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We discuss and improve a recent treatment of the absorption of solar neutrinos by '*7I, in
connection with a proposed solar neutrino detector. With standard-solar-model fluxes and an in-
medium value of —1.0 for the axial-vector coupling constant ga, we obtain a ®B-neutrino cross
section of 3.3x107 %2, about 50% larger than in our previous work, and a "Be cross section that
is less certain but nevertheless also larger than before. We then apply the improved techniques to
higher incoming energies that obtain at the LAMPF beam dump, where an experiment is underway
to finalize a calibration of the 1271 with electron neutrinos from muon decay. We find that forbidden
operators, which play no role in solar-neutrino absorption, contribute nonnegligibly to the LAMPF
cross section, and that the preliminary LAMPF mean value is significantly larger than our prediction.

PACS number(s): 96.60.Kx, 25.30.Pt, 21.60.—n

I. INTRODUCTION

In 1988 Haxton [1] proposed 27 as the active ingredi-
ent in a new solar-neutrino detector. He estimated that
a tank containing 1000 tons of iodine would detect about
20 times as many neutrinos as the chlorine experiment at
Homestake. He also noted that a 3/2% state at 125 keV
in 127Xe is accessible to neutrinos from "Be, and that if
the ratio of "Be and 8B cross sections were substantially
different from that in chlorine, then the two experiments
combined could determine the fluxes of both the "Be and
8B neutrinos. Since the "Be flux now appears to be a crit-
ical piece of the solar-neutrino puzzle [2], a high-statistics
iodine detector has become attractive.

In 1991 we attempted [3] to improve on Haxton’s esti-
mate by using the quasiparticle Tamm-Dancoff approx-
imation (QTDA) to calculate the response of iodine to
both 8B and 7Be neutrinos. We concluded that Hax-
ton’s estimate was a little too high, but our results were
still sufficiently encouraging (and carried enough uncer-
tainty) to make a direct calibration desirable. In fact,
around the same time an attempt was made [4] to mea-
sure the Gamow-Teller (GT) strength distribution, which
determines solar-neutrino cross sections, via the charge-
exchange reaction *27I(p,n)2"Xe. Unfortunately, in cases
for which no states in the final nucleus are accessible by
beta decay, the reaction determines the GT distribution
only up to an overall normalizing constant. The solar
neutrino cross section in !27I can therefore not be ex-
tracted without measuring at least one more quantity—
for example, the absolute GT strength to a particular
state, or the total integrated strength below a certain
energy.

To fix the normalization of the GT distribution, and
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to demonstrate that the counting of '2"Xe works as ex-
pected, a group working at LAMPF has recently exposed
an iodine target to a known flux of electron neutrinos
from muon decay [5]. The underlying idea is to use the
total LAMPF cross section to fix the unknown constant
multiplying the GT distribution. This task, unfortu-
nately, is not completely straightforward. Because the
LAMPF neutrinos have on average an energy of about
30 MeV, their wavelengths are short enough to change
the form of the cross section; forbidden operators that
depend on nucleon coordinates and momenta can modify
the “allowed” strength from the GT operator Y, o;7;".
For the experiment to yield a reliable normalization, the
forbidden contributions must either be small or accu-
rately calculated and removed. The current state of af-
fairs has prompted us to reexamine neutrino absorption
by 271. Here, after reviewing our prior work in Sec. II
and developing an improved version in Sec. III, we cal-
culate the LAMPF cross section, including the forbidden
corrections. These turn out to be large enough to com-
plicate an accurate extraction of the allowed component
from experimental data.

II. REVIEW OF PRIOR WORK

In Ref. [3] we developed an approximation for odd-
mass nuclei that is closely related to the usual even-even
QTDA. The starting point is the assumption that the
ground state of 1271 is predominantly of one-quasiparticle
character,

w, . [BCS), (2.1)
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where |BCS) is the fully paired BCS quasiparticle vac-
uum and 7r;5/= creates a proton quasiparticle in the 1ds/;

orbit. We confirmed our assumption in part by adding
three-quasiparticle states of the form

[(W:'V,‘:) “ V,t] o |BCS), (2.2)

the admixtures of which turned out to be small. (In the

above equation i,k,l are valence orbitals and u;r creates a
quasineutron in orbit I.) The form of the iodine ground
state implies that the space of states in xenon accessible
via neutrino absorption is largely spanned by the analo-
gous set

K J
v} [BCS), [(wju;) w;'] IBCS), (2.3)

where J* and ;™ assume the values 3/2%,5/2%, and
7/2%, and K is any intermediate angular momentum.
We therefore used the set Eq. (2.3) in calculating the
127X e spectrum and the GT strength distribution.

Our valence space for both protons and neutrons con-
sisted of the 2s — 1d — Og oscillator shell plus the two
Oh orbitals from the next oscillator shell. We took the
two-body interaction from Ref. [6] and modified it by
scaling the pairing matrix elements to reproduce em-
pirical pairing gaps and replacing the neutron-proton
monopole-monopole component with a constant average
interaction. We changed the monopole component be-
cause it alters single-particle energies through mean field
effects, which we accounted for phenomenologically by
taking our single-particle energies from a Wood-Saxon
potential with parameters appropriate for 2’I. The end
result of our calculation was (assuming standard-solar-
model fluxes) a ®B cross section of 2.2x1074% (13 SNU)
— smaller than Haxton’s estimate by almost a factor of 3
— and a "Be cross section of 2.0 x 107%% cm? (9.4 SNU).
The ratio of "Be to ®B cross sections was much larger
than in chlorine.

There were of course drawbacks in our approach. First
of all, the QTDA is number-nonconserving; fluctuations
in particle number introduce some error, which we were
unable to estimate. In addition, we omitted basis states
that might prove important despite the argument above.
For example, three-quasineutron configurations in 127Xe
should combine with the states in Eq. (2.3) to create
a low-lying collective 2+ phonon, which could in turn
modify the strength distribution at low excitation ener-
gies. In '?7I, a quadrupole phonon formed from three-
quasiproton configurations plus the states in Eq. (2.2)
could significantly dilute the one-quasiparticle content of
the ground state. Furthermore, our two-body interaction
was not entirely consistent with our selection of single-
particle energies because we retained the like-particle
monopole component while arguing that the neutron-
proton monopole interaction ought to be excluded. Both
can modify single-particle energies and, moreover, nei-
ther is trustworthy no matter how the energies are cho-
sen (for a convincing demonstration see Ref. [7]). Finally,
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we took no account of spreading widths associated with
our states in xenon. In revisiting our calculation we have
addressed all these issues.

III. IMPROVED APPROACH

We have now improved our treatment of neutrino ab-
sorption by !27I in several ways. To determine the er-
ror introduced by number-nonconservation in the QTDA,
we have recalculated the GT distribution in the number-
conserving Generalized-Seniority (GS) [8] approximation
(which is equivalent to QTDA in all other respects). The
one- and three-quasiparticle configurations above corre-
spond to well-defined states in the GS approach. The
comparison will be discussed in detail shortly.

We have also made several improvements to the ef-
fective force. For example, we have now removed the
monopole component of the interaction both in the
neutron-proton and like-particle channels, and have not
replaced them with anything else. The average inter-
action that we included earlier has no effect (except on
binding energies) in the number-conserving GS approach
and so can be omitted. We argued previously that some
remnant of the monopole force might be needed in a
QTDA treatment, where because of the mixing of parti-
cle numbers even a constant interaction can change wave
functions and energies. We now find, however, that the
effects of number-nonconservation are minimized when
the monopole force is dropped altogether. In addition,
we no longer scale the like-particle interaction in the pair-
ing channels. Although the scaling improves agreement
with pairing gaps, it badly affects properties of low-lying
states (e.g., energies and magnetic moments).

Beside altering the two-body interaction, we have also
changed the way we select single-particle energies. In our
earlier work, we used the energies given in Ref. [9]; here
we take them instead from the spectra of N = 81 nuclei
(for neutrons) and Z = 51 nuclei (for protons) that are
close to 271 and '2"Xe. The new single-particle energies
yield a better ordering of low-lying levels in both mass-
127 nuclei — the old ones reversed the order, e.g., of the
5/2% and 7/2% levels in *27I. Another important change
is the inclusion in the QTDA of the three-quasiproton
and three-quasineutron configurations discussed above.
And finally, we have now taken some account of the back-
ground of even more complex states by giving the final
states a spreading width. Below we discuss all of these
changes and their effects in detail.

In the GS approximation, the BCS vacuum is replaced
by a number-conserving involving a condensate of J =0
S pairs for protons and a corresponding condensate for
neutrons, viz.:

|wp = wp = 0) = |Np, Ny)
= (SN (sH)N"10), (3.1)
where (p = p,n)

St = Z(Zj + 1)§a;-’ [p}p}]o (3.2)
j

creates a coherent J = 0 pair, the state |0) contains no
valence particles, N, and N, are the number of proton
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and neutron valence S pairs, w, denotes the generalized
seniority for particles of type p, and the a;-’ are (varia-
tionally determined) structure constants related to the
u;’s and v;’s of the BCS formulation. In this framework,
our original QTDA treatment of xenon corresponds to
diagonalizing the shell-model Hamiltonian in the space
of states

lwp = 0,w,, = 1) =n}|N,, No), (3.3)

K J
fup = 2,0, = 1) = [(pzp:) nz] N, = 1,Na),

where n! and p;r- now create real particles. An analogous

construction yields the states in iodine corresponding to
those in Eq. (2.2). (The one spurious state in each nu-
cleus with K = 0 is easily removed.)

In Table I we display the energies of low-lying states,
alongside those calculated in the GS and QTDA approx-
imations (without three-like-quasiparticle states or their
GS equivalents). Neither calculation does terribly well,
but two facts are important. First, the two agree well
with one another. Second, the calculations agree worst
with experiment when three-quasiparticle configurations
are important. This problem will partly be remedied
later when we add the three-like-quasiparticle states.

Figure 1 shows the GT strength up to 8 MeV — the
strength above 7.23 MeV, the neutron-emission thresh-
old is irrelevant for radiochemical neutrino detection —
calculated in the same two schemes. Here, as in Ref.
[3], we have reduced the strengths by a phenomenolog-
ical quenching parameter (1.0/1.26)2. The validity of
this simple prescription, which in weak interactions corre-

TABLE 1. Energies of low-lying states in *7I and '*"Xe in
keV. The second column contains measured values, the third
the QTDA predictions, and the last the GS predictions. Nei-
ther calculation incorporates three-like-quasiparticle states
(or their analogs in the GS scheme).

J" Expt. QTDA GS
127I
5/2% 0 0 0
7/2% 58 —14 62
3/2% 203 1261 1407
1/2% 375 1171 1299
5/2% 418 1695 1929
12'7)(e

1/2% 0 0 0
3/2% 125 178 300
9/2~ 297 1449 1590
11/2° 309 —-16 80
3/2% 322 1351 1430
7/2% 346 853 860
5/2% 376 1009 970
1/2% 412 1530 1430
5/2% 510 1428 1560
3/2% 587 1616 1720
9/2% 646 1588 1630
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FIG. 1. The Gamow-Teller strength B(GT) (quenched and
in half-MeV bins) from 2’1 to states below 8 MeV in *"Xe
in the GS scheme (solid line) and in the QTDA (dashed line).

sponds to setting g4 to —1.0, is not universally accepted
and we will return to it later. For now we note the re-
markable agreement between the two methods. The total
strength below threshold is 4.38 in the GS calculation and
4.13 in the QTDA. The 8B cross sections are 4.39x 10742
and 3.91x107%2, respectively, close to one another but
also markedly larger than that reported in Ref. [3] (the
largest part of the change is due to the pairing matrix
elements, which we no longer renormalize). The only
important disagreement between the two calculations is
in the strength to the lowest 3/2% state: 0.079 in the
GS scheme and 0.042 in the QTDA. Although it is un-
reasonable to expect calculations designed to reproduce
the entire spectrum to match up state by state, in this in-
stance the disagreement is disappointing because this one
strength completely determines the cross section for "Be
neutrinos. The GS strength is more than twice as large
as in our previous paper (0.035) and, if correct, would
(again with standard solar fluxes) result in more events
from 7Be than from ®B. By comparison, the QTDA re-
sult for the first 3/2% state is only marginally bigger than
before. The GS calculation is clearly preferable since it
does not violate particle number, but because of its com-
plexity we have not extended it to include more config-
urations (which can also affect the "Be strength), as we
have in the QTDA. We, therefore, cannot make a terribly
strong statement about the “Be cross section; all signs,
however, point to its being much larger with respect to
the 8B cross section than in 37Cl. Other properties are
very similar in the two approaches provided all monopole
forces are set to zero. For the rest of this paper, then,
we will no longer use the GS scheme, since the QTDA is
computationally much simpler to extend.

We next examine the effects of the three-quasineutron
and three-quasiproton configurations in the QTDA. Ta-
ble II shows the same energy levels as in Table I, but
with the extra configurations included. The result is
a dramatic lowering in energy of some of the mainly
three-quasiparticle states, reflecting the formation via
the neutron-proton interaction of a collective quadrupole
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TABLE II. Energies of low-lying states in *>’I and *?"Xe in
keV. The second column reprises the measured energies and
the third column contains the predictions of the QTDA with
three-like-quasiparticle configurations included. They should
be compared with the results of the simpler QTDA calculation
in Table I.

J Expt. QTDA (improved)
127I
5/2% 0 0
7/2% 58 67
3/2% 203 636
1/2% 375 941
5/2% 418 555
127X e
3/2% 125 216
9/2” 297 360
11/2° 309 153
3/2% 322 547
7/2% 346 630
5/2% 376 367
1/2% 412 898
5/2% 510 664
3/2% 587 682
9/2% 646 1528

phonon. The new configurations also increase the density
of low-lying states substantially. Although the quantita-
tive agreement in the lowest states is still not impres-
sive, these new results are a considerable improvement.
Furthermore, as noted above, the method is designed to
encompass the entire final-state spectrum (in our model
space several thousand states); the lowest-lying states,
with the exception of the first 3/2%, are no more impor-
tant than the others.

The formation of phonon-like states shifts the E2
strength downwards, although no single multiplet is as
collective as implied by experiment. This may be an in-
dication that further correlations associated with higher
quasiparticle number (or with deformation) ought to
be included at some level. The same conclusion might
be drawn from the 271 ground-state magnetic moment,
which changes (with free g factors) from 4.39 to 3.76.
(The experimental value is 2.81 and the Schmidt value
is 4.79.) The incomplete but still significant improve-
ment implies that spin correlations, important for parts
of the GT distribution, are represented better than be-
fore, though again not perfectly. It also suggests that
at least some extra quenching of the spin operator is in
order.

In Fig. 2 we compare the QTDA GT strength below the
neutron-emission threshold with and without the three-
like-quasiparticle configurations. The difference, while
non-negligible, is not dramatic. The low-lying phonon-
like states apparently do little to the charge-changing
strength, which is in a different channel. The main ef-
fect, a small overall loss of strength, is due largely to
the reduction of the single-quasiparticle component of
the %7 ground-state from 86% to 76%. The ground-
state three-quasiparticle components go mainly into five-
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FIG. 2. The Gamow-Teller strength B(GT) (quenched and
in half-MeV bins) from 271 to states below 8 MeV in '?*"Xe
in the QTDA, with three-like-quasiparticle configurations in-
cluded (solid line), and without them (dashed line — same as
in Fig. 1).

quasiparticle states in 27Xe, which are not included in
our basis. To the extent that these states lie below the
neutron-emission threshold (they should begin at roughly
4 times the pairing gap — about 4-5 MeV), we will un-
derestimate the 8B cross section. Phase space considera-
tions reduce the importance of states this high in energy,
however; in this application, therefore, the error should
be relatively small.

The final new element in this paper is the inclusion of
spreading widths. These depend on the density of compli-
cated background states and on the average interaction
strength coupling them to our model space, neither of
which we can reliably estimate. We settle instead for the
prescription in Ref. [10], developed primarily to describe
spreading of RPA-like states high in energy, viz.:

P(w) - A " de [y(e) + (e - w)],

€2 1102
=107
7(e) 5(62+182> (52+1102>’

where w is the excitation energy, y(¢) is a parametrization
of the single-quasiparticle width (in MeV), and we have
included a lower limit of 300 keV to simulate experimen-
tal resolution. Figure 3 shows the full GT distribution
with the widths included (and divided by 0.76 in the fig-
ure only to account for the strength in five-quasiparticle
states, so that the height of the giant resonance is roughly
correct). The spreading turns out to have a fairly small
effect on both the total strength below threshold and the
8B cross section. Our final values for these quantities,
with all the new physics included and the spin operator
quenched as discussed above, are 3.00 and 3.27x10742,
respectively. The ®B cross section is 50% larger than our
old value. Using the free-nucleon axial-vector coupling
constant would increase it another 60% and we can take
that figure as a nominal measure of uncertainty in our
result.

(3.4)
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FIG. 3. The Gamow-Teller strength distribution B(GT)
per 100 keV (quenched) from '*'I in the QTDA, with
three-like-quasiparticle configurations and spreading widths
included. The curve, which here goes up to 20 MeV in
127Xe, has been scaled by 1/.76 to account for missing
five-quasiparticle states lying largely in the giant resonance.

IV. HIGHER-ENERGY NEUTRINOS AND
FORBIDDEN CORRECTIONS

Our strength distribution does not differ dramatically
from the one extracted from experiment [4]. Both suffer
from uncertainty in the overall normalization, which, as
discussed in the Introduction, has prompted an attempt
at LAMPF [5] to measure the total cross section for ab-
sorbing electron neutrinos from muon decay. But the en-
ergies of these neutrinos extend to half the muon mass,
much higher than the solar neutrino end point (= 14
MeV), and the momenta transferred are typically on the
order of the inverse radius of the target nuclei. The al-
lowed approximation, which ignores variations in the lep-
ton wave functions over the interior of the nucleus, no
longer applies and the cross section depends on nuclear
wave functions in a more complicated way. Reference
[11] contains a framework for treating neutrino-induced
reactions beyond the allowed approximation; it involves
calculating matrix elements of the operators:

3a(qr)¥s(82-)
inlar) [Ye(2) )
() [Ye () 37 V)

Jr(gr)Ys(2,) - 49, (4.1)
where g is the momentum transfer, jr(gr) is the Lth
spherical Bessel function, Y7 (f2,) is a spherical harmonic,
J is the multipole order of the transition, and M is the
nucleon mass. The maximum value of ¢r is about 2.8
and we need not consider multipoles above J =~ 3.

With our QTDA wave functions, the evaluation of
the beam-dump cross section is nominally straightfor-
ward, but a few subtleties complicate the analysis. The
most important difficulty arises in connection with the
Coulomb attraction of the outgoing electron towards the
Z = 54 xenon nucleus. In both the low-energy (¢qr < 1)
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[12] and high-energy (gqr > 1) [13] limits, clear proce-
dures exist for evaluating Coulomb effects; in one case
the outgoing electron is known to be in an s state, en-
hancing the cross section by the usual Fermi factor, and
in the other the outgoing wave function can be treated
as a plane wave perturbed slightly by the charge distri-
bution in the nuclear interior. Since ¢r =~ 1 here, neither
limit applies and so we follow a different line of reasoning.

The multipolarity of the nuclear transition must be
equal to that obtained from coupling the incoming and
outgoing lepton angular momenta and parities. As we
shall show shortly, the most important transitions have
multipole quantum numbers 17 and 2~. For 17 tran-
sitions, the orbital angular momenta of the two leptons
must be coupled to either 0 or 2. The latter possibility
requires both the neutrino and the electron to have l =1
(or for one of them to have ! = 2), which for the energies
of interest here is less likely than the other possibility
— that they both have [ = 0, i.e., they are both in s
states. We, therefore, treat Coulomb effects in the 1%
channel as if the transitions were purely allowed — that
is, we multiply the 1" cross section by the usual Fermi
function F(Z, E).

The 2~ transitions require at least one lepton to be in a
[ =1 (or higher) state, and the usual prescription makes
less sense. These are “unique” transitions, however, and
can be treated simply in processes such as beta decay
[14,15], for which gr is always small. The procedure there
is to modify the usual cross section (with Fermi function)
by a factor

P2 + A2p?

, 4.2
p2 + p? (42)

where p,, and p. are the neutrino and electron momenta,
respectively, and A, is a function of p. tabulated in Ref.
[12]. Although gr is not always small enough in our prob-
lem for the procedure to be strictly valid, we employ it
to get a rough handle on the Coulomb corrections; they
turn out to add very slightly to the corrections produced
by the Fermi function.

A less tractable issue is the proper value of g4. Its
effective reduction is believed to arise from quenching of
the spin operator by complicated nuclear configurations
outside typical model spaces (including ours). Even if our
prescription for the GT strength is correct, it is far from
clear that the higher multipoles should be affected in pre-
cisely the same way. We have, therefore, calculated the
contribution of each multipole to the beam-dump cross
section twice, using g4 = —1.0 and —1.26, with the idea
that the true renormalization of each contribution prob-
ably lies somewhere in between.

The results, shown in Table III, reflect several effects.
The presence of the Bessel functions in the second, third,
and fourth operators in Eq. (4.1), and of ¢/M in the
third and fourth operators, together reduce the 1* con-
tribution to about 2/3 of its allowed value. (The Bessel-
function effects can be computed reliably; in fact, the
same calculation in the simple Helm model [16] gives a
very similar result.) The contributions of the 2+ and
3+ operators, in which j; is the first Bessel function to
appear, are nominally suppressed by the upper limit in
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TABLE III. Contributions of individual multipoles to the
total cross section for neutrinos from muon decay, in units
of 107%° cm?. The two columns correspond to quenched and
free values for g4, respectively (see text).

J" ga =—-1.0 ga = —1.26
ot 0.096 0.096
0~ 0.00001 0.00002
1t 1.017 1.528
1~ 0.006 0.008
2t 0.155 0.213
2- 0.693 1.055
3t 0.149 0.171
3~ 0.017 0.025
Total 2.098 3.096

gr but are in fact far from negligible. The 0%, on the
other hand, contributes little even though it is unsup-
pressed because its strength is concentrated in the isobar
analog state, which lies several MeV above the neutron-
emission threshold. The 0~ and 1~ strengths are even
more concentrated — within the giant-dipole resonance
and its spin analog, well above 7.23 MeV. In fact, the 2~
contribution, which we find to be of the same order as
that of the 1%, may well be smaller than in our table,
because the associated strength is probably also concen-
trated at higher energies. Our model space is clearly not
large enough for the full collectivity of the spin-dipole
mode to assert itself.

To get some idea of the size of our overestimate we
performed QRPA calculations for *28Xe with the same
single-particle levels and effective interaction we used in
the odd-mass nuclei. We then enlarged the model space
to include the 1f and 2p levels a few MeV above the
Fermi surface. We found that while the total 2~ strength
increased, the amount below 7 MeV fell by 20-30 %. In-
cluding other levels below the Fermi surface (e.g., the
0f — 1p shell) would concentrate it still further; just how
much would remain below threshold is not clear.

Altogether, the cross section for muon-decay neutrinos
is only about half of the preliminary experimental value
of 6x1074% cm? [5], even without any quenching of the
axial current. There is no clear way to make our results
compatible with this larger cross section. As is apparent
from the table, the bulk of the cross section comes from
the 1* and 2~ multipoles, and we have argued that the
27 contribution is probably an overestimate. Because the
average neutrino energy is so much higher than 7 MeV,
phase space plays only a small role and the GT 1% con-
tribution depends essentially only on the total strength
below the neutron-emission threshold — it is insensitive
to the precise distribution. To account for the difference
between our calculated total cross section and a value
of 6x107%° cm?, the 1% contribution would have to be
about three times larger than in Table III. An increase of
about 25% might be plausible since, as discussed in con-
nection with Fig. 3, we have not included states with five
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or more quasiparticles. Our claim, however, is that such
states appear in large numbers only at energies above
4-5 MeV and that relatively few will contribute to the
strength below threshold. In our calculation the summed
GT strength below threshold is about 10% of the total
strength, which is dominated (= 70%) by the states that
form the giant GT resonance at 13-14 MeV. Such a distri-
bution is consistent with general experience in other nu-
clei; in fact it seems impossible to increase the low-lying
GT strength substantially as long as the giant GT reso-
nance is at the energy suggested by the (p,n) reaction,
which in turn is in reasonable agreement with our calcu-
lation. Finally, though it is not impossible that we are
seriously underestimating the contributions of the other
multipoles, that would not be good news either. A for-
bidden contribution even larger than our estimate would
make an extraction of the GT distribution extremely dif-
ficult. Unfortunately, therefore, we cannot reconcile our
results with the value 6x107° cm? without invoking an
unforeseen mechanism that would probably spoil the cal-
ibration.

V. CONCLUSIONS

In summary, we have recalculated cross sections for the
capture by 127 of neutrinos from solar 8B and "Be decay
— incorporating several new physical effects — and have
found somewhat larger values than in our previous work.
The physics we still have not included, e.g., further corre-
lations/deformation, a precisely determined and justified
value for g4, a more carefully crafted interaction, etc.,
make our results somewhat uncertain, but with enough
effort more comprehensive calculations are possible. Our
current results, we feel, still support the development of
a calibrated iodine-based solar-neutrino detector if only
because it would be an improved version of the existing
Homestake experiment, which as of now is the most diffi-
cult to reconcile with standard-model physics. We must
also conclude, unfortunately, that a complete calibration
may be more difficult than originally hoped. We do not
see how the preliminary LAMPF cross section can be
due entirely to GT-like strength, and do not as yet know
how to evaluate and remove the forbidden contributions
with the required accuracy. Nonetheless, we are hopeful
that with the steady advance of experimental techniques,
nuclear-structure expertise, and computing power, the
remaining problems can be overcome.
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