, the axial structure function S rteceives contributions only from M; o

<J

or equivalently, in neutron—proton representation,

and reduces to the form

1

S54(0) = ir

;%(ao+017§)0i‘\J>r : (4.26)

S4(0) = = l(eo + @) (15, 10) + (a0 — ISR, (427)

where S‘p and S, denote the total spin operators for protons and neutrons re-
spectively. Since the individual nucleon spins tend to cancel, the reduced matrix
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elements in Eq. (4.27) are typically of order unity. In the next section, we will
estimate S4(0) by relating the total proton and neutron spins to measured magnetic
moments and beta-decay lifetimes.

At higher ¢, unfortunately, the isovector and isoscalar amplitudes interfere and
we have to express the structure function as

S4(q) = a3 Soolg) + o} S11(g) +aoar Sor(9) » (4.28)

where the three functions Spo(a), Sii(g) and Sp1{q) can be worked out from
Eq. (4.25). The interference and g-dependence make it difficult to extract the three
functions from experimental data.

In the scalar structure function Ss, the dominant contribution is from the L =0
multipole and we can neglect the rest. The term (J|Co]J) can be modeled as the

Fourier transform of a spherically symmetric density, e.g. a Gaussian, 3% or via a
more sophisticated approximation. In the low ¢ limit
2J +1
Ss(0) = — cZA? (4.29)

which, as we have noted, depends coherently on the total mass of the nucleus and
therefore, despite the size of co, may exceed S4(0) in heavy nuclei. In fact, we should
point out here that in even—even nuclei spin—independent scattering 15 all that can
occur; the spin-dependent cross section vanishes identically in J = 0 ground states.

With all the relevant formalism now in hand, we are ready to examine a variety
of prospective detector nuclei, with an eye to setting meaningful limits on dark mat-
ter flux. Currently dark matter searches are conducted with underground detectors
designed originally for double-beta-decay experiments. While these measurements
have ruled out certain dark matter candidates, they are not sensitive encugh to
detect neutralinos. However, several more sensitive detectors, sometimes involving
newly developed cryogenic technology, have recently been proposed, and some are
already under development. Among light nuclei, some of the most appealing candi-
dates are 1°F and 2°Si. Fluorine is considered promising largely because (according
to calculations) it should scatter neutralinos fairly strongly. 2° Silicon is the basis
of a prototype cryogenic detector 35 and thus is also a natural candidate. Some
heavier nuclei have been suggested as well. '*Xe would constitute an important
ingredient in a fairly conventional scintillation detector.3® Both %3Nb (Ref. 37) and
73 Ge(Ref. 38) have been discussed in the context of the new-technology cryogenic
systems, and the development of a detector based in part on the latter is well
underway.

5. Spin—Independent Neutralino Elastic Scattering

The cross section for elastic scattering through the scalar term is fairly straightfor-
ward, and simple methods can be applied in all nuclei. As noted above, the scalar
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structure function can be written as
Ss(q) = [(JICo(I))]* = Ss(0)F?(q) , (5.30)

where F(g) is the (normalized) Fourier transform of a spherical nuclear ground
state density distribution. Very accurate data on charge distributions have been
obtained from elastic electron scattering. Information on mass distributions is not
as precise, although significant advances in recent years have come through pion
elastic scattering. For our purposes, we can assume that the charge and mass
distributions are roughly proportional.

Most of the work on finite momentum transfer (often referred to as “loss of
coherence”) in the spin-independent cross section 33,34 has approximated the nuclear
density distribution p(r) by a Gaussian with mean-square radius \/(3/5)R, w1th
R = 1.2AY3 fm. The resulting form factor is

Fa(q) = e ®R” (5.31)

In fact the nuclear density is better described by a Woods—Saxon than by a Gaus-
sian shape. While the Fourier transform of a Woods~Saxon distribution must be
evaluated numerically, an alternative analytic form is virtually mdlstmgulshable
from it.%® We consider a coordinate space density

o) = [ a1, (5.32)

where po(r) is a constant within a sphere of radius Ry = (R? — 5s2)*/2 and zero
outside, pi(r) = e[‘%(’/’ﬁ, and s =~ 1 fm. The Fourier transform of this density,
which physically represents a nearly constant interior and a surface of thickness s,
is given by (aR)
3j1(¢Ro) _ 1(g5)?

Filg) = = == : (5.33)
In Fig. 5, we compare the squares of the form factors F,(q) and Fy(q) for '*!Xe.
For this system, the radius is roughly R =~ 6.1 fm ~ 31 GeV~!. Deviations start to
show up for ¢ = 0.1 GeV, for which ¢R = 0.3. Similar results also obtain in **Nb
and are suggested in other nuclei by the work of Ref. 29. In general, differences -
between the two form factors should be small enough that either will suffice for
determining count rates in low-threshold detectors.

6. Spin—Dependent Neutralino Elastic Scattering
6.1. The single-particle model

The earliest calculations of axial or spin—dependent 04! elastic scattering of galactic
dark matter utilized an extreme single-particle model (SPM) to describe the target
nucleus the basic assumption is that nucleons pair off to zero angular momentum
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(and zero spin). In an odd-mass nucleus, then, the total nuclear spin arises from
the single remaining unpaired particle. For an unpaired nucleon in a single-particle
orbit with quantum numbers (nlj), the expectation value of the spin operator S,
in the state with m = j is given (in units of h) by

G-I+ +E

) (6.34)

S = (nljm = j| S; Inljm = j) =

This m = j expectation value is related to the reduced matrix element used earlier
by
. - . . 1150173 Ay
(nljm = j| S; |nljm = j) = EJ——Z——‘—L-]-)- (nlj|S|nlj) - (6.35)

V2i+1

At finite momentum transfer, we need to know how the spin is distributed over
the nucleus. In the SPM, the distribution is determined solely by the radial wave

function of the unpaired nucleon.

F(q)

Fig. 5. Squares of the spin-independent form factors Fa {dashed line) and F} (solid line) versus
g2 for ¥ Xe.

Unfortunately, the SPM is not appropriate for most nuclei. In many odd-mass
nuclei away from closed shells, it does not even correctly predict the ground state an-
gular momentum. In nuclei with a single particle or hole relative to a doubly magic
core, the SPM reproduces the angular momenta and parities of the lowest levels
but does not quantitatively reproduce other more detailed properties, among these
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magnetic dipole moments and transitions. The magnetic dipole or M1 operator can
be expressed as

oo ~ _— I = s .

/'L—ﬁup_!'/‘ﬂ_ Z (gpLP+gpSP) ’ (636)

p=p,n

where L is the orbital angular momentum operator and the “g-factors” are given
(in nuclear magnetons) by g;, =1, g, = 5.586, gl =0, and g5 = —3.826. The
M1 operator is clearly related to the spin operators of relevance to dark matter
detection. The magnetic moments that arise in the extreme single-particle model
are referred to as Schmidt moments. A survey of data in comparison with Schmidt
values is given in Ref. 42. Even for nuclei with only a single particle or hole outside
a doubly-magic core these values are not perfect and the discrepancies are much
more pronounced away from closed shells. Many effects are now known to modify
the Schmidt predictions.*? In nuclei in which the closed core is not spin saturated,
M1 polarization of the core by the odd particle plays a significant role. Away from
closed shells, core~polarization effects are supplemented by configuration mixing
within the valence space. And finally, at some level meson exchange currents also
contribute.

In the sections to follow, we discuss several ways of incorporating these effects
into calculations of the total proton and neutron spin, and of the associated finite-
q form factors. As we will see, phenomenological approaches give fairly reliable
information on the spin but are unable to describe the finite momentum response.
Microscopic calculations, on the other hand, provide information at all relevant
momentum transfers but are considerably more involved.

6.2. The odd group model

The simplest way to determine nuclear properties is through expeditious use of
related experimental data. The Odd Group Model (OGM) is a version of this
approach that is useful in odd-mass nuclei. Originally introduced in Ref. 43 in
the context of magnetic moment data, it was subsequently expanded upon in Refs.
44 and 45. The authors of Ref. 46 adapted this analysis to determine the matrix
elements governing ¢=0 neutralino spin—dependent scattering. For the purposes of
this discussion, the basic assumption of the OGM is that in an odd-mass nucleus,
containing an even number of one type of nucleon and an odd number of the other,
the even group does not contribute to either the nuclear orbital or spin angular
momentum. The structure of the odd group, which does contribute, is not defined
in detail; rather, its properties are fit to known data.

To see how this works, consider the magnetic moment operator, Eq. (6.36),
which can be rewritten in terms of operators and coefficients referring to the odd
group (subscript o) and the even group (subscript e) according to

po=gbd + (g5 = gb)So+ (b — gb) e + (g5 — gb)Se . (6.37)
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Neglecting the even group, we can express the expectation value of ji (in the state
with M = J) as

p=g'J+ (95— 95)Ss (6.38)
so that
1
p— 907
g, = £ 6.39
95— b (6.39)

In other words, the magnetic moment of the system, its total angular momentum,
and the g-factors, under the assumptions adopted, determine the spin matrix ele-
ment of the odd group and thus of the entire nucleus.

This is clearly an improvement over the SPM. There it was assumed not only
that the even group does not contribute but also that only the last nucleon of the
odd group contributes. The OGM relaxes the latter assumption, asserting instead
that the odd group must give the experimental magnetic moment. In Table 1
we compare the results obtained in the SPM and the OGM for some odd-mass
puclei, most of which are of potential importance to dark matter detection. Clearly
there are substantial differences. In *°Si the difference is more than a factor of
three, which translates roughly into an order of magnitude difference in the elastic
scattering cross section. These results illustrate the importance of correlation effects
in the nuclear-spin matrix elements; knowledge of such large factors are essential
for attempts to interpret dark-matter experiments.

Table 1. The spin content of several candidate detector nuclei based on the 0dd Group Model.#®
In parentheses are given the corresponding results of the extreme Single-Particle Model.

Sp Sn
19 g 0.46 (0.50) 0(0)
3501 -0.15 (—0.30) 0(0)
93Nb 0.36 (0.50) 0(0)
298i 0(0) 0.15 (0.50)
3Ge 0(0) 0.23(0.50)

At first glance, it would seem that a major weakness of the model is that it
ignores neutron-proton correlations or equivalently, the role of the even system.
To some extent this objection is valid; not all nuclear properties can possibly be
well described. Reference 44 argues, however, that for odd-multipole operators
like the spin, the even system is not overly important. The ground state contains
admixtures with J, = 0 through some Jmax. The Jo =0 component is usually
the largest, followed in size by those with J. = 2,4,6,... . An odd-multipole
operator can mix the higher even angular inomenta with the J. = 0 component
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only in second order. For this reason, although the OGM may not work well for
even-multipole operators like the electric quadrupole moment, its assumption that
the primary renormalization to the single-particle spin comes from the odd group
should be reasonably valid. Of course, this argument breaks down if the dominant
component of the ground state wave function is not J. = 0. In highly collective
nuclei and in particular those that are well deformed, the model may therefore not
be as effective, a point to which we will return later.

Tn some nuclei it is possible because of the existence of additional data to relax
the assumption that the even group does mot contribute. Pairs of mirror nuclei
(related to one another solely by the interchange of protons and neutrons) with
'Z = N +1 provide what we need. For each pair, three relevant pieces of data exist:
magnetic moments in each of the two nuclei and the Gamow—Teller beta decay from
one to the other. The ft-value for the GT decay is related to other quantities by °

RS, - S.)" = {6170 } J

SRR TS (6.40)
where R = g4/gy is the ratio of the axial-vector to the vector weak-interaction
coupling coefficients. To determine S, and S, we must include information from
the magnetic moments as well. One weakness of the OGM is that it ignores pion-
exchange contributions to these quantities. Since pion-exchange is an isovector
process, we can legitimately avoid considering it by using the isoscalar magnetic
moment

prs = pz N+ pnz = J +0.76(So + Se) + px (6.41)

where px is the contribution from the exchange of heavy isoscalar mesons, which is
known to be small #7483 and can be estimated theoretically. *® Since the quantity J,
is absent from the isoscalar sum, the two equations Egs. (6.40) and (6.41) together
contain (assuming that the effect of ux can be reasonably estimated) only the
desired quantities S, and S, along with the ratio R, which we must somehow specify.
The renormalization of this quantity in the nuclear medium has long been a subject
of controversy. Two commonly used choices for R are its free-space value, 1.25 and
1.00, a number which arises in a number of different analyses,*?
our purposes a fit to magnetic moments and Gamow-Teller decays in Ref. 45. Once
R has been fixed, we can solve the two equations for S, and S.. In Table 2, we
summarize the results for several important nuclei with mirror partners for both
choices of R. [We refer to this method as the Extended Odd Group Model (EOGM)].
Our prejudice, we should note, is for R = 1.00. In all the cases considered, the odd
group indeed carries most of the spin (as expected) and the renormalization of the
SPM results is larger for the odd group than for the even group, which is also not
surprising in view of earlier remarks.

With Tables 1 and 2 we can compare the OGM and EOGM results for those

cases in which both exist. In 2°Si, there is a significant discrepancy (in absolute

most notably for
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terms — we discuss the small numbers in 33Cl shortly) between the two. 2°Si is one
of the more highly collective nuclei in the sd shell, and correlations in the even group
apparently play a role. Overall, we conclude that the OGM provides a reasonable
approximation to the spin content of nuclei that are relatively light and also not
too collective. The EOGM seems a quite accurate treatment wherever it can be
applied.

Table 2. The spin content of several stable mirror nuclei of potential relevance to dark matter
detection, evaluated using the EOGM.*®

Sp Sn
R=100 R=125 R=100 R=125
1R 0.415 0.368 ~0.047 —0.001
35¢1 ~0.094 —0.083 0.014 0.004
2933 0.054 0.069 0.204 0.189

Both of these methods, however, suffer from the fact that they provide informa-
tion for neutralino scattering only at ¢ = 0. In light nuclei nothing else is necessary
but in heavier nuclei we need to know the spin distribution. It is difficult to imagine
how one might extend these phenomenological methods to higher ¢. Form factors
from magnetic elastic electron scattering are an obvious idea but unfortunately the
g-dependence of that process is quite different, making the extraction of neutralino
form factors impossible. To treat heavy nuclei, we really need explicit calculations.
We will present some of these after discussing analogous calculations in light nuclei,
where high-q effects need not be considered.

6.3. Shell-model calculations in light nucles

For all but the very lightest nuclei, the natural framework for microscopic calcula-
tions is the nuclear shell model. Shell-model technology has developed to the point
that complete 0/ calculations can now be carried out for all nuclei through the
sd shell*® and even for some in the fp shell.?® For most heavier nuclei, however,
further truncation is required, limiting the usefulness of the method.

Here we will describe sheli-model calculations for several promising dark-matter
detector candidates in the sd shell. Though the calculations are as complete as
is currently possible, several approximations and assumptions nevertheless appear.
Excitations from the doubly-magic 10 core and excitations into higher major shells
are treated implicitly in terms of effective interactions and effective operators that
are not perfectly determined. Nonetheless, a wide variety of nuclear properties have
been calculated in this region with impressive success.

Shell-model calculations of the proton and neutron spin (for the explicit purpose
of evaluating neutralino cross sections) were carried out in Ref. 51 in a number of -
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p-shell and sd-shell nuclei. The authors assumed an effective shell-model interaction
that was derived from a Reid soft-core nucleon—nucleon potential. In general, the
results are in good agreement with those of the EOGM. We present in Table 3
the calculated spin content of two representative nuclei, 1°F and *Cl. In !°F,
the calculations agree quite well with the EOGM results, an outcome that is not
unexpected because the role of correlations is relatively small.

Table 3. The spin content of 1°F and 3%Cl from the shell-model calculations of Ref. 51, in com-
parison with the results of phenomenological EOGM calculations, assuming R = 1.00.

Shell Model EOGM

195
neutrons -0.109 —0.047
protons 0.441 0.415
3501
neutrons —0.011 0.014
protons —-0.059 —-0.094

In 35Cl, correlations clearly are more important. They strongly suppress the
proton spin, from a single-particle value of S, = —0.3 to a correlated value quite
close to zero. The precise number differs in the two approaches but the agreement
is still good considering the amount of deviation from the single-particle results.

Reference 51 makes no predictions in ?°Si, a promising dark-matter detector
element. In Ref. 52 however, the spin content of this isotope was calculated for rea-
sons entirely unrelated to dark matter searches (the question addressed was “Where
is the spin in °Si?”). These calculations used the Wildenthal USD interaction, 53
which has been tested in nuclei throughout the sd shell and is generally thought to
be the best effective interaction currently available. The results for the spin content
of 2°Si are summarized in Table 4, in comparison with those of the EOGM. (The
OGM and SPM results for 1°Fl, 3*Cl and ?°Si can be found in Table 1.) As in
35Cl, correlation effects play a major role in suppressing the spin content of the odd
group. Here, there is some nonnegligible discrepancy between the shell-model and -
EOGM results, though the agreement is still reasonable considered alongside the
single-particle value. Given the physics that is left out of the shell-model calcula-
tions, our prejudice is that the EOGM result is probably somewhat more accurate,
though this statement cannot be made with any certainty.

In summary, the total spin content of the nucleus, which for light targets deter-
mines the axial-current neutralino cross section, can be obtained fairly reliably by
any of several methods. Heavy nuclei, to which we now turn, are more complicated
and the methods used to address them will necessarily be more involved.
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Table 4. The spin content of 2°Si from the calculations of Ref. 49, in comparison with the results
of phenomenological EOGM calculations, assuming R = 1.00.

Shell Model EOGM

neutrons 0.134 0.204
protons ~0.002 0.054

6.4. Spin—dependent scattering from heavy nuclet

The formalism associated with the evaluation of neutralino cross sections at the
nonzero values of momentum transfer that occur in collisions with heavy nuclei was
developed in Sec. 4. As noted earlier, we cannot extract the required information
directly from experiment and thus must resort to detailed microscopic calculations.
An approximation used in Ref. 29, in which single-particle form factors are scaled
by the ratio of the OGM to SPM results at ¢ = 0, while providing some qualitative
insight, is usually not sufficiently accurate; as we shall show later, the form factor
does not scale in general. In light nuclei the shell model is the method of choice and,
fortuitously, a few heavy nuclei (for instance **Nb, which we will discuss shortly)
have few enough valence particles to allow the same kind of treatment. Regrettably
though, most heavy nuclei have too many valence particles for the shell model, as it
currently stands, to handle without rather drastic truncations. Other methods for
approximately treating the dynamics of heavy nuclei fall into a number of (often
overlapping) classes, including:

#) neutron—proton weak—coupling methods,**
P phng

(i7) symmetry—dictated truncation schemes,®®

(iii) mean—field methods,>

(iv) quasiparticle methods, and

(v) boson approximations.3”%®

All provide a way to incorporate some of the important shell-model correlations.
Unfortunately, none can be applied generically to the wide variety of behavior exhib-
ited by heavy nuclei, ranging from vibrations, to rotations, to transitional behavior,
to octupole deformation, etc.

We will describe three very distinct sets of calculations for the spin response of
selected heavy nuclei. The first two focus on the properties of the candidate detector
nuclei 131Xe and 9Nb. In Xenon we describe a quasiparticle Tamm-Dancoff Ap-
proximation (QTDA),*® and in Niobium discuss a shell-model-type calculation. %
The third set of calculations®! uses boson approximation methods to estimate the
effects of correlations on the spin content of collective nuclei throughout the periodic
table. The method as currently implemented, however, provides no information on
the distribution of spin required to evaluate cross sections at nonzero g.
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A 1B1Xe

The spin response of a proposed ¥!'Xe scintillation chamber 36 was addressed in
Ref. 59. The nucleus !3'Xe has 54 protons and 77 neutrons and is to a good
approximation a spherical system dominated by pairing correlations. A natural
way to describe pairing is through the BCS approximation. In such a treatment,
the paired odd-A ground state is represented as a single quasiparticle built on a
fully-paired zero-quasiparticle (Ogp) even—even core. In 131Xe, the relevant lgqp

state can be expressed as VL,; |0), where 1/;3/2 creates a neutron quasiparticle in the

dominant 2dz;, orbit and |0) represents the quasiparticle vacuum of the even—even
core.

To the extent that additional correlations contribute to the ground state they
should do so predominantly in the form of 3qp admixtures, of which there are two
types

aj2 _
1 1, 1K
{Vda/g[ykl/l] ] |0> )
3/2
1 oK A
[Vda/Q[Wkﬂ'l] ]

10) -

The first involves a two-quasineutron excitation and the second a two-quasiproton

(6.42)

excitation.

In even—even systems, two-quasiparticle excitations do not mix with the lowest
order Ogp state; this fact follows directly from the BCS condition 56 that H? =
H%2 = 0. In odd-mass nuclei, however, mixing can occur, through nonzero terms in
the quasiparticle Hamiltonian like H'® or H®'. Such mixing is responsible for the
often strong suppression of magnetic dipole moments in spherical odd-mass nuclei
and has also been shown®? to suppress low-lying GT transitions from the nucleus
1271 Indeed, the method used in Ref. 59 for 13! Xe was borrowed with minor changes
from an earlier analysis®? of the GT response of 1271 to solar neutrinos.

To fully specify this kind of calculation, it is necessary to define an active set
of orbits and a Hamiltonian. The calculations assumed a Z=40, N=40 core and
included as active all the orbits in the 2s, 1d, Og, and Oh single-particle levels.
An effective Hamiltonian has two ingredients: a two-body effective interaction and
effective single-particle energies. Single-particle energies were chosen from Ref. 63
and the effective interaction matrix elements from an analytic parametrization of the
Paris-potential G matrix, 5 which was then subjected to two modifications. First,
all neutron-proton monopole components of the effective interaction were replaced
by their average value, so as to avoid an implicit effect on spherical single-particle
energies. Second, all alike-nucleon pairing matrix elements were renormalized (as
in Ref. 62) to guarantee the reproduction of experimental pairing gaps.

The mixing of 3qp components into the predominantly l1gp ground state was
treated in perturbation theory. The amplitudes of admixed 3qp components in the
ground state wave function turned out to be very small (typically less than about
0.05), justifying the perturbative treatment. The effect of the small admixtures on
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the magnetic moment and spin was nonetheless significant. In the 1gp configuration,
both the magnetic moment and the spin matrix elements reduce to the extreme SPM
results: p1qp = 1.146 nm (assuming free-nucleon g-factors), Skap = ~0.3 and S, =

0. When the small 3qp admixtures were included, the results were f1qpt+3qp = 0.70

nm and SiPF3P = —0.236 and Spaptdap = —0.041. It is reassuring that the

calculations so accurately reproduced the quenching of the magnetic moment, which
experimentally is 0.69 nm. The agreement suggests that the model space and the
effective Hamiltonian were reasonable and lends credence to the spin predictions.

It is interesting to compare these results with those of the Odd Group Model.

There, one finds that SOGM — (.18 and SSGM = 0. The two methods lead to

similar results, although as expected, the microscopic calculations permit a nonzero
(albeit small) spin for the protons.

1 —
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Fig. 6. The axial structure function S versus g2 for a pure B on 131Xe. The dashed line is the

prediction of the single-particle model; the solid line is the full result. The results are normalized
for convenience so that single-particle curve goes to 1 at g2 =0.

In Fig. 6, we present the axial form factor Sa(q) assuming that the neutralino
is a pure B (ag/a; = 0.31). We also include for comparison the pure SPM result
(both assume harmonic oscillator single-particle radial wave functions). The large
difference at small values of g reflects the role of 3qp admixtures in determining
the fotal spin. However, by a momentum transfer of g% = 0.01 GeV?, the effect of
correlations is washed out and the full results are virtually indistinguishable from
the single-particle estimates. The reason is that, because of the oscillations in the
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radial wave functions, the correlations no longer contribute coherently and the size
of the deviation reflects the amount of 3qp admixing, which, as we have already
remarked, is quite small.

B. #Nb

Reference 60 presents results for the response of a proposed 93NDb detector.®” The
nucleus 9Nb has Z=41 and N=52 and thus is only a few particles from doubly-
magic 33Sr. As such, it should not exhibit any pronounced collective behavior and
should be amenable to a relatively complete shell-model treatment.

A complete 0fiw calculation, like those in the sd shell, would involve three valence
protons distributed in all possible ways over the orbits of the Z=38-50 shell and two
valence neutrons distributed over the the N=50-82 shell. While this model space
provides a fairly realistic description of many of the properties of >*Nb, the spin is
not one of them. A proper description requires the inclusion of the spin polarization
of the core. Its effects are far less significant in light nuclei, where the relevant cores
(0 or “°Ca) are spin saturated. In heavy nuclei, the spin-orbit partners of high !
orbits are split into different major shells and spin-flip excitations from the doubly-
magic cores are possible. In the case of a 8Gr core, for example, neutron excitations
from the (filled) 0gg;2 orbit to the (empty) Ogr/» orbit are possible and even if
admixed very weakly can contribute significantly to spin-dependent properties.

With these facts in mind, the authors of Ref. 60 calculated the Niobium spin-
response in two stages. First, a relatively small-space shell-model calculation was
performed; subsequently, polarization effects from a much larger space were esti-
mated. The small shell-model space, which consisted of a total of 20 J7 = %+
states, was constructed by assuming an inert ®Sr core and distributing the three
valence protons over the 1pj/; and 0gg/o orbits and the two valence neutrons over
the lds/, orbit. The assumption that only a single valence neutron orbit is im-
portant was motivated by the existence of a fairly strong subshell gap at N=56
(Ref. 65). In this space, the shell-model Hamiltonian consisted of single-particle
energies taken from the spectra of the single-particle and single-hole nuclei ®Sr and
89y and a residual two-body surface-delta interaction (SDI), with isovector and
isoscalar strength parameters A; = 0.35 MeV and Ao = 0.60 MeV respectively.
These SDI strengths were taken from Ref. 66, where they were found to accurately
reproduce empirical matrix elements for this region of the periodic table. The re-
sulting ground state magnetic moment (with free-nucleon g-factors) was p = 6.36
nm, significantly quenched relative to the SPM result of 6.79 but still somewhat
larger than the experimental value of 6.17. It is apparent that a small shell-model
space, while describing many properties of 93Nb, does not incorporate the necessary
correlations required to fully describe M1 data.

In the next stage, the shell-model basis was expanded to include all states in
which one proton or one neutron was excited (either from one of the valence orbits
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or from the 0gg 2 neutron core orbit) into any orbit of the sdg shell. The only such
states that were not included were those in which a 0gg/z neutron was excited into
the 1ds/ orbit. The resulting space consisted of roughly 2050 states with J™ = %+.
About 950 of these states were treated by diagonalization of the Hamiltonian ma-
trix and the remainder in perturbation theory. The small-space SDI parameters
were extended to the entire calculation, with the remaining single-particle energies
extracted from additional experimental data on one-particle and one-hole nuclei. It
should be noted that the SDI is usually not considered a good effective interaction
when more than one valence shell for each type of particle is included; it was used,
nevertheless, in the absence of a better prescription.

The net result of the full calculation was a magnetic moment of only 5.88 nm,
which is somewhat smaller than the experimental value. A discrepancy in that
direction, however, is not too bothersome; it is known 42 that meson-exchange cur-
rents can renormalize orbital proton g-factors upwards by about 10%, raising the
calculated magnetic moments without affecting the spin. The full wave functions
therefore appear reasonable for describing the spin properties of 93Nb.

In Table 5, we present the full results for the total neutron and proton spins,
alongside the small-space results and the those of the SPM and OGM approaches.
Surprisingly, our best results are in closer agreement with the SPM predictions
than those of the Odd Group Model. A detailed explanation of why this is so is
given in Ref. 60. Essentially, the very large ground state angular momentum (9/2),
combined with other features, makes 93Nb a worst-case scenario for the OGM.

Table 5. The spin content of 93Nb from the calculations of Ref. 80, in comparison with the SPM
and OGM results.

Sheil Model SPM OGM
Large Space Small Space
neutrons 0.08 0.04 0.0 0.0
protons 0.46 G.48 0.5 0.36

Except in such rare cases, the OGM is still preferable to the SPM since it
incorporates at least approximately some correlation effects. Figure 7 shows the full
axial structure function under the assumption of a nearly pure Higgsino (i.e. squark
exchange is neglected) with ag/ay ~ 0.12. As in the Xenon analysis, harmonic
oscillator radial wave functions were used. Here the single-particle result differs
significantly from the full structure function even at large g. The reason is that the
SPM in Niobium is not a good starting point for perturbation theory; its place is
taken in that regard by the small valence space. The small-space results approach
the full results for large values of g, for the same reason the single-particle curve
did in '3'Xe. It is only spin polarization of the core that dies off at large g.
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Fig. 7. The axial structure function S versus ¢° for a higgsino on 93Nb. The dashed line is
the prediction of the single-particle model, the dotted line is the small-space prediction, and the
solid line is the full result. The normalization has again been adjusted so that the single-particle
S A(O) = 1.

In some sense, the results in 3'Xe and ®*Nb taken together are a bit disheart-
ening. It would be nice to have a prescription to generate the form factors without
doing complicated nuclear structure calculations. This would be possible if only one
type of correlation effect, either core-polarization or valence-space configuration-
mixing, were important. In the former case, one could use the OGM to estimate
the ¢ = 0 form factor and then simply match this smoothly to a large ¢ form factor
from the SPM. In the latter case, an overall scaling of the SPM form factor to
agree at g = 0 with the OGM result, as has been proposed in Ref. 29, would be
reasonable. In general, however, both types of correlations contribute and neither
prescription is justified. '

C. IBFM calculations

The heavy-nuclei calculations we have discussed so far are limited to nuclei near
closed shells or to those in which pairing correlations dominate. When other collec-
tive features become prominent, an alternative approach must be employed. Refer-
ence 61 proposed the use of the Interacting Boson-Fermion Model as a method for
“estimating the spin content of odd-A nuclei’ with more-or-less arbitrary collective
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correlations. This method is in some sense related to the phenomenology presented
earlier but makes different assumptions about the structure of the wave functions.
Through careful fits to data, it is able to obtain meaningful results for many nuclear
properties. Like the other phenomenological methods we have discussed, however,
it cannot in its current form give information on the spin response at finite q.

We will not go into detail on the Interacting Boson-Fermion Model, but simply
refer the reader to a recent monograph. *® Suffice it here to note that the model has
been highly successful in describing a wide variety of low-lying collective features in
odd-mass nuclei and that it is clearly founded in the nuclear shell model, although to
date the details of this connection have not been elaborated for all types of collective
behavior. The basic idea of the model is to describe the low-lying states of an odd-
mass nucleus as an odd fermion coupled to an even—even core that is represented in
terms of the neutron-proton Interacting Boson Model (IBM2).%” When the fermion
(representing the last valence nucleon) is included, the model is called IBFM2.

The IBM2 core is described in terms of s (L=0) and d (L=2) bosons for neutrons
and protons separately. These bosons are meant to represent the lowest-energy cor-
related pairs of valence nucleons. Already we see that the model includes physics
beyond the SPM or OGM, in that some collective pairs with nonzero angular mo-
menta are included for both types of particles. The bosons are assumed to interact
via a fairly simple Hamiltonian whose parameters (typically 5 or 6) are fit to the
low-lying energy levels of the even—even (core) nucleus.

The coupled fermion is typically limited to a small number of single-particle
orbits near the fermi surface and is assumed to interact with the core via a semi-
microscopic core-particle interaction. Once the low-lying wave functions have been
determined, other properties can be studied. This too however, requires assuming
a structure for operators and determining their parameters by fits to data. For
example, the magnetic dipole operator is usually represented as

T(M1) = Te(M1) + Te(M1), (6.43)

where

. 3 N o
TB(MU =Y\ Z;r'(gv['f + ngf) )
(6.44)
3

Tp(l\/fl): \/Egp jp .

Here the operators with superscript B refer to the bosons and Jp is the angular
momentum operator of the odd fermion. The boson g-factors, g, and g, are pa-
rameters that are obtained from fits to magnetic dipole moments and M1 transition
matrix elements in the even-even system. The fermion g-factor, gr, on the other
hand, is usually chosen on the basis of a microscopic mapping procedure.
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Within the standard prescription just given, the bosons by assumption carry no
spin. Microscopic calculations 57 for the structure of the bosons suggest that this
is only approximately true. Thus, Ref. 61 included a boson component to the spin,
which was estimated via the microscopic calculations of Ref. 67. In our view, these
numbers are a bit suspect, except in vibrational nuclei where the microscopic basis
of the IBM2 is well founded. For this reason, it is reassuring that the bosonic con-
tribution to the spin is fairly small. The principal effect of correlations is to permit
the uncoupled fermion to be distributed over several orbits, leading to modifications
of the spin expectation values. These points are summarized in Table 6, where we
compare the IBFM and SPM results for the calculated spin. The IBFM columns
separately give the spins of the odd fermion and the proton and neutron bosons of
the core.

Table 6. The unquenched spin content of some dark matter detector nuclei calculated in the
IBFM,61 in comparison with the corresponding SPM results. The labels p(n) distinguish odd-
proton from odd-neutron systems.

pormn S;‘?S)M S}rBFM S{]BFM Sg(?ﬂl;{
B Ge n 0.469  —0.009 0.000 0.500
131¥e n —0.280 0.000 0.003 —~0.300

As noted earlier, the g-factors of the IBFM2 are determined by fits to M1 data
and are invariably strongly quenched. Part of this quenching comes from spin
polarization, which is not included in the IBFM, and part comes from nonnucleonic
degrees of freedom. Simply renormalizing the spin to incorporate all sources of
quenching leads to the results shown in Table 7. It should be noted that in Ref. 61,
it is not the spin that is assumed to be quenched but rather the overall axial coupling
constants that contribute to neutralino elastic scattering. However, for the purpose
of this discussion the distinction is not important. In the end, the results are quite
similar to those of the OGM, except for the few nuclei in which both kinds of bosons
in the core carry a significant amount of spin. We reiterate that although the IBFM
is designed to model heavy nuclei, it is not yet clear how to use it to calculate the
finite-q response.

Table 7. The quenched spin content of some dark matter detector nuclei calculated in the IBFM .81
The OGM results are included in parentheses for comparison.

S Sn

3Ge —0.005 (0) 0.245 (0.23)
131%e 0.000(0)  —0.166 (—0.18)
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D. Still 1o be done: ™>Ge

The most important remaining calculation is the full response of "3Ge, the odd
isotope in one of the most promising dark-matter detectors.3® Estimates of the
= 0 response, in the OGM and the IBFM, are in reasonable accord (see Table 7).
No method exists at present, however, for extending these results to nonzero g.
The IBFM method could in principle be used if it could explicitly incorporate
the spin—polarization degree of freedom, perhaps by including three fermions (two
of which represent a broken core pair) instead of just one. We are aware of some
thoughts along these lines®® and feel they should be pursued. Purely microscopic
treatments of "3Ge are exceedingly difficult. There is good evidence for coexistence
between, spherical and deformed shapes in this region, a situation that is too com-
plicated for any of the methods that we have so far discussed. But, until a reliable
calculation in 73Ge has been carried out, the description of the nuclear physics of
dark matter detection will be incomplete.

7. Prospects for Detection

We have just completed a detailed discussion of the nuclear physics in an area still
fraught with uncertainties in the particle physics and the astrophysics. Why have we
bothered? To some extent, the situation resembles that of neutrinoless double-beta
decay. The neutrino may well have an effective mass many orders of magnitude less
than an electron volt and there may be no right-handed currents, in which event
neutrinoless double-beta decay will not be observed in the forseeable future. Never-
theless, knowledge of the nuclear matrix elements governing the process is essential.
If no signal is seen, the nuclear physics allows limits to be placed on neutrino masses
and right handed couplings. In the event that something is observed, it is needed
to determine the values of these quantities.

The same is true here. There exist a variety of neutralino models, the parameters
of which are not currently well constrained. Direct—detection searches may fail to
see dark matter but without understanding neutralino—nucleus interactions, we will
be able to deduce very little from that. And if a signal is seen, the nuclear physics
is essential for deciding what kind of particle has been observed, whether its density
is sufficient to account for the dark matter, etc.

Characteristics of the new detectors are obviously important considerations in
assessing the likelihood of actually seeing neutralino dark matter. A recent dis-
cussion of detector technologies, thresholds, backgrounds, etc. appears in Ref. 2.
Here we will look in a cursory way at expected event rates in detectors made from
some of the elements we have considered earlier, disregarding complications due
to background. The rates obviously depend on the SUSY parameters discussed in
Sec. 3, which determine the mass and composition of the lightest neutralino, as well
as on Higgs and squark masses. A complete analysis, examining all possibilities
for these parameters, can result in rates that vary by several orders of magnitude
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for a given detector type. Moreover, the simplest supersymmetric extension of the
Standard Model can be modified so that event rates go up or down even more. For
these reasons, it will be difficult to completely rule out supersymmetric dark mat-
ter, even with detectors that may be sensitive to a few events per month or year.
We shall illustrate below, however, that over a range of supersymmetry parameter
space, events do become frequent enough to be counted.

The total event rate per kilogram of material, assuming a Maxwellian distribu-
tion of velocities, is given by

2 4M";§U2 do
R = 47N (a7° _3/2—8—/071) v3 exp(—%—) / dg® — , 7.45
( ) MX ,U2 2Max dq2 ( )
where N = 6.02 x 1026/4, © ~ .00lc is the mean neutralino velocity, p =

0.4 GeV/cm® is the neutralino density, & is the detector threshold, M4 is the mass
of the nucleus, and Mg is the reduced neutralino-nucleus mass. To keep matters
simple we have neglected the motion of the earth around the sun; the resulting
annual variation in flux may in fact provide an important dark-matter signal.3* We
have also neglected the motion of the sun in the galactic plane. In some of the
proposed detectors, the direction of recoil may be measurable and an asymmetry
in this quantity could constitute another neutralino signal. The shape of the recoil
spectrum will also be a useful characteristic.

Using the relation T = -2—]‘{-;: and combining Eq. (4.24) with Eq. (7.45), we have

dR

= < [Sa(VIMAT) + Ss5(/ZMAT)] exp (- MaT )

) T
ie. an additional exponential falloff due to the velocity distribution modifies the
form-factor dependence we discussed earlier. To illustrate the range of expected
count rates, we display contour plots of the event rate per month per kilogram of
detector versus the supersymmetry parameters z and M. Because we can think
of no sensible way to show variation with the third parameter, tanf, at the same
time, we have fixed it somewhat arbitrarily at tan 8, = 8. (We have also chosen the
lightest Higgs mass to be 60 GeV and the squark masses to be 1.1M,,.) For most of
the plotted region, which represents a slice of available parameter space, the lightest
neutralino has a mass greater than 50 GeV and the parameter Q, according to the
annihilation calculations of Ref. 17, is less than or equal to 1.

Figures 8 and 9 display contours of constant event rate for the spin—dependent
and total response respectively in '°F. Because this is a light nucleus, the spin-
dependent response dominates. The figures clearly show that count rates vary by
several orders of magnitude over the parameter space. It is difficult to imagine de-
tecting .01 counts per month but 5 per month seems well within the range accessible
to new detectors.
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Fig. 8. Contours of constant count rate per month per kg of detector material (1°F) for the spin-
dependent scattering of neutralinos versus the parameters 4 and M (other parameters are specified

in the text).
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Fig. 9. Contours of coustant count rate per month per kg of detector material (19F) for the summed
spin—dependent and spin-independent scattering of neutralinos versus the parameters p and M.
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Fig. 11. Same as Fig. 10 except the reduction due to form factors is omitted.

Figures 10 and 11 present similar plots for Niobium. In this instance, we have
shown separately the event rates with and without the form factors, the calculation

of which we have described above. The net effect of the form factors is o shift
the contours slightly, though in the upper right hand corner, where the neutralino
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is very heavy, the effect is pronounced. In Niobium, a relatively heavy element,
the spin-independent response is largest over most of the parameter space, and in
the lower left corner it yields count rates larger than in Fluorine. Only when p
gets considerably bigger than M (i.e in the lower right hand corner of the figure,
where the neutralino is essentially pure ﬁ), is the spin—dependent response both
substantially larger than the spin-independent response and large enough to be
accessible to detectors.

These figures and others like them indicate that the new ultra-sensitive dark-
matter detectors stand a reasonable chance of observing neutralinos, should they
exist. Together with information to come from SSC or LHC, which will develop our
knowledge of superparticle masses and other parameters in the superlagrangian, the
nuclear physics presented here will allow us to extract information on the compo-
sition of the dark matter. Without this understanding the experimental results, no
matter what they are, will be much harder to interpret.
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