
1 © 2017 IOP Publishing Ltd Printed in the UK

Reports on Progress in Physics

J Engel and J Menéndez

Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review

Printed in the UK

046301

RPPHAG

© 2017 IOP Publishing Ltd

80

Rep. Prog. Phys.

ROP

10.1088/1361-6633/aa5bc5

4

Reports on Progress in Physics

1. Introduction
Neutrinos are the only neutral fermions we know to exist. 
They are thus the only known particles that may be Majorana 
fermions, that is, their own antiparticles. Because neutrinos 
are so light, the difference in behavior between Majorana 
neutrinos and Dirac neutrinos, which are distinct from their 
antiparticles, is slight. The easiest way to determine which 
of the two possibilities nature has chosen—and it is far from 
easy—is to see whether certain nuclei undergo neutrinoless 
double-beta ( νββ0 ) decay, a second-order weak-interaction 
process in which the parent nucleus decays into a daughter 
with two fewer neutrons and two more protons, while emitting 
two electrons but, crucially, no (anti)neutrinos.

Experiments to observe νββ0  decay are becoming more and 
more sensitive, and international teams are trying to push the 
sensitivity to the point at which they can identify a few decay 

events per year in a ton of material [1–4]. The hope is to be 
sensitive enough to detect νββ0  decay if neutrinos are indeed 
Majorana particles and their masses are arranged in a pattern 
known as the ‘inverted hierarchy’ (discussed in section 2.1). 
Because the decay takes place inside nuclei, the amount of 
material required to fully cover the inverted-hierarchy region 
depends not only on the masses of the three kinds of neutri-
nos, but also on the nuclear matrix element (or elements, since 
present and planned νββ0  decay experiments [5–18] may con-
sider about a dozen different nuclei) of a subtle two-nucleon 
operator between the ground states of the decaying nucleus and 
its decay product. Since νββ0  decay involves not only nuclear 
physics but also unknown neutrino properties, such as the neu-
trino mass scale, the matrix elements cannot be measured; they 
must be calculated. And at present they are not calculated with 
much accuracy. We need to know them better.
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Fortunately, nuclear-structure theory has made rapid pro-
gress in the past decade, and the community is now in a posi-
tion to improve calculated matrix elements materially. This 
review describes work that has already been carried out, from 
early pioneering studies to more recent and sophisticated 
efforts, and discusses what is needed to do significantly bet-
ter. We are optimistic that recent progress in the use of chiral 
effective field theory (χEFT) to understand nuclear interac-
tions [19–22], and of nonperturbative methods to solve the 
nuclear many-body problem efficiently from first principles 
(with controlled errors) [23–28] will produce reliable matrix 
elements with quantified uncertainties over the next five or so 
years. We will outline the ways in which that might happen.

This review is structured as follows: section 2 discusses the 
significance of νββ0  decay and the nuclear matrix elements 
that govern it. Section  3 reviews calculations of the matrix 
elements and indicates where we stand at present. Section 4 is 
a slight detour into a more general problem, the ‘renormaliza-
tion of the axial vector coupling gA’, that has important conse-
quences for νββ0  nuclear matrix elements. Section 5 is about 
ways in which matrix-element calculations should improve in 
the next few years, and ways in which the uncertainty in new 
calculations can be assessed. Section 6 is a conclusion.

2. Significance of double-beta decay

2.1. Neutrino masses and hierarchy

Before turning to nuclear-structure theory, we very briefly 
review the neutrino physics that makes it necessary. References 
[29] and [30] contain pedagogical reviews of both the neutrino 
physics and the nuclear matrix elements that are relevant for 
ββ decay.

Flavor oscillations of neutrinos from the atmosphere 
[31], from the sun [32], and from nuclear reactors [33] have 
revealed neutrino properties that were unknown a few dec-
ades ago. Neutrinos have mass, but the three kinds of neutrino 
with well-defined masses are linear combinations of the kinds 
with definite flavor that interact in weak processes. We know 
with reasonable accuracy the differences in squared mass 
among the three mass eigenstates, with one smaller difference 
∆ �m 75 meVsun

2 2   [34] coming mainly from solar-neutrino 
experiments and one larger difference ∆ �m 2400 meVatm

2 2   
[34] coming mainly from atmospheric-neutrino experiments. 
We also know, with comparable accuracy, the mixing angles 
that specify which linear combinations of flavor eigenstates 
have definite mass [35].

The arrangement of the masses, called the ‘hierarchy’, is 
still unknown, however. There are two possibilities: either the 
two mass eigenstates that mix most strongly with electron fla-
vor are lighter than the third (the ‘normal hierarchy’, because 
it is similar to the hierarchy of quark mass eigenstates) or they 
are heavier (the ‘inverted hierarchy’). Long baseline neutrino-
oscillation experiments can eventually determine the hierar-
chy with a confidence level corresponding to four standard 
deviations or more, but for now they show just a two-σ pref-
erence for the normal hierarchy [36, 37]. Figure 1 shows the 

present experimental νββ0  decay limits on the combination of 
neutrino masses ββm  (defined by equation (5) in section 2.2.1), 
together with the regions corresponding to the normal and 
inverted hierarchies, as a function of the mass of the lightest 
neutrino. If the hierarchy is normal and the lightest neutrino is 
lighter than about 10 meV, then a detection of νββ0  decay is 
out of reach for the coming generation of experiments unless 
the decay is driven by the exchange of a heavy particle, the 
existence of which we have not yet discovered, or some other 
new physics (see section 2.2.2). If the hierarchy is inverted, 
the experiments to take place in the next decade have a good 
chance to see the decay, provided they have enough material. 
Indeed, figure  1 shows that the current experimental limit 
almost touches the upper part of the inverted-hierarchy region.

How much material will be needed to completely cover the 
region, so that we can conclude in the absence of a νββ0  sig-
nal that either the neutrino hierarchy is normal or neutrinos 
are Dirac particles? And in the event of a signal, how will 
we tell whether the exchange of light neutrinos or some other 
mechanism is responsible? If it is the latter, what is the under-
lying new physics? To answer any of these questions, we need 
accurate nuclear matrix elements.

2.2. Neutrinoless double-beta decay

2.2.1. Light-neutrino exchange. The beginning of this sec-
tion  closely follows [29], which itself is informed by [38]. 
More detailed derivations of the ββ transition rates can be 
found in [39–41].

Figure 1. Left panel: bands for the value of the parameter ββm  
as a function of the mass of the lightest neutrino, for the case of 
normal (NH, red band) and inverted (IH, green band) neutrino-mass 
hierarchies. The present best experimental upper limits on ββm  are 
shown in the blue band. Right panel: present best upper limits, with 
uncertainty bars, on ββm  from experiments performed on each ββ 
emitter, as a function of mass number A. The uncertainty bands and 
bars include experimental uncertainties and ranges of calculated 
nuclear matrix elements. Adapted figure with permission from [5], 
Copyright (2016) by the American Physical Society.
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The rate for νββ0  decay, if we assume that it is mediated 
by the exchange of the three light Majorana neutrinos and the 
Standard Model weak interaction as represented in figure 2, is

∫∑ δ
π π

= | | + + −ν
ν

− p p
T Z E E E E

d

2

d

2
,e e f i1 2

0 1

spins
0

2
1 2

3
1
3

3
2
3

[ ] ( )/

 (1)
where Ee1, Ee2 and p1, p2 are the energies and momenta of 
the two emitted electrons, Ei and Ef are the energies of the 
initial and final nuclear states, and νZ0  is an amplitude propor-
tional to an S-matrix element up to delta functions that enforce 
energy and momentum conservation. The S matrix depends on 
the product of leptonic and hadronic currents in the effective 
low-energy semi-leptonic Lagrangian density:

γ γ ν= − +µ
µL x G e x x J x2 1 h.c.,F e L5( ) / { ( ) ( ) ( ) ( )} (2)

with µJL the left-handed charge-changing hadronic current 
density. Because νZ0  is second order in the weak-interaction 
Lagrangian, it contains a lepton part that depends on two 
space-time positions x and y, which are contracted and ulti-
mately integrated over:
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Here νk is the Majorana mass eigenstate with mass mk and 
Uek is the element of the neutrino mixing matrix that connects 
electron flavor with mass eigenstate k. We denote the charge 
conjugate of a field ψ by ψ γ ψ≡ ∗ic 2  (in the Pauli–Dirac rep-
resentation), and because νk are Majorana states we can take 
ν ν=k

c
k.

The contraction of νk with νk
c  turns out to be the usual fer-

mion propagator, so that the lepton part above becomes
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where q is the 4-momentum of the virtual neutrino. The term 
with γ= ρ

ρq q  vanishes because the two currents are left 

handed and if we neglect the very small neutrino masses in the 
denominator, the decay amplitude becomes proportional to

( ) ( )

∑≡

= | | + | + | |

ββ

α α α δ− − −

m m U

m U m U m Ue e .

k
k ek

e e e

2

1 1
2

2 2
2 i

3 3
2 i 22 1 1 (5)

Here δ is the so-called Dirac phase, and α α,1 2 are Majorana 
phases that vanish if neutrinos are Dirac particles. We have 
inserted the absolute value in equation (5) consistently with 
the amplitude in equation (1), because the expression inside 
can be complex.

To obtain the full amplitude νZ0 , one must multiply the 
lepton part above by the nuclear matrix element of two time-
ordered hadronic currents and integrate the product over x 
and y. Because =µ µ −xJ x Je eL

Hx
L

Hxi i0 0( ) ( )  (H is the hadronic 
Hamiltonian and the current on the right-hand side is evalu-
ated at time x0  =  0), one can write the matrix element of an 
ordinary product of hadronic currents between initial (i) and 
final (f) nuclear states as

〈 ( ) ( ) 〉 〈 ( ) 〉〈 ( ) 〉
( ) ( )

∑| | = | | | |

×

µ ν µ ν

− − − −

x yf J x J y i f J n n J i

e e ,

L L
n

L L

E E x E E yi in f i n0 0

 
(6)

where the |n⟩’s are a complete set of intermediate nuclear states, 
with corresponding energies En. Time ordering the product of 
currents and combining the phases in equation (6) with similar 
factors from the lepton currents yields the following ampl itude, 
after integration first over x0, y0, and q0, then over x and y:
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(7)

where the tiny neutrino masses in the denominator of equa-
tion  (4) and the electron momenta | |p1  and | |p2  have been 
neglected because they are much smaller than a typical 
momentum transfer | |q . The energy-conservation condition 
comes from the definition of νZ0 .

To go further one needs to know the nuclear current opera-
tors. At this point, most authors make two important approx-
imations. The first is the ‘impulse approximation’, i.e. the use 
of the current operator for a collection of free nucleons. The 
operator is then specified by its one-body matrix elements:

γ γ γ
σ

γ

| | = −

− +

′

′

µ µ µ

µν

ν
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p J x p u p g q g q

ig q
m

q g q q u p

e

2
,
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P

i 2 2
5

2 2
5

〈 ( ) 〉 ( )( ( ) ( )
( ) ( ) ) ( )

 
(8)

where = −′q p p, the conservation of the vector current 
tells us that ≡ =g g 0 1V V( ) , and =g q g g qM M V

2 2( ) ( ) with 
≡ �g g g0 4.70M M V( )  (as given by the proton and neutron 

anomalous magnetic moments [34]), = �g g 0 1.27A A( )  
[34] (from neutron β-decay measurements [42]), and the 

Figure 2. Feynman diagram for νββ0  decay mediated by light-
neutrino exchange. Two neutrons (n) decay into two protons (p), 
emitting two electrons (e). No neutrinos are emitted, implying that 
they are Majorana particles (νM).

Rep. Prog. Phys. 80 (2017) 046301



Review

4

Goldberger–Treiman relation = + πqg q m g q m2P N A
2 2 2 2( ) ( )/( ), 

with mN and πm  the nucleon and pion masses, connects the 
pseudoscalar and axial terms and is accurate enough for our 
purposes. The momentum-transfer dependence of the axial 
and vector terms can be parameterized in several ways by 
fitting experimental data [43, 44]. A non-relativistic reduc-
tion of the matrix elements in equation (8) leads to the form 

τ= ∑ − ⋅ +q q x xJ i OexpL a a a a( ) ( ) ˆ( ) , where the operator xO a
ˆ( ) 

acts on space and spin variables of the ath nucleon and the 
isospin-raising τ+a  operator makes the nucleon a proton if it is 
initially a neutron.

The second approximation, known as closure, begins with 
the observation that to contribute significantly to the ampl-
itude, the momentum transfer must be on the order of an aver-
age inverse spacing between nucleons, about 100 MeV. The 
closure approximation is to neglect the intermediate-state-
dependent quantity −E En i (which is generally small com-
pared to | |q ) in the denominator of equation (7), so that En can 
be replaced by a state-independent average value Ē and the 
contributions of intermediate states can be summed implic-
itly in equation  (7). This approximation avoids the explicit 
calculation of excited states of the intermediate odd–odd 
nucleus up to high energies, a nuclear structure calculation 
that is computationally much more involved than obtaining 
the initial and final states in the decay. Because the momen-
tum transfer in νββ2  decay (limited by the Q-value of the 
transition) is of the same order of magnitude as −E En i, the 
closure approximation cannot be used there. For that reason, 
some methods that focus on low-lying states or even–even 
nuclei can be applied to νββ0  decay but not to νββ2  decay. 
Approaches that do allow an evaluation of the contributions of 
each intermediate state suggest that a sensible choice of Ē can 
allow the closure approximation to reproduce the unapproxi-
mated νββ0  matrix element to within 10% [45–49]. It is worth 
noting, however, that tests of the closure approximation have 
not included states above tens of MeV. Since higher-energy/
shorter-range dynamics could be important, future closure 
tests should include them.

Assuming the closure approximation is accurate, and 
neglecting terms associated with the emission of p-wave elec-
trons (which are expected to be a few percent of those associ-
ated with s-wave electrons) and the small electron energies 
−E E 2e e1 2( )/  in the denominator of equation (7), one has the 

expression

=ν
ν ν ββ

−T G Q Z M m, ,1 2
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where ≡ −Q E Ei f , Z is the proton number, and νG Q Z,0 ( ) 
comes from the phase-space integral and has recently been 
re-evaluated with improved precision [50, 51]. The ‘nuclear 
matrix element’ νM0  [52–54] is given by
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Here the nucleon coordinates are all operators that, like spin 
and isospin operators, act on nuclear states. The nuclear 
radius, R, is inserted by convention to make the matrix ele-
ment dimensionless, with a compensating factor in νG0  in 
equation (9). The quantity =| − |x xrab a b  is the magnitude of 
the inter-nucleon position vector, and = −x xr rab a b abˆ ( )/  is the 
corresponding unit vector. The objects j0 and j2 denote spheri-
cal Bessel functions, and the h parameters, called neutrino 
potentials, are defined in momentum space by
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where terms of higher order in 1/mN, coming from the 
 nonrelativistic expansion of equation (8), have been neglected.

Sometimes the operators inside the matrix elements of equa-
tion (11) are multiplied by a radial function f(rab), designed 
to take into account short-range correlations that are omitted 
by Hilbert-space truncation in most many-body calcul ations. 
Several parameterizations of f have been proposed; they are 
based either based on a Jastrow ansatz [55], the unitary cor-
relator operator method [56], Brueckner–Goldstone calcul-
ations [57, 58] or nuclear matter correlation functions [59]. 
Even though the prescriptions differ from one another, those 
that preserve isospin symmetry (the Jastrow ansatz does not 
[60]) have small effects on νββ0  matrix elements when the 
momentum dependence of the transition operator is taken 
fully into account [61, 62].

For completeness, we write down the decay rate for νββ2  
decay, which is permitted in the Standard Model and there-
fore does not depend on neutrino mass or charge-conjugation 
properties. This process is sketched in figure 3 and the decay 
rate can be derived in a similar way as for νββ0  decay, with 
the result that

= | − |ν
ν

ν ν−T G Q Z M
g

g
M, ,V

A

F1 2
2 1

2 GT
2

2

2
2 2[ ] ( )/ (13)

where νG Q Z,2 ( ) is the corresponding phase-space factor (also 
calculated to high precision in [50, 51]) and
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Isospin symmetry forces all the Fermi strength to lie in the 
isobar analog state in the daughter nucleus, so that νMF

2  for 
the transition to the daughter ground state is negligibly small.

2.2.2. New physics mechanisms. It is not just light-neutrino 
exchange that can contribute to νββ0  decay. Although the 
occurrence of νββ0  decay immediately implies that neutrinos 
are Majorana particles [63]—once a lepton-number violat-
ing operator appears in the Lagrangian, all possible effective 
operators violating the symmetry are generated—some other 
lepton-number violating mechanism could be the dominant 
cause of the decay [64, 65]. If that were the case, the detection 
of νββ0  decay would not give us information about the abso-
lute neutrino mass, but could be used as a low-energy test of 
new physics that would complement high-energy searches at 
accelerators such as the Large Hadron Collider [66–69].

Several mechanisms for νββ0  decay have been proposed. 
Besides the exchange of sterile neutrinos via left-handed 
currents [70], the most popular are the exchange of light or 
heavy neutrinos in left–right symmetric models [71, 72], 
the exchange of supersymmetric particles [73, 74], and the 
emission of Majorons (bosons that appear in theories with 
spontaneous breaking of the global baryon–lepton number 
symmetry B  −  L [75–77]). Combining the contributions from 
all possible mechanisms, one finds that the νββ0  decay rate 
takes the form

∑ η= | |ν
ν

ν−T G Q Z M, ,
i

i
i i1 2

0 1
0

0 2 2[ ] ( )/ (15)

with new-physics parameters ηi that are distinct for every 
mechanism and mode: a combination of the light neutrino 
masses ( ββm ) for the usual mechanism and combinations of 
heavy-neutrino masses, the right-handed WR boson mass, 
the left- and right-handed −W WL R boson mixing angles, 
supersymmetric couplings, couplings of Majorons to neu-
trinos, etc for nonstandard mechanisms. It is these param-
eters that νββ0  decay experiments can constrain, provided 
that the associated nuclear matrix elements νMi

0  are known. 

(Updated phase-space factor calculations can be found in 
[78].) Detailed treatments of the matrix elements governing 
these new-physics νββ0  decay modes appear in [30, 39–41].  
Matrix elements calculations for the sterile-neutrino exchange 
[70, 79–82], left-right symmetric models [78, 83–85],  
and the exchange of supersymmetric particles [86–89] are 
common in the literature.

Most of the new-physics mechanisms involve the exchange 
of heavy particles. However, the direct exchange between 
nucleons, represented by the contact operator in the bottom 
diagram in figure  4 in the heavy-particle limit, occurs less 
often in most models than exchange between pions or between 
a pion and a nucleon, shown in the top and middle diagrams 
of the figure. In χEFT each pion propagator carries a factor 
Λ πmb

2 2/ , where Λ ∼ 500b  MeV–1 GeV is the chiral-symmetry 
breaking scale, at which the effective theory breaks down. 
Each ordinary two-nucleon–pion ( πNN ) vertex comes with a 
derivative, which results in a factor of Λp b/  or Λπm b/ , where 
p is a typical momentum. Because the contact interaction has 
no derivatives in most models, pion mediation enhances the 

Figure 3. Feynman diagram for νββ2  decay.

Figure 4. Diagrams for the two-pion-exchange (top), one- 
pion-exchange (middle) and contact (bottom) modes of νββ0   
decay caused by lepton-number violation associated with the 
exchange of a heavy particle.

Rep. Prog. Phys. 80 (2017) 046301
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amplitude [90]. The two-pion mode at the top of the figure is 
thus generally the dominant one. The one-pion graph in the 
middle is nominally smaller by a factor of Λ πmb/  and the four-
nucleon graph at the bottom is smaller by another factor of 
the same quantity. The leading one-pion-exchange contrib-
ution to + +0 0→  νββ0  decay is forbidden by parity symme-
try, however, and so the middle graph ends up contributing 
at the same order as the contact term [90]. The counting is 
different for nuclear forces, where the contact and one-pion 
exchange interactions both appear at leading order [19, 20]. 
The usual one-pion exchange interaction diagram contains a 
derivative at each vertex; the derivatives counteract the pion 
propagator, placing the diagram at the same chiral order as the 
four-nucleon contact diagram. Two-pion exchange occurs at 
higher order. Computations of matrix elements in supersym-
metric models, even when they do not rely explicitly on χEFT, 
support the statement that pion-exchange modes are the most 
important [91–93].

The χEFT counting should be confirmed by explicit 
calcul ations, as additional suppression or enhancement may 
occur [94]. Lattice QCD studies that explicitly incorporate 
hadronic degrees of freedom are underway [95], and will pro-
vide accurate input for the effective field theory treatment of 
these decay modes.

The four-nucleon contact vertex represented at the bottom 
of figure 4 is further affected by short-range physics. In the 
light-neutrino exchange νββ0  decay mode, typical internu-
cleon distances are of the order of a few femtometers. The 
exchange of heavy particles, with mass �m 100H  GeV [90], 
requires nucleons to be closer to each other and will thus be 
suppressed. Pions have a mass of π�m 138 MeV  ≈1.4 fm−1, 
a distance comparable to the average internucleon spacing, 
and so the graphs with pions propagating between nucleons 
will not be suppressed. This behavior is apparent in potentials 
associated with the three modes of heavy-particle exchange. 
In momentum space, they have the form
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The first of these is clearly more strongly affected at high 
momentum transfer than the two pion-exchange modes3. 
Additional powers of the momentum transfer can be present 
in subleading contributions to each diagram.

The effects of short-range physics must be treated with care 
when working in χEFT, from which that physics has effec-
tively been integrated out, or in many-body approaches with 
severe truncation. The contact coupling constant must then be 
renormalized from its naive value by an amount that can be 
computed with the similarity renormalization group (SRG) 

[96, 97] or related schemes. Until such methods are perfected 
(we discuss progress in section 5), the strength of the contact 
term will carry some uncertainty. No such uncertainty plagues 
the strong contact interaction in the χEFT Hamiltonian, the 
parameters of which are fit directly to data. It is fortunate that 
the ββ contact operators are less important than those involv-
ing pion exchange.

Within specific models, heavy-particle exchange with mH 
of the order of one TeV can compete with the light-neutrino 
exchange [98, 99]. Once νββ0  decay has been observed, 
therefore, one must cope with the question of its cause. The 
easiest process to distinguish from light-neutrino exchange is 
decay with the emission of a Majoron; the additional emitted 
particle causes the energy spectrum of the electron pairs to be 
spread out rather than concentrated at a single energy. More 
challenging for experiments is exploiting the angular correla-
tion between the two electrons, which is different if one of 
them is emitted in a p-wave. The emission in p-waves is sup-
pressed in light-neutrino exchange (where s-waves are always 
more likely), but turns out to be important in models with 
right-handed lepton currents [39, 85], where the parity-odd 
γρ ρq  term in equation (4) contributes to the amplitude instead 

of the term containing the neutrino masses. Some upcoming 
νββ0  decay experiments should be able to measure angular 

distributions, given enough events [7, 100].
Unfortunately, other kinds of new physics can produce 

the same angular electron correlations as does light neutrino 
exchange [101]. In those cases, however, one might be able 
to determine the physics responsible for the decay by com-
bining measurements in different isotopes (such measure-
ments will be required in any event to confirm detection). The 
matrix elements governing heavy-particle-mediated and light- 
neutrino-mediated decay can depend differently on the 
nuclear species in which the decay occurs [85–89, 102–104]. 
The task will be difficult, however, if the dependence is simi-
lar, as [105, 106] suggest. Another possibility is to compare 
the decay rates to the ground state and the first excited 0+ state 
of the daughter nucleus; the ratio of these quantities can also 
depend on the decay mode [107]. Unfortunately, it is difficult 
to observe the decay to an excited state, which is suppressed 
by the small Q-value associated with the transition [50]. The 
suppression is too great to be compensated for by differences 
in nuclear matrix elements [82, 107–110].

2.3. Importance of nuclear matrix elements for experiments

The next generation of νββ0  decay experiments will aim to 
fully cover the region ββ�m 10 meV in figure 1, so that a sig-
nal will be detected if neutrinos are Majorana particles and the 
mass hierarchy is inverted. As equation (9) shows, the νββ0  
decay lifetime depends on the square of the nuclear matrix 
element that we need to calculate. This sensitivity makes 
matrix elements calculations important in a number of ways.

First, if an experiment is completely background free, the 
amount of material needed to be sensitive to any particular 
neutrino mass ββm  in a given time is proportional to the life-
time and thus, from equation  (9), the inverse square of the 

3 The induced pseudoscalar term discussed in section 2.2.1 also involves 
pion-exchange, in combination with the usual exchange of a light neutrino. 
There the pion brings no enhancement because the light-neutrino exchange 
is already long range.
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matrix element. An uncertainty of a factor of three in the 
matrix element thus corresponds to nearly an order of mag-
nitude uncertainty in the amount of material required, e.g. 
to cover the parameter space corresponding to the inverted 
hierarchy. If the experiment is background-limited, the uncer-
tainty is even larger [111]. An informed decision about how 
much material to use in an expensive experiment will require 
a more accurate matrix element.

Second, the uncertainty affects the choice of material to be 
used in νββ0  decay searches, a choice that is a compromise 
between experimental advantages and the matrix element 
value. Figure  5 (top) shows nuclear matrix elements calcu-
lated in different approaches, and because of the spread of the 
results (roughly the factor of three above) we can conclude 
only that the matrix element of 48Ca is smaller than those 
of the other νββ0  decay candidates. And the differences in 
the expected rate, a product of the nuclear matrix elements 
and phase-space factors, are even more similar (see figure 5 

bottom, and equation  (9)) [112]. Better calculations would 
make it easier to select an optimal isotope.

Finally, and perhaps most obviously, we need matrix ele-
ments to obtain information about the absolute neutrino 
masses once a νββ0  decay lifetime is known. Reducing the 
uncertainty in the matrix element calculations will be crucial 
if we wish to fully exploit an eventual measurement of the 
decay half-life. Even the interpretation of limits is hindered 
by matrix-element uncertainty. The blue band in  figure  1 
represents the upper limit of <ββm 61–165 meV from the 
KamLAND-Zen experiment [5]. The uncertainty, again a fac-
tor of about three, is due almost entirely to the matrix ele-
ment. And the real theoretical uncertainty, at this point, must 
be taken to be larger; the ‘gA problem’, which we discuss in 
section 4, has been ignored in this analysis. We really need 
better calculations. Fortunately, we are now finally in a posi-
tion to undertake them.

3. Nuclear matrix elements at present

As we have noted, calculated matrix elements at present carry 
large uncertainties. Matrix elements obtained with differ-
ent nuclear-structure approaches differ by factors of two or 
three. Figure  5 compares matrix elements produced by the 
shell model [82, 113, 114], different variants of the quasipar-
ticle random phase approximation (QRPA) [81, 115–117], 
the interacting boson model (IBM) [109], and energy density 
functional (EDF) theory [118–120]. The strengths and weak-
nesses of each calculation are discussed in detail later in this 
section.

Some of these methods can be used to compute single-β 
and νββ2  decay lifetimes. It is disconcerting to find that pre-
dicted lifetimes for these processes are almost always shorter 
than measured lifetimes, i.e. computed single Gamow–Teller 
and νββ2  matrix elements are too large [121–123]. The prob-
lems are usually ‘cured’ by reducing the strength of the spin-
isospin Gamow–Teller operator στ, which is equivalent to 
using an effective value of the axial coupling constant that 
multiplies this operator in place of its ‘bare’ value of �g 1.27A . 
This phenomenological modification is sometimes referred to 
as the ‘quenching’ or ‘renormalization’ of gA. In section 4 we 
review possible sources of the renormalization, none of which 
has yet been shown to fully explain the effect, and their conse-
quences for νββ0  matrix elements.

3.1. Shell model

The nuclear shell model is a well-established many-body 
method, routinely used to describe the properties of medium-
mass and heavy nuclei [121, 124, 125], including candidates 
for ββ-decay experiments. The model, also called the ‘con-
figuration interaction method’ (particularly in quantum chem-
istry [126, 127]), is based on the idea that the nucleons near 
the Fermi level are the most important for low-energy nuclear 
properties, and that all the correlations between these nucleons 
are relevant. Thus, instead of solving the Schrödinger equa-
tion for the full nuclear interaction in the complete many-body 

Figure 5. Top panel: nuclear matrix elements ( νM 0 ) for νββ0  decay 
candidates as a function of mass number A. All the plotted results 
are obtained with the assumption that the axial coupling constant 
gA is unquenched and are from different nuclear models: the shell 
model (SM) from the Strasbourg–Madrid (black circles) [113], 
Tokyo (black circle in 48Ca) [114], and Michigan (black bars) [82] 
groups; the interacting boson model (IBM-2, green squares) [109]; 
different versions of the quasiparticle random-phase approximation 
(QRPA) from the Tübingen (red bars) [115, 116], Jyväskylä (orange 
times signs) [81], and Chapel Hill (magenta crosses) [117] groups; 
and energy density functional theory (EDF), relativistic (downside 
cyan triangles) [118, 119] and non-relativistic (blue triangles) 
[120]. QRPA error bars result from the use of two realistic nuclear 
interactions, while shell model error bars result from the use of 
several different treatments of short range correlations. Bottom 
panel: associated νββ0  decay half-lives, scaled by the square of the 
unknown parameter ββm .
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Hilbert space, one restricts the dynamics to a limited configu-
ration space (sometimes called the valence space) containing 
only a subset of the system’s nucleons. In the configuration 
space one uses an effective nuclear interaction Heff, defined 
(ideally) so that the observables of the full-space calculation 
are reproduced, e.g.

|Φ = |Φ |Φ = |ΦH E H E .i i i i i ieff⟩ ⟩ → ¯ ⟩ ¯ ⟩ (17)

The states |Φi⟩ and |Φi¯ ⟩ are defined in the full space and the 
configuration space respectively, and have associated energy 
Ei.

The configuration space usually comprises only a relatively 
small number of ‘active’ nucleons outside a core of nucleons 
that are frozen in the lowest-energy orbitals and not included 
in the calculation. The active nucleons can occupy only a 
limited set of single-particle levels around the Fermi sur-
face. Many-body states are linear combinations of  orthogonal 
Slater determinants ψ| i⟩ (usually from a harmonic-oscillator 
basis) for nucleons in those single-particle states,

∑ ψ|Φ = |c ,i
j

ij j¯ ⟩ ⟩ (18)

with the cij determined by exact diagonalization of Heff.
The shell model describes ground-state nuclear properties 

such as masses, separation energies, and charge radii quite 
well. It also does a good job with low-lying excitation spectra 
and with electric moments and transitions [121, 124, 125] if 
appropriate effective charges are used [128]. The wide variety 
of successes over a broad range of isotopes reflects the shell 
model’s ability to capture both the excitation of a single par-
ticle from an orbital below the Fermi surface to one above, 
in the spirit of the original naive shell model [129, 130], and 
collective correlations that come from the coherent motion of 
many nucleons in the configuration space. The exact diago-
nalization of Heff means that the shell model states |Φi¯ ⟩ contain 
all correlations (isovector and isoscalar pairing, quadrupole 
collectivity, etc) that can be induced by Heff.

This careful treatment of correlations, on the other hand, 
restricts the range of shell model to relatively small configu-
ration spaces, at present those for which the Hilbert-space 
dimension is less than about (1011) [131, 132]. For this rea-
son most shell model calculations of νββ0  decay have been 
performed in a single harmonic-oscillator shell, consisting of 
four or five single-particle orbitals, not counting degenera-
cies from rotational invariance, for both protons and neutrons 
[47–49, 54, 82, 108, 113, 133–135]. Enlarging the configura-
tion space increases the number of active nucleons, leading 
to a Hilbert-space dimension that increases combinatori-
ally with the number of active-nucleon configurations in the 
valence space and quickly making dimensions intractable 
(very recently, however, the authors of [114] performed the 
first calculation in two oscillator shells; we discuss it in detail 
in section 3.6.).

Pairing correlations, which are central in nuclear structure 
and have large effects on νββ0  decay, may not be fully cap-
tured by Heff within a single oscillator shell [136]. In addi-
tion, because the one-body spin–orbit interaction significantly 

lowers the energy of orbitals with spin parallel to the orbital 
angular momentum in heavy nuclei, spin–orbit partners are 
split by several MeV or more, and the shell-model configura-
tion space contains only one member of some spin–orbit pair 
(except in 48Ca). The omission may have important conse-
quences because the spin-isospin part of the νββ0  decay oper-
ator in equation (11), σ στ τ⋅ + +, strongly connects spin–orbit 
partners. The omission also affects single-β decay.

Despite these limitations, the shell model reproduces 
experimental single-β decay rates well if one quenches the 
strength of the spin-isospin operator στ± from its bare value 
�g 1.27A  [137–139]. (Of course, that is a big ‘if’, which 

we address in detail in section 4.) The quenching needed to 
agree with data is about 20%–30%, and this small range is 
enough to describe Gamow–Teller transitions in nuclei with 
valence nucleons in the p shell (a configuration space com-
prising the 0p3/2 and 0p1/2 single-particle orbitals, represent-
ing the valence shell for ∼A 10), the sd shell (the 0d5/2, 1s1/2, 
and 0d3/2 orbitals, ∼A 30), the pf shell (the 0f7/2, 1p3/2, 1p1/2 
and 0f5/2 orbitals, ∼A 50), and the space spanned by the 
1p3/2, 1p1/2,0f5/2, and 0g9/2 orbitals, for use near A  =  70. With 
roughly the same quenching the model also reproduces the 
νββ2  decay rate of the only emitter in this mass region, 48Ca. 

One shell model success, in fact, was the accurate calculation 
of the νββ2  decay half-life of 48Ca [140, 141] before it was 
measured4 [143]. The shell model also reproduces other νββ2  
decay half-lives provided it uses a quenching factor appro-
priate for the configuration space and interaction [48, 49, 82, 
134, 144, 145]. It requires a similar quenching to reproduce 
magnetic moments and transitions [146–148], which, like β 
decay, involve the spin operator.

The reliability of the shell model depends on the effective 
interaction Heff as well as the configuration space. The start-
ing point for Heff is usually the bare nucleon–nucleon interac-
tion, which is fit to two-nucleon scattering data (and discussed 
in a bit more detail in section  5.3). Then, many-body per-
turbation theory is used to obtain a configuration-space-
only Hamiltonian that takes the effects of the inert core and 
neglected single-particle orbitals into account [149]. Finally, 
phenomenological corrections, mainly in the monopole part 
of the interaction (the part responsible for changes in single-
particle-like excitations with increasing A) are usually made to 
improve the agreement with experimental data [121, 124, 125].  
This last step in the construction of Heff severely restricts our 
ability to quantify the theoretical uncertainty associated with 
νββ0  matrix-elements. The usual fallback—comparing the 

results of calculations that use equally reasonable effective 
Hamiltonians—leads to variations off 10%–20% [54, 108, 
134].

As figure 5 shows, shell-model νββ0  matrix elements are 
usually smaller than all others. We discuss possible reasons in 
section 3.6.

4 The NEMO-3 collaboration has reported a longer half-life than was 
measured previously, resulting in a deviation of about two σ [142] from the 
shell-model prediction. If this new value is confirmed, the shell model would 
overestimate the 48Ca νββ2  matrix element.
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3.2. The QRPA and some of its variants

The other major thrust over the past 30 years has been the 
development of the charge-changing quasiparticle random 
phase approximation (QRPA). This approach is a general-
ization of the ordinary random phase approximation (RPA), 
which has a long history both in nuclear physics and elsewhere 
[150, 151]. The method can be derived in a number of ways. 
One is through an approach we take up in more detail later, 
the generator coordinate method (GCM). Suppose one has 
solved the Hartree–Fock equations, yielding a set of A occu-
pied orbitals ϕ| i⟩ that when put together form the best possible 
Slater determinant ψ| 0⟩, and has then constructed another set 
of ‘nearby’ non-orthogonal Slater determinants ψ| z( )⟩, each 
with A occupied orbitals of the form χ zi( ):

∑χ ϕ ϕ| =| + |
= +

∗

A

N

z z ,i i
j

ij j
1

o( )⟩ ⟩ ⟩ (19)

where No is the number of orbitals included in the calcul-
ation. The RPA ground state |RPA⟩ is the (continuous) super-
position of the ψ| z( )⟩ that minimizes the energy in the limit 
that the zij are small. In that limit, the minimization process 
becomes equivalent to the solution of the Schrödinger equa-
tion for a multi-dimensional harmonic oscillator, in which the 
zij play the role of creation operators [152]. Along with the 
ground state one finds a set of ‘one-phonon’ normal modes, 
one-particle one-hole excitations that are the only states that 
can be connected to the ground state by a one-body operator. 
The transition strengths to those states automatically satisfy 
energy-weighted sum rules.

For application to single-β and ββ decay, the RPA must 
be modified in two ways. First, it must be ‘charge-changing’, 
that is, if ϕ| i⟩ in equation (19) is a neutron orbital then at least 
some of the ϕ| j⟩ must be proton orbitals. That condition guar-
antees that the one-phonon excited states have components 
with one more proton and one less neutron than the ground 
state. Second, it must include the physics of pairing, which 
one can add by replacing the Hartree–Fock state with the BCS 
or Hartree–Fock–Bogoliubov (HFB) quasiparticle vacuum, 
and the nearby Slater determinants with nearby quasiparticle 
vacua [153]. The result is the charge-changing (or proton–
neutron) QRPA.

In single-β decay QRPA excitations of the initial state 
produce final states. In ββ decay, they produce intermediate 
states in equations (7) and (14) and one must carry out two 
separate QRPA calculations, one based on the initial nucleus 
as the BCS vacuum, and a second on the final nucleus (the clo-
sure approximation is not required). In this way one obtains 
two different sets of states in the intermediate nucleus, one of 
which must be expressed in terms of the other. The overlaps 
that are needed to do that require approximations beyond those 
in the QRPA. We will return to this subject in section 5.2.3.

The main advantage of the QRPA in comparison to the 
shell model is the number of single-particle orbits that can be 
included in the calculation. As we mentioned in  section 3.1, 
shell-model configuration spaces are usually based on a few 
single-particle orbitals, most often in one major oscillator 

shell. In most QRPA calculations, all the orbitals within 
one or two oscillator shells of the Fermi surface are treated 
explicitly, with those further below assumed to be fully occu-
pied and those further above completely empty. One QRPA 
calculation [117], albeit a particularly demanding one, actu-
ally included all levels between 0 and 60 MeV, with no inert 
core.

Being able to handle many orbitals guarantees, for exam-
ple, that the β− and β+ strengths obey the ‘Ikeda sum rule’ 
(see equation  (20) in section 4). But the price for such large 
 single-particle spaces in the QRPA is a restricted set of correla-
tions. As a result, one cannot expect a really accurate calcul ation 
without compensating for the method’s limitations by modify-
ing the effective nucleon–nucleon interaction used to generate 
the nuclear states. As in the shell model, the original interaction 
is typically a realistic nucleon–nucleon potential, one adapted 
to the QRPA configuration space through many-body pertur-
bation theory [149]. The interaction is modified more severely 
than in the shell model, however—usually independently in the 
particle-hole and pairing channels. Practitioners often renor-
malize the strengths of the interaction in the proton–neutron 
particle-hole =π +J 1  and 2− channels by 10% or so to properly 
reproduce the energies of the Gamow–Teller and spin-dipole 
giant resonances, altering both the νββ2  and νββ0  matrix ele-
ments somewhat. It is the proton–neutron pairing interaction 
that is most important, however. Its strength, often called gpp, 
is also changed by only about 10%, but that modest adjustment 
usually has a large effect on the ββ matrix elements. Figure 6 
shows a typical plot of the νββ2  and νββ0  matrix elements ver-
sus gpp; the strong suppression near the nominally correct value 
of that parameter, gpp  =  1, is clear not only in the νββ2  matrix 
element, where it is dramatic, but also in the νββ0  matrix ele-
ment. The usual procedure in the QRPA is to fix the value of gpp 
so that the measured rate of νββ2  decay is correctly reproduced 
[154]. Then the same value is used to predict the rate of νββ0  
decay. As figure 6 shows, this procedure almost eliminates the 
dependence of the νββ0  matrix elements on the number of sin-
gle-particle levels in the configuration space.

The reason for the sensitivity to the proton–neutron pairing 
strength has been the subject of many investigations [155]. Some 
of it is easy to understand: in the isoscalar channel, for example, 
proton–neutron pairing mixes proton–neutron spin-one pairs, 
which are like in-medium deuterons, into the usual condensate 
of like-particle spin-zero pairs. The Gamow–Teller single-β 
operator, which plays a role in both the νββ2  matrix element 
in equation (14) and the νββ0  matrix element in equation (11), 
connects the two kinds of pairs, altering the matrix elements. 
(For a simple discussion of why they shrink rather than grow as 
a result, see [156].) But some of the sensitivity can be an artifact 
of the QRPA. When the parameter gpp is made large enough the 
method breaks down because of an impending phase transition 
from the like-particle pairing condensate to a ‘deuteron-like’ 
condensate. In the region before this ( non-existent) transition, 
the sensitivity to gpp is unrealistically high.

Several groups have tried to modify the QRPA to cure this 
behaviour. The usual approach is the ‘renormalized QRPA’ 
(RQRPA) [157, 158]. The idea is that the breakdown is 
due to the violation of the Pauli exclusion principle by the 
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small-amplitude approximation at the heart of the QRPA, 
and that the violation can be remedied by modifying the BCS 
vacuum on which the QRPA phonons are based. In the ‘fully 
renormalized’ version of [158], some terms are kept beyond 
lowest order in the small-amplitude expansion as well. These 
procedures succeed in avoiding the infinities that mark the 
breakdown of the ordinary QRPA, but may overcompensate 
by eliminating all traces of the approximate phase transitions 
that really take place in solvable models, where the methods 
have been benchmarked [159, 160]. In realistic calculations, 
these methods alter the QRPA matrix elements by noticeable 
but not large amounts [53]. More comprehensive and system-
atic modifications to the QRPA have been proposed; we dis-
cuss some of them in section 5.2.3.

Finally, it is possible to calculate νββ0  matrix elements, in 
the closure approximation, in the like-particle QRPA rather 
than the charge-changing version. With closure, any set of 
intermediate states that form a partition of the identity opera-
tor will do. To apply the like-particle QRPA, one chooses these 
intermediate states to lie in the nucleus with two more protons 
(or two fewer neutrons) than the initial nucleus. Though such 
excitations do not conserve particle number, or even charge in 
the case of two-proton addition, they can be represented as two-
like-quasiparticle excitations of the initial state. So far, however, 
only one author [161, 162] has applied the QRPA in this way.

Turning at last to QRPA-produced ββ matrix elements: 
Their most notable feature is that they are almost uniformly 

larger than shell model matrix elements (see figure 5), whether 
or not a renormalized version of QRPA is used. We discuss the 
reasons in section 3.6.

3.3. Energy-density functional theory and the generator-
coordinate method

The term energy-density functional (EDF) theory refers at 
its most basic level to the process of minimizing an energy 
functional ρ …E s j, , ,[ ] with respect to local and semi-local 
densities such as the number density ρ, the spin density s, 
the current density j, etc [163]. The functional ρ …E s j, , ,[ ] 
is the minimum possible value for the expectation value of 
the Hamiltonian when the densities are constrained to have 
particular values. Once the functional is obtained, minimiz-
ing it with respect to its arguments provides the exact ground-
state energy and densities, as Hohenberg and Kohn originally 
showed [164]. Moreover, the minimization can be formulated 
so that it looks like mean-field theory with one-body poten-
tials and orbitals, via the Kohn–Sham procedure [165]. The 
independent particle or quasiparticle wave functions that 
result have no meaning beyond supplying the correct energy 
and densities. In nuclear physics, approximations to the func-
tional E usually derive from the Hartree–Fock or HFB energy 
asociated with a ‘density-dependent two-body interaction’ of 
the Skyrme [166], Gogny [167] or relativistic Walecka [168] 
type, sometimes with additional modifications. The param-
eters of the interaction or functional are then fit to ground-
state properties—masses, radii, etc—in a variety of nuclei and 
used without alteration all over the nuclear chart. The method 
can be extended to EDF-based RPA or QRPA, which are adia-
batic versions of time-dependent Kohn–Sham theory. Indeed, 
that approach was used profitably in the ββ decay calculations 
of [117].

The problem at present is that the Skyrme, Gogny, or 
relativistic functionals E, though they do a good job with 
collective properties such as binding energies, radii, and E2 
transitions, are not close enough to the exact functional to 
work for all quantities in all nuclei5. Something must be added 
to describe nuclear properties accurately, and the easiest way 
to add physics is to explicitly modify the Hartree–Fock or 
HFB wave functions so that they contain explicit correlations 
[169]. Adding correlations means mixing the wave-function-
based and EDF-based approaches, however—opening the 
door to all kinds of inconsistencies [170]. The only way to 
remove these is to abandon the focus on functionals and return 
to a Hamiltonian. It is still an open question whether density-
dependent Hamiltonians of the kind used in phenomenologi-
cal calculations of isotopes along the nuclear chart can ever be 
made fully consistent.

The use of functionals together with explicit correla-
tions is valuable nonetheless, particularly within the GCM. 
Although the method can be used in conjunction with the 
 small-ampl itude approximation to derive the RPA or QRPA 
(see section 3.2) the need for it is greatest when deviations 

Figure 6. Matrix elements νMGT
2 , (left scale, dashed lines) and νM 0 , 

(right scale, solid lines) for the νββ2  and νββ0  decay of 76Ge, as 
a function of the strength of the proton–neutron interaction gpp for 
QRPA calculations in configuration spaces consisting of 9 and 21 
single-particle orbitals. The dotted horizontal line is at the measured 
value of the νMGT

2 . Reprinted figure with permission from [154], 
Copyright (2003) by the American Physical Society.

5 Nor should they be, even in principle. The Hohenberg–Kohn theorem does 
not imply that the functional has the same form in all nuclei.

Rep. Prog. Phys. 80 (2017) 046301



Review

11

from a single mean field have large amplitudes and the QRPA 
breaks down. Large-amplitude fluctuations are often associ-
ated with collective correlations. Shapes with significantly 
different degrees of deformation often must coexist, making 
the QRPA inapplicable. The same is sometimes true of pairing 
gaps. And both deformation and pairing involve the simultane-
ous motion of many nucleons in many orbitals, some of which 
may be outside shell-model spaces. The large single-particle 
spaces in EDF-based work and the mixing of mean fields in 
the GCM make it possible for these collective correlations to 
be fully captured.

The GCM with EDFs has several steps [169]:

 1. Choose one or more ‘collective operators’ Oi
ˆ . The most 

commonly chosen is the axial quadrupole operator r Y2
20. 

Operators that reflect non-axial deformation and pairing 
gaps are other common choices.

 2. Carry out repeated mean-field calculations with the 
expectation values of the Oi

ˆ  constrained to many different 
values (approximating a continuum of values). In other 
words, find the Slater determinants or HFB vacua that 
minimize E under the constraint that the Oi⟨ ˆ ⟩ take on 
particular sets of values.

 3. Project the resulting mean-field states onto states with 
well defined angular momentum, particle number, 
and whatever other conserved quantity the mean-field 
approximation does not respect.

 4. Use the resulting non-orthogonal states as a basis in 
which to ‘diagonalize the Hamiltonian’.

The last phrase is in quotation marks because although the 
EDF is associated with one or more density-dependent 
Hamiltonians (often separate ones for the particle-hole and 
pairing channels), the theory says nothing about how to evalu-
ate matrix elements of the density or of density-dependent 
operators between different Slater determinants. The most 
sensible and commonly used procedure is to replace the den-
sity by the transition density, but the approach has been shown 
to produce ill-defined singularities when examined closely 
[170–172] and no alternative has gained currency. Some func-
tionals have fewer problems than others, however, and the 
Gogny and relativistic functionals, which are based strictly 
on density-dependent Hamiltonians, both allow stable results, 
provided one does not push numerical accuracy too far.

The applications to νββ0  decay have been relatively few 
so far. Rodríguez and Martínez-Pinedo [173] contains the 
first, with the Gogny functional and axial quadrupole moment 
r Y2

20⟨ ⟩ as the generator coordinate. In [120], fluctuations 
in particle number were added as coordinates, leading in a 
modest enhancement of the matrix elements from the richer 
pairing correlations. References [118, 174] used the axial 
quadrupole moment as a coordinate in conjunction with a 
relativistic functional, and [119] added octupole deformation 
in the decay of the rare-earth nucleus 150Nd. The most obvious 
feature of all these results is that the νββ0  matrix elements are 
larger than those of the shell model, and usually larger than 
those of the QRPA as well. The reason seems to be missing 
correlations in the GCM ansatz. At first these were thought to 

be non-collective [175], but recent work [176] strongly sug-
gests that most of them come from the isoscalar pairing that 
we encountered when discussing the QRPA in section  3.2. 
Quite recently, [177] included the isoscalar pairing amplitude 
as a generator coordinate together with a Hamiltonian in one 
or two oscillator shells rather than an EDF. That coordinate 
allows the GCM to reproduce shell-model results quite well. 
The Hamiltonian-based GCM can easily be extended to larger 
spaces, and we discuss plans to do so in section 3.6.

3.4. The interacting Boson model

The strength of the shell model is the inclusion of all cor-
relations around the Fermi surface and that of the GCM is 
a careful treatment of collective motion. The IBM aims to 
share both these strengths and describes excitation spectra 
and electro magnetic transitions among collective states up 
to heavy nuclei [178]. The cost, perhaps, is more abstract 
degrees of freedom than nucleons and a more phenomeno-
logical approach to nuclear structure.

The IBM leverages the algebra of boson creation and 
annihilation operators to provide simple Hamiltonians that 
generate complex and realistic collective spectra. In its 
original form (IBM-1) [179], the degrees of freedom are N  
bosons (where N  is usually half the number of nucleons in 
the  shell-model configuration space), each of which can be 
in six positive parity states: an  angular-momentum-zero 
state (in which case the boson is labeled ‘s’) and five 
 angular-momentum-two states (in which case it is labeled ‘ µd ’,  
with μ the magnetic projection). The Hamiltonian is usually 
a combination of one- and  two-boson scalar operators, of the 
form s s d d s d d d, ,0 2 2 0( ˜) ([ ˜] [ ˜] )† † † † , etc, where ≡ −µ

µ
µ−d d1˜ ( )  

and the superscripts denote the angular momentum to which 
the operators inside the corresponding parentheses or square 
brackets are coupled. In the IBM-2 [178], which is used to 
study ββ decay, there are separate s and d boson states for 
neutrons and protons.

The IBM is appealing because it has clear connections to 
both the shell model and the collective model of Bohr and 
Mottelson [180]. On the one hand, the bosons represent 
nucleon pairs and on the other quadrupole phonons. Because 
the first correspondence is hard to make precise, Hamiltonians 
and effective operators are usually determined by fits to data 
rather than by mappings from the shell model [181]. There are 
no data on νββ0  matrix elements, however, and the associated 
operators therefore must be derived from the shell model, at 
least approximately. The mapping for doing so is described 
in [182]. It is approximate because it involves only two- and 
four-nucleon states (which are mapped to one- and two-boson 
states) and a schematic surface-delta shell-model interac-
tion that is inconsistent with the phenomenological boson 
interaction.

The νββ0  matrix elements produced by the IBM gener-
ally lie between those of the EDF/GCM and those of the shell 
model, and for several isotopes are close to the QRPA values. 
This result is perhaps surprising because the IBM is supposed 
to be a collective approximation to the shell-model in one 
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harmonic oscillator shell. The behavior may be connected to 
the truncation of the set of all possible bosons to a single set of 
like-particle s and d objects, but that is just a guess; the subject 
needs to be investigated more thoroughly.

3.5. Other approaches

We will do little more than mention a couple of other methods 
that have been used to calculate ββ matrix elements. Neither 
gives results that are startlingly different from those of other 
more modern and sophisticated approaches.

References [183–186] describe calculations with projected 
HFB states in a valence space of between one and two shells, 
with a schematic pairing plus quadrupole Hamiltonian. The 
method itself is a simpler version of the GCM, which diago-
nalizes Hamiltonians in a space built from many projected 
HFB states.

References [187, 188] describe calculations in the pseudo-
SU(3) model of the νββ0  matrix elements for 150Nd, for 
the very heavy nucleus 238U, and for a few other deformed 
isotopes. The model takes advantage of a dynamical sym-
metry in the deformed Nilsson basis to construct states 
that should be similar to those obtained from number- and 
 angular-momentum-projected HFB calculations of the kind 
discussed in the previous paragraph and in section 3.3.

3.6. Tests and comparisons

Although we have mentioned the strengths and weaknesses 
of the many-body approaches most commonly used to cal-
culate νββ0  matrix elements, it is worth trying to compare 
them more carefully. How important are all the correlations 
included in the shell model but neglected in the QRPA, GCM, 
and IBM? What about the large configuration spaces in which 
the GCM and QRPA work, but which the shell model and 
IBM cannot handle? A few publications address these matters 
and we discuss them here.

References [114, 145, 189] have studied the effects of 
enlarging the configuration space in the shell model. The tenta-
tive conclusion is that allowing up to one or two particles to 
occupy a few selected orbitals beyond the original configura-
tion space can have a strong effect on νββ2  matrix elements (in 
particular if these orbitals are the spin–orbit partners of orbitals 
in the original configuration space [145]), but the effects on 
νββ0  matrix elements are more moderate. The reason is that 

two distinct kinds of correlations compete, as illustrated in fig-
ure 7, taken from [114]. On one hand, pairing-like excitations to 
the additional orbitals enhance the νββ0  matrix elements [189] 
(diagrams (ii)–(iv) in figure 7); on the other hand, particle-hole 
excitations (1p-1h) to the additional orbitals, which in princi-
ple require less energy than pairing-like excitations (2p-2h), 
tend to reduce the matrix elements (diagram (v) in figure 7). 
The net result appears to be a moderate increase, generally by 
less than 50%. A careful calculation of the matrix element for 
48Ca [114] that extended the configuration space from four 
to seven single-particle orbitals found about a 30% enhance-
ment. That agrees reasonably well with results of calculations 

that include the effect of extra orbitals perturbatively: a 75% 
increase in the matrix element of 48Ca [190], along with a 20% 
increase in 76Ge, and 30% increase in 82Se [191]. (In pertur-
bation theory configuration spaces even larger than those in 
QRPA and GCM calculations can be included.) Though the 
enhancement is greater in perturbation theory, the final matrix 
elements in [114] and [190] differ by only 20%.

Other publications [108, 133, 192] have reported studies 
of the correlations included in the shell-model but not in the 
QRPA. Nuclear many-body states can be classified by a ‘senior-
ity’ quantum number s that labels the number of nucleons not in 
correlated neutron–neutron and proton–proton =π +J 0  pairs. 
Fully paired s  =  0 states contribute the major part of ββ matrix 
elements [108, 133], a fact that is consistent with the finding that 
the additional pairing (2p-2h-like) correlations from extra orbit-
als enhance the matrix element. The states with broken pairs 
(seniority s  >  0) contribute with opposite sign, shrinking matrix 
elements [108, 133]. An overestimate of pairing correlations, 
i.e. of the s  =  0 component in the nuclear states, thus leads to an 
overestimate of the matrix elements themselves. QRPA correla-
tions in spherical nuclei include states with  seniority s  =  4,  8,  12 
but not those with s  =  6 and 10, and QRPA matrix elements 
could be too large for that reason. Although the contrib utions 
of states with s  =  6 and 10 are relatively small in shell model 
calculations [192, 193] noted that when shell model states are 
forced to have the same seniority structure as QRPA states, the 
resulting shell-model matrix elements grow, implying that the 
shortage of broken pairs in the QRPA makes its matrix ele-
ments too large. On the other hand, [194] observed that when 
the QRPA is applied within the small shell-model configuration 
space (which is not a natural space for the QRPA) the resulting 
matrix elements are similar to those of the shell model, sug-
gesting that the shell-model matrix elements are about 50% too 
small. These issues are still unresolved.

The shell model’s ability to incorporate all correlations 
induced by the nuclear interaction, at least in a small model 

Figure 7. Schematic contributions to shell model matrix elements 
from various parts of configuration space, for neutron (n) and 
proton (p) orbitals. Diagram (i) shows the contributions from 
within the standard shell model configuration space. Diagrams 
(ii)–(iv) illustrate the contributions from 2p-2h excitations beyond 
this space, while diagram (v) shows contributions from 1p-1h 
excitations. Focus is on the pf (standard configuration space) and 
sd (additional single-particle orbitals) shells used to study 48Ca, 
but the competition between diagrams (ii)–(iv) and (v) is general. 
Reprinted figure with permission from [114], Copyright (2016) by 
the American Physical Society.
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space, allows it to benchmark the GCM as well as the QRPA, 
and to tease out the most important kinds of correlations for 
νββ0  decay. Menéndez et al [175] compared shell model and 

EDF/GCM matrix elements for the decay of a wide range 
of calcium, titanium and chromium isotopes. These nuclei 
are not candidates for a νββ0  decay experiment, but their 
decay matrix elements can still be calculated, allowing one 
to perform a systematic study in medium-mass nuclei. The 
calcul ations of [175] were in the full pf shell, a useful test-
bed because it includes all spin–orbit partners in the one-shell 
configuration space, removing one of the shortcomings of the 
shell model in heavier nuclei (see section  3.1). In addition, 
both the shell model and EDF theory with the GCM describe 
the spectra of nuclei in this region quite well [121, 195]. The 
main finding of [175] is that the EDF-based GCM and the 
shell model produce similar matrix elements when spherical 
EDF configurations are kept and shell-model configurations 
are restricted to those with s  =  0. It is only when higher sen-
iority components, which include correlations beyond pairing, 
are permitted that the shell model matrix elements decrease. 
The reduction is much larger than that which can be induced 
by including axial deformation as one of the coordinates in 
the EDF-based GCM. The inclusion of high-seniority states 
in the shell model but not the EDF-based GCM thus explains 
the results in figure 5, where shell model matrix elements are 
always smaller than those produced by EDF theory.

What is the nature of the higher-seniority correlations that 
reduce matrix elements? Quadrupole correlations, induced by 
deformation, can play a role, particularly when the initial and 
final nuclei are deformed by different amounts [173, 197, 198].  
But the QRPA and shell model agree that isoscalar pairing cor-
relations usually play an even more crucial role [155, 156, 176].  
Figure  8, based on work in [176], compares shell-model 
matrix elements with and without isoscalar pairing correla-
tions. Put more precisely, it compares results produced by the 
full shell-model Hamiltonian with those of an approximate 
collective Hamiltonian [128] from which isoscalar pairing can 
be excluded. The collective Hamiltonian reproduces the full 
results nearly perfectly. Without isoscalar pairing, however, 
the collective Hamiltonian greatly overestimates the matrix 
elements, always by about two units.

After noting the importance of isoscalar pairing, [176] 
demonstrated that the correlations missing from the GCM are 
nearly all of that kind. The paper tested a version of the GCM 
that works with Hamiltonians rather than EDFs. This shell-
model based GCM and the shell model itself used the same 
Hamiltonian—the collective approximation—and the same 
configuration space; the shell model was thus the ‘exact’ solu-
tion in the test because it diagonalized the interaction exactly. 
The result, shown in figure  8, was good overall agreement, 
provided the GCM included the isoscalar pairing amplitude as 
one of its generalized coordinates [177]. (Some small differ-
ences remain for decays involving closed shells because these 
isotopes have fewer collective correlations.) That step allowed 
the method to capture isoscalar pairing correlations quite well. 
GCM calculations in larger spaces do not yet include isoscalar 
pairing coordinates, but should be able to in the near future. 
The Hamiltonian-based GCM may thus be able to include both 

the large model spaces of the QRPA and the important shell-
model correlations, without the drawbacks of either method.

Comparing the many-body methods suggests that with 
proper attention, each of them could obtain accurate matrix 
elements, which might well lie somewhere between the 
cur rent predictions of the shell model and those of the  
EDF/GCM and QRPA. We will say more about how to 
improve and benchmark the different methods in the near 
future in section  5. First however, we turn to an issue that 
plagues all calculations in heavy nuclei and vitiates the idea 
that the matrix elements should be in the range spanned by 
current calculations: the over-prediction of single-β and νββ2  
matrix elements, sometimes referred to as the ‘gA problem’.

4. The gA problem

4.1. Systematic over-prediction of single-β and νββ2  matrix 
elements

For nuclei close to stability up to mass number ∼A 60, calcul-
ations reproduce ground state properties, excitation spectra 
and electric moments and transitions well6 [121, 124, 125]. 
They do not do as well with β-decay rates, at least not without 
a tweak. Figure 9, taken from [139], compares experimental 
Gamow–Teller strengths—summed over certain low-lying 
states and scaled as described in that reference—for nuclei 

Figure 8. Gamow–Teller part ( νMGT
0 ) of the nuclear matrix elements 

for the decay of titanium (top) and chromium (bottom) isotopes as 
a function of neutron number. Shell model results obtained with 
the KB3G shell model interaction [196] (black, solid lines) are 
compared with those produced by a collective Hamiltonian, Hcoll., 
(blue, solid lines) and with GCM matrix elements produced by the 
same collective Hamiltonian, with the isoscalar-pairing amplitude 
as a generalized coordinate (red, dashed lines). Shell model results 
produced by the collective Hamiltonian without isoscalar (T  =  0) 
pairing are also shown (purple dash-dotted lines). Reprinted figure 
with permission from [176], Copyright (2016) by the American 
Physical Society.

6 The moments and transitions require effective charges that one can obtain 
by treating collective states outside the configuration space in perturbation 
theory [128].
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with mass number A between about 40 and 50 versus the 
theoretical predictions. The calculated strengths are gener-
ally larger than the data, but if the Gamow–Teller operator 
στ is multiplied by 0.74 or, equivalently, if the axial coupling 

�g 1.27A  is replaced by an effective value =g g0.74A A
eff , then 

the calculations reproduce most of the experimental data quite 

well. A similar phenomenological correction, =g g0.82A A
eff , 

brings predictions into agreement with data for nuclei with A 
less than 16 [137]. For A between about 16 and 40, a value of 
=g g0.77A A

eff  [199] works well, and a slightly larger phenom-
enological correction =g g0.68A A

eff  is preferred for A between 
60 and 80 [200]. That such a simple renormalization can 
largely eliminate a theoretical problem is a remarkable fact 
that has resisted attempts at explanation for several decades 
[146, 201–205].

The problem is not confined to β decay or even electroweak 
operators. The total Gamow–Teller integrated strength is gov-
erned by the Ikeda sum rule [206]:

∑ − = −− +S S N Z3 ,GT GT ( ) (20)

where ∓SGT is the total Gamow–Teller strength from the στ+ 
(neutron to proton) or στ− (proton to neutron) operators, 
summed over all energies, and N and Z are the initial nucle-
us’s neutron and proton numbers. The sum rule is a simple 
consequence of commutation relations and must hold to the 
extent that neutrons and protons (as opposed, e.g. to ∆-isobar 
excitations) are the only important nuclear degree of freedom. 
The summed strength can be extracted from charge-exchange 
experiments in which, for example, a proton is absorbed and a 
neutron is emitted, or a 3He ion is absorbed and a triton emit-
ted. The weak interaction plays no part in these reactions but 
they nevertheless measure Gamow–Teller strength because the 
cross-section at forward angles is determined by the transition 
matrix elements of the στ± operators [207–209]. Experiments 
that can determine the sum −SGT of strength below about 50 
MeV report considerably less than 3(N  −  Z ), typically about 
half that much [207]. ( +SGT is much smaller because stable 

nuclei usually have more neutrons than protons and proton-
to-neutron transitions are thus Pauli blocked.) That amount 
would correspond to a ‘quenching’ of the στ+ operator that is 
similar to what is needed for single-β decay.

The agreement is strange. One experiment examines 
weak decay and the other tests nothing but the strong inter-
action. In one experiment, nature disagrees with complicated 
 many-body calculations and in the other with a simple con-
sistency requirement (though measured strength distributions 
are also smaller than calculations at low energies, demand-
ing a quenching that is consistent with that used for β-decay  
[210–213]). Some charge-exchange experiments [214, 215] 
suggest that both discrepancies are due to στ+ strength that 
spreads out above the Gamow–Teller resonance, up to 50 
MeV or more of excitation energy. There is still no consen-
sus about the suggestion, however, mainly because it is hard 
to distinguish spin-isospin strength from background at high 
energies [207, 209].

Given this comprehensive quenching of Gamow–Teller 
strength, it is not surprising that the ‘gA problem’ also afflicts 
calculations of νββ2  matrix elements. Figure 10, taken from 

[109], shows the values of gA
eff required to reproduce meas-

ured νββ2  matrix elements for a selection of shell-model and 
IBM calculations (the latter of which are in the not-always-
reliable νββ2 -decay closure approximation.) In both models 

gA
eff decreases with mass, approaching half of gA or less in 

the heavier nuclei. Although other sets of shell-model calcul-
ations show milder and less mass-dependent quenching [82, 
134, 144] and the mass dependence might be due to the fix-
able omission of spin–orbit partners [144, 145], the main 
message of figure 10 is undeniable and its implication stark. 
νββ2  decay rates, which are proportional to the fourth power 

of gA
eff, are much smaller than shell-model and IBM predic-

tions7. If νββ0  decay rates, to which the main contribution is 
MGT in equation (10), are smaller than predictions by a similar 
amount, next generation experiments will be significantly less 

Figure 9. Experimental versus theoretical strengths for a compilation 
of Gamow–Teller transitions in nuclei with mass number between 
about 40 and 50. The dashed line is a fit of the theoretical results to 
data, and suggests that the effective value of gA

eff of the axial-vector 
coupling is g0.74 A. Reprinted figure with permission from [139], 
Copyright (1996) by the American Physical Society.

Figure 10. Value of the effective strength of the στ+ operator, gA
eff, 

required for shell model (ISM) and IBM calculations to reproduce 
the experimental matrix elements for several νββ2  transitions, which 
are ordered by mass number. Reprinted figure with permission from 
[109], Copyright (2015) by the American Physical Society.

7 As we discussed earlier, the QRPA fits the strength of isoscalar pairing so 
as to reproduce νββ2  decay rates.
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sensitive than we currently expect; they will not be able to 
rule out the inverted hierarchy with a ton of material. Is νββ0  
decay really that quenched?

The answer depends on the source of the quenching, which 
is still unknown. We discuss possibilities and their implica-
tions next.

4.2. Possible causes and implications for neutrinoless 
double-beta decay

Over the years, theorists have suggested a wide range of sources 
for the quenching of Gamow–Teller strength. Almost all, in 
modern language, fall into one of two classes: nuclear many-
body correlations that escape calculations [146, 202–204],  
and many-nucleon weak currents [146, 205]. The former 
include short-range correlations, multi-phonon states, parti-
cle-hole excitations outside shell-model configuration spaces, 
etc. The latter stand for non-nucleonic degrees of freedom, i.e. 
∆-isobar excitations, in-medium modification of pion physics, 
partial restoration of chiral symmetry, etc. The consequences 
for νββ0  decay depend on which of these two complementary 
sources is mostly responsible for the renormalization of the 
στ operator.

The reason that the relative quenching of νββ2  and νββ0  
matrix elements can depend on the source is that there are 
marked differences between the two processes, even though 
both involve two virtual single-β decays. The virtual neutrino 
that is emitted and reabsorbed in νββ0  decay makes the aver-
age momentum transfer from nucleons to leptons at each ver-
tex much higher than in νββ2  decay. If the neutrinos actually 
emerge from the decay, the momentum and energy transfer 
are constrained by the Q-value of the transition, which is on 
the order of 1 MeV. If only electrons are emitted, however, the 
average momentum is about 100 MeV, a scale set by the aver-
age distance between the two decaying neutrons. Figure 11 
presents the contribution of different momentum transfers q 
to the nuclear matrix element produced by the shell model 
and QRPA, for the representative mother nucleus 136Xe. The 
momentum-transfer distribution is similar in the two calcul-
ations. Although the QRPA distribution is shifted to higher 
q, probably because of the larger configuration space, it falls 
off slowly in both cases so that several hundred MeV are 
transferred with reasonable probability. The higher momen-
tum transfer means that the first virtual β− transition in νββ0  
decay can excite virtual intermediate nuclear states with all 
spins and parities, not just the 0+ or 1+ intermediate states 
that contribute to νββ2  decay. If the spin-isospin renormaliza-
tion depends on the momentum transfer or multipolarity of the 
intermediate states, the large quenching needed to correctly 
predict single-β Gamow–Teller and νββ2  decay rates may not 
be needed for νββ0  decay. Although experimentalists are try-
ing to test the momentum-transfer and multipolarity depend-
ence of quenching [216], the experiments are difficult and the 
existing data inconclusive.

In the search for the cause of quenching, complex correla-
tions that calculations do not capture have long been a sus-
pect. Bertsch and Hamamoto [202] proposed in 1982 that two 
particle-two hole excitations to orbitals outside shell-model 

configuration spaces or beyond QRPA correlations shift the 
Gamow–Teller strength to high energies. (The Ikeda sum rule 
requirement means that strength does not appear or disap-
pear, but rather moves.) Nuclear-structure models miss this 
effect and therefore need to quench the low-energy strength. 
The authors of [146, 203] made a similar argument, and [147] 
proposed that about two thirds of the spin-isospin quenching 
comes from missing particle-hole configurations. The authors 
of [204] argued slightly differently, suggesting that because 
στ operates at all inter-nucleonic distances, its matrix ele-
ments should be affected not only by the long-range (low-
energy) correlations included e.g. in shell-model states, but 
also by short-range (high-energy) correlations, which are not 
included. They went on to argue that shell-model Gamow–
Teller strength should be quenched consistently with the 
roughly 30% depletion of single-particle occupancies needed 
to reproduce electron scattering data [219] because both kinds 
of quenching reflect the same inability of the shell model to 
include short-range correlations.

More recently, two studies have tried to use many-body 
perturbation theory [149] to quantify the effect of missing cor-
relations on the στ operator in the shell model. Siiskonen et al 
[220] reported a 20% reduction of Gamow–Teller strength for 
nuclei whose valence nucleons are in the sd and pf shells; 
the result agrees well with phenomenological fits to exper-
imental strength. In heavier systems the authors found a much 
stronger reduction, as large as a 60% in 100Sn; that resut is 
in reasonable agreement with the trend shown in figure  10. 
The degree of renormalization varies by only a few percent up 
to momentum transfers of about 100 MeV, suggesting similar 
quenching of νββ2  and νββ0  matrix elements. Holt and Engel 
[191] studied ββ decay within a similar perturbative frame-
work. While the method required the closure approximation 
and so could say relatively little about νββ2  decay, it pro-
duced about a 20% enhancement of the νββ0  matrix element 
in 76Ge and a 30% enhancement in 82Se. These results agree 
with the tendency of the shell model to increase νββ0  matrix 
elements when configuration spaces are enlarged slightly  

Figure 11. Normalized momentum transfer distribution of the 
Gamow–Teller part of the nuclear matrix element of 136Xe. The 
solid curves are with one-body currents only, in the shell model 
(blue) and QRPA (red). The shaded area includes two-body 
contributions in the shell model. Data are from [217] (shell model) 
and [218] (QRPA).
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[114, 189], and argue against any suppression of νββ0  decay. 
Once more, however, the argument is not conclusive: First-
order one particle-one hole excitations strongly suppress the 
matrix element and it just so happens that higher-order terms 
tend to counteract the suppression. But it is not at all clear 
whether or how fast the perturbative expansion converges, and 
neglected terms could have large effects.

Non-nucleonic degrees of freedom, manifested as many-
nucleon currents in models without explicit ∆-isobars and 
pions, are also a long-term suspect in the search to explain 
quenching (see e.g. [146] and references therein). Brown 
and Wildenthal [147] concluded that only about one third of 
the phenomenological quenching is due to meson-exchange 
currents, most of which involved the ∆-isobar. The currents 
in use at the time were based on models with no systematic 
power counting, however, and so the uncertainty in the result 
is very large. The situation has improved with the advent of 
χEFT, which relates electroweak currents to nuclear interac-
tions [221–223]. Several studies have exploited the relation in 
nuclei with �A 10, and it is now clear that the two-nucleon cur-
rents are necessary in precise calculations of weak [224–227]  
and electromagnetic [228, 229] transition rates. The effects 
in these nuclei range from a few percent to about 40% and 
depend significantly on nuclear structure.

Menéndez et  al [217] applied many-nucleon currents, 
shown in figure 12, to the single-β and ββ decay of medium-
mass nuclei. The authors reduced the two-body current 
operators to effective one-body operators by normal order-
ing with respect to a spin–isospin-symmetric Fermi-gas ref-
erence state. They found that the single-β and νββ2  matrix 
elements were reduced by an amount corresponding to 

∼ −g g0.7 0.8A A
eff ( ) . Most of the quenching comes from the 

long-range one-pion-exchange current (depicted in the left-
hand diagram in figure 12), which includes contributions from 
the ∆-isobar. Uncertainty in the χEFT couplings that appear 
in the two-nucleon currents, especially in the coefficient of the 
contact term (depicted in the right-hand diagram in figure 12), 
leads to a significant uncertainty in the quenching, and even 
allows a slight enhancement.

Interestingly, the corresponding reduction in νββ0  matrix 
elements turned out to be about 30% [217] as well, much less 
than one would get by squaring the renormalization factor 
from single-β decay, as one does to get the quenching of νββ2  
matrix elements. Later corrections to the currents [230, 231]  
did not change this fact. The two-body currents have a smaller 

effect at high momentum transfer, softening the quenching of 
νββ0  matrix elements. QRPA calculations that used the same 

currents obtained even less quenching (about 20% [218]) 
partly because the average momentum transfer is slightly 
higher in QRPA calculations and partly because the coeffi-
cient of the isoscalar pairing interaction was readjusted after 
adding the two-body currents to ensure that νββ2  matrix 
elements were still correctly reproduced. In any case, these 
studies suggest that whatever renormalization is due to many-
nucleon currents will be milder in νββ0  decay than in single-β 
and νββ2  decay.

The smaller quenching at momentum transfers near the pion 
mass is consistent with the studies of muon capture, where 
the evidence for Gamow–Teller quenching is weaker than in 
β decay [232]. Exclusive charged-current electron-neutrino 
scattering from 12C to the ground state of 12N also shows little 
evidence of quenching, at momentum transfer even smaller 
than the pion mass [233–235]. The inclusive cross-section, for 
which additional multipoles are relevant, is harder to calculate 
and shell model calculations disagree with one another by a 
factor of about two [233–235]. Improved calculations, using 
ab initio methods such as those initiated in [236, 237], are 
clearly needed. Further measurements, preferably in targets 
that complement 12C, would also provide valuable informa-
tion about quenching at non-zero momentum transfer.

Recently, [238] included two-nucleon currents in coupled-
cluster calculations of single-β decay. The authors normal-
ordered the operator with respect to a Hartree–Fock reference 
state rather than the simpler Fermi gas of [217]. Focusing on 
carbon and oxygen isotopes, they found that the two-nucleon 
currents reduce the strength of the στ operator by about 
10%. Though this result suggests a very small quenching of 
νββ0  matrix elements, the potentially coherent contribution 

of the nuclear core could make many-body currents more 
effective in the much heavier nuclei that will be used in ββ 
decay experiments. The normal ordering approximation that 
makes the coherence apparent should be carefully explored, 
however.

The discussion in this section should make it clear just how 
important it is to characterize and untangle the sources of the gA 
problem. If they lie mainly in complicated many-body effects, 
the νββ0  matrix elements may be significantly too large (though 
that conclusion is not uniformly supported by theoretical work 
in perturbation theory). On the other hand, if the problem is 
mostly due to many-nucleon currents, then our matrix elements 
are probably too large by a factor of less than two.

To determine which of the contributions is more impor-
tant and plumb the consequences for νββ0  decay, we need 
calcul ations that treat many-body correlations in a compre-
hensive way and include many-nucleon currents consist-
ently. It should be possible to do all this in the next five or so 
years, and we discuss how in the next section. We raise just 
one more consideration now. As suggested by the discussion 
of electron-scattering strengths just above, we may be able 
to learn about the source of στ quenching by studying other 
electroweak processes, for instance magnetic moments and 
transitions. The operators for these observables also need phe-
nomenological renormalization to agree with experimental 

Figure 12. Diagrams for the χEFT two-nucleon currents most 
important for β-decay.
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data [146–148]. The missing many-body effects are expected 
to be similar to those in β decay because they emerge from 
the same nuclear states and similar non-relativistic operators 
(σ and στ z versus στ±). The many-nucleon corrections to the 
current operators can be quite different, however, because the 
photon has no axial-vector coupling.

5. Improving matrix element calculations in the 
next few years

5.1. General ideas

We have seen that the important νββ0  matrix elements still 
carry significant theoretical uncertainty. We believe, however, 
that recent developments in the shell model, QRPA, GCM, 
and especially in ab initio nuclear structure methods and 
χEFT will finally allow the community of nuclear theorists to 
produce more accurate matrix elements with real estimates of 
uncertainty. The approach to that task will have at least three 
prongs:

 • the improvement of current methods, in particular to 
accommodate all the collective correlations we know to 
be important,

 • the development and application of ab initio methods to 
the initial and final ββ-decay nuclei,

 • a systematic assessment of theoretical uncertainty.

In what follows we address each of these in turn.

5.2. Improving present models

5.2.1. Extending shell model configuration spaces. The main 
limitation of the shell model is that it is restricted to small con-
figuration spaces. We have already mentioned that the effects 
of the neglected single-particle orbitals can be estimated per-
turbatively [190, 191], and that calculations in two oscillator 
shells are now becoming feasible [114]. To add more than a 
few single-particle levels in a nonperturbative way, however, 
requires new ideas.

One way to mitigate the shell model’s shortcomings is to 
discard many-body configurations that have little effect on the 
observables one is interested in. The most established approach 
for doing this is the Monte Carlo shell model (MCSM) [239], 
which uses statistical sampling to select deformed Slater deter-
minants and then projection to restore  angular-momentum 
symmetry. More recent work uses importance truncation 
[240] or the density-matrix renormalization group [241], 
though not yet in a systematic way. These schemes allow con-
figuration spaces with dimensions several orders of magnitude 
larger than those that can be handled with exact diagonaliza-
tion. MCSM calculations can now work with configuration 
spaces of dimension 1023 [242], while exact diagonalization 
currently requires a space of dimension 1011 or less. The 
MCSM number is large enough to allow the extension of shell 
model configuration spaces so that they include all spin–orbit 
partners in ββ-decaying nuclei and all single-particle orbitals 
found relevant in QRPA or EDF calculations [243, 244]. The 
Monte Carlo approach could also facilitate ab initio no-core 

shell model calculations [245], which are currently limited to 
nuclei with less than about 20 nucleons [246, 247], in isotopes 
closer to those used in ββ-decay experiments. Calculations in 
light nuclei are useful for other reasons as well, and we dis-
cuss them further in section 5.3.

Extended shell-model spaces will require suitable nuclear 
interactions. The phenomenological modification of Heff that 
accurate calculations usually require makes it difficult to obtain 
reliable effective interactions in larger configuration spaces; 
the number of two-body matrix elements to be constrained 
phenomenologically increases with the size of the space. 
The situation would be better if we could dispense with the 
adjustment, the need for which may be due to the absence of 
three-nucleon forces in the original interaction [248]. Recent 
promising work [249–253] avoids any phenomenological tun-
ing by using χEFT two- and three-body interactions as a start-
ing point to generate Heff. These ab initio interactions allow 
a better assessment of uncertainty and appear to be usable in 
larger configuration spaces. One can obtain trans ition opera-
tors the same way. We discuss the use of χEFT and nonpertur-
bative many-body methods to create shell model interactions 
and operators in section 5.3.2.

5.2.2. Adding correlations to the EDF and the IBM. The EDF 
matrix elements, as we noted in section 3.3, are almost uni-
versally larger than matrix elements calculated in any other 
approach. The reason, as discussed in [175, 176], is missing 
correlations, particularly isoscalar pairing correlations. It is 
actually not hard to add proton–neutron pairing to the GCM; 
[177] did precisely that within a two-shell calculation that used 
a multi-separable interaction. There is no reason that the same 
physics cannot be added to EDF-based GCM. The main ingre-
dient is a set of HFB calculations that allow proton–neutron 
mixing, i.e. quasiparticles that are a combination of a neutron 
and a proton as well as a particle and a hole. Computer codes 
to do these calculations are nearly complete [254]. Problems 
with the EDF-based GGM, as noted earlier, arise only when 
one tries to superpose the projected HFB quasiparticle vacua. 
Here, with a few limited exceptions, one needs a Hamiltonian 
rather than a functional. That does not mean, however, that 
EDF theory can play no role. One might, for example, use the 
EDF-based HFB, with proton–neutron pairing, simply to gen-
erate the projected HFB vacua. These states can be constructed 
so that they include all possible collective correlations, and in 
particular all correlations relevant to ββ decay. One then can 
use them to form a basis in which to diagonalize a real Hamil-
tonian such as that produced by χEFT rather than the original 
density functional. Functionals were designed to work well in 
mean-field calculations and thus should produce a good cor-
related basis with contrib utions from many more single-par-
ticle states than are in the shell model. The Hamiltonian will 
then determine how these states are mixed. The result should 
combine many of the virtues of shell-model calcul ations with 
those of current EDF and QRPA calculations.

Even so, some correlations, e.g. those from high relative 
momentum, may still be absent from EDF-based approaches. 
Within the shell model, as we discuss in section  5.3.2, one 
can construct an effective Hamiltonian and a consistent νββ0  
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decay operator that captures such effects. It has not been as 
clear how to do that with EDF or QRPA-based calculations, in 
which the full many-body Hilbert space does not cleanly sepa-
rate into included and neglected pieces. Recently, however, 
techniques to add missing correlations to approximate state 
vectors such as those produced by the GCM have nonetheless 
been developed; we discuss them in section 5.3.3.

Finally, the IBM-2 νββ0  decay calculations done so far, 
like those in EDF theory, have no explicit proton–neutron pair 
degrees of freedom. Bosons that represent isoscalar pairs can 
certainly be added—a boson model with both isovector and 
isoscalar proton–neutron pairs is known as IBM-4—and work 
is in progress to see the effects on ββ decay [255]. While it is 
not obvious that these effects will be large, the new pairs may 
bring the IBM matrix elements closer to those of the shell 
model. The IBM-2, however, already includes bosons that 
represent like-particle monopole and quadrupole pairs. The 
coupling of two spin-1 isoscalar pairs to total angular momen-
tum zero can be represented as a combination of two like-
particle J  =  0 or J  =  2 pairs, and these are exactly the degrees 
of freedom the usual IBM-2 bosons represent. It may be, then, 
that present IBM results capture most of the effects of isos-
calar pairing without explicit isoscalar bosons. On the other 
hand, some facts indicate that isoscalar pairing effects are still 
missing. Figure  13, which is typical of shell model results, 
shows that almost the entire matrix element arises from the 
decay of like-particle J  =  0 pairs or J  =  2 pairs, with a sizable 
cancellation between these two contributions. In the IBM-2, 
by contrast, the d-boson contribution is much smaller than that 
of the s boson, so that there is very little cancellation [182]. 
The dominance of J  =  0 pairs is much like what one obtains in 
the shell model when isoscalar pairing is omitted [176].

5.2.3. Higher QRPA and the overlap problem. The QRPA can 
also be improved. It is currently limited by the simplicity of its 
correlations, which can be represented as one-boson states; the 
bosons are simplified versions of correlated quasiparticle pairs. 

Without many-boson states, the Pauli principle is violated and 
the transition strength to intermediate states overly concentrated. 
Accuracy requires that the many-boson states be included.

Many studies advance one scheme or another for doing 
that. The second QRPA and the quasiparticle time-blocking 
approximation (QTBA) are two representative examples. The 
second QRPA systematically adds all four-quasiparticle exci-
tations to the two-quasiparticle excitations that enter the usual 
QRPA. Outside of preliminary investigations in [256, 257], 
however, it has not been systematically developed. Second 
RPA, without quasiparticles, is further along, both in an ab inito 
form [258] and in conjunction with EDF theory [259, 260].  
Though these schemes are computationally intensive, their 
quasiparticle versions should not be completely intractable 
and may be both accurate and flexible enough to allow ab ini-
tio calculations.

The QTBA is a Green’s-function approach to linear 
response that supplements the iterated ring and ladder dia-
grams that are equivalent to the QRPA with a subset of dia-
grams that contain the emission and re-absorption of QRPA 
phonons by quasiparticles and the exchange of phonons 
between quasiparticles [261]. When used in conjunction with 
a relativistic EDF, the QTBA appears to significantly improve 
predictions of single-β decay strength functions [262]. This 
method has the potential to significantly reduce the important 
physics omitted by the QRPA.

Any RPA-like method designed to calculate linear response 
faces a problem when applied to ββ decay, however. As men-
tioned in section  3.2, ββ matrix elements involve separate 
transition matrix elements to each intermediate-nucleus state 
from the initial and the final ground states. These two contrib-
utions must be multiplied and then summed over all interme-
diate states. But the two QRPA ground states are unrelated, 
so there is no way to match intermediate states produced by 
the excitation of one nucleus with those from the excitation of 
the other. Intermediate-state energies are different in the two 
cases, and the QRPA provides only transition densities, not 
full wave functions. Thus even attempts to compute the over-
lap of two different sets of intermediate-state wave functions 
must rely on prescriptions.

The only way to solve this problem, at least partially, is 
to extend the QRPA so that it does provide wave functions. 
One solution is to use wave functions from the simpler quasi-
Tamm Dancoff approximation. Another track, taken by [263] 
and [264], is to represent the ground states of the initial and 
final nuclei by quasiparticle coupled-cluster wave functions of 
the schematic form

∑ α α α α|Ψ ∝
ν

ν νY Xexp 0 ,
abcd

ab cd a b c d
,

( )〉 [ / ] 〉† † † †
 (21)

where the νX ’s and νY ’s are the usual QRPA amplitudes for 
the νth excited state, †αi  creates a quasiparticle in state i, and 

〉0  is the quasiparticle vacuum. This form is a natural exten-
sion of the quasi-boson wave function that the QRPA does 
provide when pairs of fermionic operators are replaced by 
bosonic operators (with respect to a particular vacuum). The 
quality of the approximate wave function in equation (21) is 
not yet known, however. In any event, every extension of the 

Figure 13. Contributions of the decay of nucleon–nucleon (or 
proton–proton) pairs with given angular momentum and parity to 
the Gamow–Teller νββ0  decay matrix element MGT for the 82Se 
transition. Reprinted figure with permission from [133], Copyright 
(2008) by the American Physical Society.
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QRPA must face this issue. The method is a small-oscillations 
approximation, and the initial and final nuclei in ββ decay are 
often quite different in structure, so they cannot both be only a 
little different from states in the intermediate nucleus.

5.3. Ab initio approaches

5.3.1. Kinds of ab initio calculations. The term ab initio, lit-
erally ‘from the beginning’, is a little vague in the nuclear-
physics context. A truly first-principles calculation of nuclei 
involves solving the underlying theory, quantum chromody-
namics (QCD), with quark and gluon degrees of freedom. The 
ambitious framework for doing so is lattice QCD [265–267]. 
In spite of rapid progress, only the lightest nuclei with two, 
three and four nucleons have been studied thus far, and even 
these are treated with significant approximations, e.g. at 
larger-than-realistic values for the pion mass. We will not see 
QCD calculations of the structure of medium-mass and heavy 
nuclei for some time. Nevertheless, lattice QCD is valuable 
for the νββ0  decay program. It can connect the parameters in 
the χEFT diagrams discussed in section 2.2.2 with the under-
lying fundamental beyond-standard-model physics, for exam-
ple [95]. More generally, it provides a way of determining all 
χEFT parameters, which are often poorly constrained by data. 
Though doing so is computationally demanding and computed 
parameters are not accurate enough at present [265, 266, 268], 
researchers are working to improve their calculations.

In nuclear structure the term ab initio usually refers to calcul-
ations that (1) take nucleons—all of them—as the degrees of 
freedom, and (2) use nuclear interactions and currents obtained 
from fits to nucleon-nucleon scattering data and properties of 
the lightest nuclei: the deuteron and isotopes of hydrogen and 
helium with 3 or 4 nucleons, and as few (slightly) heavier 
nuclei as possible. These fits can proceed through a meson-
exchange phenomenology that describes the elastic channel of 
nucleon-nucleon scattering up to and perhaps beyond the pion-
production threshold, leading, e.g. to the ‘Argonne’ potentials 
and other similar interactions [269–271]. Phenomenological 
potentials of this sort work quite well in light nuclei but seem 
to need improvement for use in medium-mass nuclei [272].

The fits that determine nuclear interactions can also be based 
on χEFT [19–21, 28], discussed already in connection with 
heavy-particle exchange (section 2.2.2) and many-nucleon cur-
rents (section 4.2). Here we give a very brief description of its 
use in ab initio nuclear structure. χEFT is an effective theory, 
based on the symmetries of QCD, that provides a perturbative 
framework for interactions and currents. It yields a systematic 
expansion of two- and many-nucleon forces and consistent 
one-, two-, and many-nucleon currents in powers of the param-
eters Λp b/  and Λπm b/ , where p is a typical nucleon momentum 
and Λb is the chiral-symmetry breaking scale defined in sec-
tion 2.2.2. Once the interactions are fixed, an accurate many-
body method is used to calculate nuclear binding energies, radii, 
excitation spectra, electro magnetic transitions, decay rates, and 
other observables, with error estimates inferred from the power 
counting and tests of the many-body method.

χEFT is not without its problems. Though they sometimes 
produce excellent results [24], the most widely-used χEFT 
nuclear interactions frequently predict binding energies that 
are too large and radii that are too small, especially in heavy 
systems [26, 27, 273]. The overbinding can be partly cured 
by fitting the χEFT couplings to properties of nuclei as heavy 
as oxygen [274], even while omitting interactions beyond the 
three-nucleon level (and thus limiting the ability to estimate 
uncertainties). But the theory may still work without that step; 
some interactions that are obtained without it predict satur ation 
properties [275] and agree better with experimental radii than 
others [276]. And fits that include consistent two- and three-
nucleon forces to fourth-order in the chiral expansion are now 
underway [277]. Drischler et al [278] recently presented the 
initial calculations in neutron matter with these interactions.

Ab initio calculations are not yet successful everywhere in 
the isotopic chart, but progress has been impressive. Green 
function Monte Carlo (GFMC) [23] and the no-core shell 
model (NCSM) [246, 247] have extended the scope of ab ini-
tio studies of light nuclei to detailed spectroscopy, reactions, 
and nuclear response. Ab initio work on heavy nuclei has a 
fairly long history; milestones include coupled-clusters (CC) 
calculations in 16O and 40Ca [279–281], the introduction of the 
now essential normal-ordering procedure for treating three-
body interactions [282] and the use of χEFT two- and three-
nucleon interactions together with many-body perturbation 
theory to derive a shell-model effective interaction for oxy-
gen isotopes [249]. The same ideas were later used in heavier 
nuclei [24]. Non-perturbative ab initio methods, including CC 
theory [25], the in-medium similarity renormalization group 
(IMSRG) [26], the self-consistent Green’s function method 
[27], and nuclear lattice simulations [28, 283] have devel-
oped quickly as computers have become more powerful. We 
describe some of them here.

The application of GFMC [23] to nuclear structure was a 
true turning point for the field [284]. The method starts with 
an approximate wave function that includes two and three-
body correlations in all spin and isospin channels and is usu-
ally obtained through a variational Monte Carlo calculation. 
This wave function is then evolved in imaginary time to fil-
ter out spurious components. The procedure, which exploits 
the locality of Argonne two-body and ‘Illinois’ three-body 
interactions, reproduces binding energies with an r.m.s. error 
of 0.36 MeV and the energies of the lowest excited states 
with an r.m.s. error of 0.5 MeV in nuclei up to 12C [23]. The 
approach also works with local versions of χEFT interactions 
[285] and is valuable for the computation of electromagnetic 
and weak response [23, 228, 237]. Unfortunately, computa-
tion time scales exponentially with the number of particles, 
and the method cannot soon be extended to the heavy nuclei 
in ββ decay experiments. Although other forms of quantum 
Monte Carlo, e.g. auxiliary diffusion Monte Carlo, should 
reach heavier systems [272], a treatment of open shell nuclei 
appears to lie at least a few years in the future. The promise 
of quantum Monte Carlo, however, is exceptional. And the 
GFMC can already be used in light nuclei to help diagnose 
the source of the gA quenching we discussed in section 4.
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The NCSM [246, 247], already discussed briefly in sec-
tion 5.2.1, is a shell model in which none of the A nucleons 
are forced to occupy particular single-particle orbitals, and in 
which one can explicitly check the convergence of results as 
the configuration space grows. The space is usually truncated 
so as to keep all configurations with total oscillator excitation 
energy ωNħ  or below (for some N ) compared to the lowest-
energy configuration. The parameter N  ranges from hundreds 
for the deuteron to just a few for nuclei with a valence sd shell. 
Whether any particular N  is sufficient depends on the nuclear 
interaction employed. For that reason, it is helpful to ‘evolve’ 
or ‘soften’ the interaction via the SRG, so that the calculation 
converges in a smaller configuration space (with the drawback 
that the evolution generates many-body interactions). The ini-
tial unevolved interaction can come from a phenomenological 
model or from χEFT.

In general, the NCSM produces energies that are compa-
rable in accuracy to those of the GFMC, but can be extended 
to somewhat heavier nuclei by using importance truncation 
to exclude irrelevant configurations [286]. Unfortunately, as 
with the GFMC, computation time scales exponentially with 
the number of particles and an extension to the medium mass 
ββ-decaying nuclei will be difficult. NCSM calculations will 
still be useful in ββ decay research, however. In addition to 
investigating gA in single-β decay [287], they allow tests of 
schemes to generate effective operators for the usual shell 
model (with a core) [60].

The ab initio methods that will soon be able to be applied 
in heavier nuclei generally have the benefit of being explic-
itly ‘size extensive’. That term refers to the correct (roughly 
linear) scaling of binding energy with the mass number A at 
any level of truncation. The computation time for these meth-
ods, which include CC, the IMSRG, and the self-consistent 
Green’s function approach, is a polynomial in A rather than an 
exponential. A basic CC calculation, for example, takes a time 
that is proportional to A4.

The starting point for CC theory [25] is an exponential 
ansatz for the ground state |Ψ0⟩ of a closed-shell even–even 
nucleus:

ϕ|Ψ = |e ,T
0 0⟩ ⟩ (22)

where ϕ| ⟩ is a Slater determinant and
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with the indices a,b denoting particle orbitals (above the 
Fermi surface) and i,j hole orbitals (below the Fermi surface). 
The t parameters are amplitudes determined by projecting the 
Schrödinger equation onto one particle-one hole excitations 
(generating an equation for the ti

a), two particle-two hole exci-

tations (generating one for the Tij
ab), etc. If the operator T is 

truncated at that point, the method is called CC-SD, where SD 
stands for ‘singles and doubles’, and if it is continued to the 
next order it is called CC-SDT, where T stands for ‘triples’. 
Still higher-order terms, involving four-particle clusters, are 
rarely considered. CC theory has been applied to closed-
shell nuclei as heavy as 132Sn [273] and to compute not only 

energies but also charge and matter radii, single-β decay rates, 
etc [238, 276, 288].

To calculate ββ decay elements in a closed shell nucleus 
such as 48Ca, one needs, in addition to the ground-state |Ψ0⟩ 
of that nucleus, the ground state |Ψ′0⟩ of the final nucleus 48Ti, 
which has both valence protons and neutrons. There one uses 
the ‘equations-of-motion’ method [25]. The ground state of 
the final nucleus is represented as |Ψ = |Ψ′ R0 0⟩ ⟩, where
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The operator R creates two particle-two hole excitations, 
three particle-three hole, excitations, etc of the CC 48Ca 
ground state. Equations  for the corresponding r amplitudes, 
like those for the t amplitudes, follow from projection of the 
Schrödinger equation. The application of CC theory in mid-
shell nuclei requires a more elaborate construct, which we dis-
cuss in section 5.3.2.

The IMSRG [26] is a set of flow equations  for a unitary 
transformation that in the asymptotic limit decouples some 
pre-selected subspace of states from the rest. In its simplest 
version, the flow equations for the Hamiltonian take the form

η= ∞ =
s

H s s H s H H
d

d
, , eff( ) [ ( ) ( )] ( ) (24)

with s the flow parameter and the ‘generator’ η s( ) given by

η =s H s H s, .d od( ) [ ( ) ( )] (25)

Here, Hd, (where d stands for diagonal, though its meaning 
can be more general) is the part of the Hamiltonian that does 
not couple the space one is interested in to the rest, and Hod 
is the part that does. It is not hard to show that as the flow 
progresses, Hod is driven to zero. In a closed-shell nucleus, 
if one chooses to decouple a reasonable zeroth-order approx-
imation to the ground state—e.g. a Hartree–Fock Slater 
determinant—one ends up with a Hamiltonian = ∞H s( ) for 
which that approximation is the exact ground state. Because 
the evo lution equation is unitary, the eigenvalue is the ground-
state energy. A consistent flow equation governs the evolution 
of transition operators other than the Hamiltonian.

Application of the method in practice is more complicated 
than this simple description indicates, in a number of ways. 
First, the flow equations generate three-body interactions, four-
body interactions, etc, (as in any SRG flow) even if the initial 
Hamiltonian has only one- and two-body terms. In practice, 
the equations  are usually truncated to include only normal-
ordered one- and two-body pieces. But the normal-ordering, 
carried out with respect to the initial Slater determinant in 
the example above, incorporates the most important effects 
of higher-body terms, just as it includes the most important 
pieces of the two-body interaction in a Hartree–Fock single-
particle Hamiltonian. Second, the flow equations  above are 
stiff, and solutions hard to obtain. Other forms for the gen-
erator η are better behaved and still drive Hod to zero. Also, 
the evolution of transition operators is easiest with a single 
set of equations  for the unitary transformation that does the 
decoupling rather than a separate set for every operator [289]. 
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Finally, in open-shell systems a Slater determinant is not a 
good zeroth-order approximation to the exact ground state and 
the method fails.

The approach described here has been used to calculate 
energies, charge radii, and matter radii in nuclei that range 
from the lightest to nickel isotopes [26, 290]. In sections 5.3.2 
and 5.3.3 we describe ways the method can be extended.

5.3.2. Effective operators for the shell model from ab initio 
calculations. The computation times for CC theory and the 
IMSRG both scale in a polynomial way with A, but both meth-
ods need to be modified in such open-shell nuclei as those 
that are used in ββ decay experiments. One approach to these 
nuclei is to use the methods indirectly, to construct effective 
interactions and operators for use in shell-model configuration 
spaces. Then one can simply diagonalize the effective inter-
action Heff and compute the transition matrix element of the 
effective ββ decay operator in exactly the same way as with 
the usual (phenomenological) shell model.

One of the oldest procedures for constructing effective 
operators, and the one that is used in conjunction with CC the-
ory, employs what is known as an Okubo–Lee–Suzuki map-
ping [291–293]. The idea is to do ab initio calculations in the 
closed-shell nucleus—the shell-model ‘core’—in the nucleus 
with one nucleon outside the core, and in the nucleus with two 
nucleons outside the core [294] (the procedure can be con-
tinued, though it gets increasingly complicated). CC theory 
uses the equations-of-motion method in the nuclei with one 
or two nucleons outside the core. With the lowest few states 
in these nuclei computed, one obtains the energy of the shell-
model core from the ground-state energy in the CC closed-
shell calcul ation, and the shell-model single-particle energies 
from the lowest CC energies in the nuclei with one additional 
nucleon. To get the two-body matrix elements that define an 
effective interaction Heff in the dimension-d shell-model con-
figuration space, one projects d CC eigenstates |k⟩ in the nuclei 
with two particles outside the core onto the shell-model space, 
and then orthogonalizes the projected states to get the shell-
model states |k̃⟩. The orthogonalization procedure, sometimes 
called ‘symmetric orthogonalization’ minimizes the quantity

∑ |− | | −|
=

k k k k ,
k

d

1

(⟨ ⟨ ˜ )( ⟩ ˜⟩) (26)

so that the shell-model states are, on average, as close as 
 possible to the original CC sates. With the mapping specified, 
one simply sets the matrix elements of all two-body effective 
operators between the shell model |k̃⟩ parameters to equal those 
of the ‘bare’ operators between the CC |k⟩. The program has 
been carried out in nuclei with a valence sd shell [250, 295].

In the IMSRG, the procedure for obtaining effective shell-
model operators is a little different [26]. The idea is to con-
struct the generator η in equation (25) so that the Hamiltonian 
does not connect states in which the core is filled and the 
‘active’ particles are all in the shell-model configuration space 
to the rest of the Hilbert space. The resulting Hamiltonian 
= ∞H s( ) is the effective shell-model interaction Heff.  

To capture residual three-nucleon interactions among active 
particles (generated by the SRG flow) an ensemble ‘refer-
ence state’, yielding partially occupied orbitals, is used for the 
normal-ordering [296]. Since the ensemble depends on the 
nucleus being studied, a different Heff results for each isotope. 
As with the simpler version of the IMSRG discussed above, 
one obtains the effective νββ0  decay operator by applying the 
same unitary transformation that generates Heff to the bare 
νββ0  decay operator. IMSRG calculations of this sort have 

shown the ability to compute binding energies and spectra in 
nuclei with valence sd- and pf-shell nucleons [251, 296, 297].

The ab initio shell model program is still in its early stages, 
both in CC theory and the IMSRG, but has already generated 
promising results. Figure 14 shows spectra computed by the 
shell-model effective interactions that result from both pro-
cedures. The spectra are not exact for a number of reasons: 
(1) High-order pieces of the χEFT Hamiltonian are neglected, 
(2) the CC expansion and the IMSRG flow equation are trun-
cated, (3) the Okubo–Lee–Suzuki mapping is carried out 
only up to two valence particles (in CC theory). Nevertheless, 
the results are comparable to those obtained with a standard 
phenomenological shell-model interaction, which was fit to 
spectroscopic data in the same mass region. The ab initio 
approaches have clear promise.

The computation of matrix elements for other operators is 
just beginning, and it remains to be seen how successful it will 
be. There is no reason in principle, however, that matrix ele-
ments of single-β and ββ decay operators should be much less 
accurate than those of the effective interaction. The frame-
work offers an opportunity to make the shell model a much 
more rigorous tool for ββ decay calculations. Researchers will 
pursue it vigorously.

5.3.3. Multi-reference IMSRG. To the extent that the clo-
sure approximation is good (see section 2.2.1), only ground 
states in the initial and final nuclei are required to calculate 
the νββ0  decay transition rate. The effective-operator meth-
ods for use in the shell-model, just described in section 5.3.2, 
are quite general and produce information not only about the 
ground state but also about a whole set of low-lying states. An 
approach that restricts itself to ground states might be more 
efficient. Both the CC and IMSRG procedures, as described in 
section 5.3.1, begin with a Slater determinant as an approxi-
mate ground state, a reference state to which they add corre-
lations. With the exception of 48Ca, however, none of the ββ 
emitters of potential use can be described even approximately 
by a Slater determinant.

Fortunately, both the CC and IMSRG approaches can be 
extended to more general reference states. The extension is 
perhaps easier in the IMSRG, which relies on the reference 
only for the normal ordering of many-body operators that 
includes their most important effects within zero-, one-, and 
two-body operators. And normal ordering has, in fact, been 
generalized to arbitrary reference states, most prominently 
in [299] and [300]. The generalized normal ordering has 
most of the benefits of the usual normal ordering, including 
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an associated (generalized) Wick’s theorem that expresses 
the product of an N -body normal-ordered operator with 
an M-body normal-ordered operator as a linear combina-
tion of normal-ordered operators of rank less than or equal 
to +N M. The only drawback is that the contractions that 
enable this procedure generate up to +N M( )-body density 
matrices, rather than just the one-body density matrices pro-
duced by the usual Wick’s theorem. But that is a small price 
for the benefit: the generalized normal ordering allows one 
to include most of the effects of three- and higher-body oper-
ators generated by the flow equations by discarding just the 
normal-ordered pieces of these operators, making the equa-
tions as tractable as in the ordinary IMSRG [301]. The use 
of a generalized reference state in this way is usually called 
the multi-reference IMSRG.

Thus far, the method has been applied only to spherical 
nuclei (e.g. calcium and nickel isotopes) with reference states 
obtained from spherical HFB calculations [26], but there is 
no reason it could not be applied more generally, with a shell-
model reference state or one from an EDF. That would allow 
important collective correlations to be included directly in the 
reference, with the flow equations adding the most important 
parts of other less identifiable correlations. Work in this direc-
tion is in progress [301].

5.4. Assessing error

At present, nothing resembling a solid quantitative measure 
of uncertainty in the νββ0  matrix element exists. In figure 5 
the error bars on some of the QRPA values represent only 
the spread in results coming from the use of two different 
nucleon–nucleon interactions, a crude sort of statistical 
uncertainty. The bars on some of the shell-model values come 
from the use of two prescriptions for including short-range 

correlations and represent a crude estimate of a part of what 
we will call the systematic uncertainty associated with the 
model.

With the lack of real uncertainty estimates, experimental-
ists usually rely on the range of numbers obtained by seem-
ingly reliable models (e.g. the one spanned in figure 5). The 
problems with that approach to uncertainty are obvious: on the 
one hand the range is large and may include the results of poor 
calculations and, on the other, all the models may be omitting 
the same important physics (such as that associated with the 
gA problem discussed in section 4). The point we have made in 
this review is that models must incorporate all known correla-
tions relevant for νββ0  decay and reproduce related observa-
bles. Capturing the important correlations is easiest in an ab 
initio calculation that systematically controls error at each 
step, even if that control is imperfect. Phenomenological mod-
els can be extended to include more correlations in the ways 
discussed in section 5.2, and can be benchmarked against ab 
initio efforts. In this way all the many-body methods we have 
discussed can be useful in improving the accuracy of matrix 
elements and estimating their uncertainty.

The absence of error quantification in νββ0  decay is not an 
exception. Because it has been traditionally been dominated 
by phenomenological approaches, nuclear-structure theory 
has traditionally neglected even to try to estimate uncertainty. 
This situation is slowly changing, however, and ab initio 
methods and χEFT forces provide natural tools to quantify 
theoretical error. References [302–304] have taken the first 
steps in quantifying error, and [305] provides initial estimates 
of theoretical uncertainty in sd-shell nuclei. We can expect 
this sort of work to progress rapidly.

Dividing error estimates into two kinds—statistical and 
systematic—is useful. Statistical error is probably easier to 
assess. We discuss both below, in turn.

Figure 14. Excitation spectra of two neutron-rich oxygen isotopes, with effective interactions obtained in coupled-clusters theory (CCEI) 
and the IMSRG (IM-SRG), compared with spectra produced by a good phenomenological shell-model interaction (USDB [298]), and with 
experiment. The bands in the IM-SRG results indicate the uncertainty associated with the choice of frequency for the harmonic oscillator 
potential that generates basis states. Reprinted from [26], Copyright (2016), with permission from Elsevier.
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5.4.1. Statistical error. By statistical error we mean, roughly, 
the uncertainty due to the choice of parameters within a given 
model or method. The matrix elements of the effective inter-
action Heff for the shell model, the value of the parameter gpp 
in the QRPA, the effective value of the spin-isospin coupling 
gA in all phenomenological models, and the low-energy con-
stants that specify the χEFT forces and currents in ab initio 
calculations are all examples of model parameters. No matter 
what statistical protocols are used, the statistical uncertainty 
in νββ0  matrix elements will emerge from an analysis of the 
correlation between them and other observables for which we 
have data. Rates of single-β decay and νββ2  decay will be 
strongly correlated. Gamow–Teller transition strengths, exci-
tation spectra, occupation numbers, and two-neutron transfer 
probabilities [306, 307] can also be correlated. These observ-
ables will constrain parameters and, in turn, the predictions 
for νββ0  matrix elements.

Some analysis of this kind has been carried out in the QRPA 
[53, 115]; the νββ0  matrix elements tend to vary by about one 
unit when parameters are changed. Faessler et al [308] exam-
ined the correlations among matrix elements in different iso-
topes. References [54, 193] examined the sensitivity of matrix 
elements to Heff in the shell model. Again, as can be seen in 
 figure 5, results vary by about one unit. This amount is similar 
to the average difference between matrix elements calculated 
with non-relativistic and relativistic EDFs. (Only in 150Nd is 
the difference much larger.) All these results suggest that sys-
tematic uncertainty is larger than statistical uncertainty.

The statistical uncertainty related to gA has been explored 
via the correlation of this parameter with rates of electron cap-
ture, single-β decay, and νββ2  decay data, first for selected 
isotopes [309] and more recently in a more complete study 
for a wide range of nuclei [310]. References [217, 218, 231] 
studied the sensitivity of gA to variations of the couplings 
in the χEFT two-body currents. More comprehensive work in 
the same vein is important. We need to examine sensitivity in 
other computational approaches and correlations with other 
observables in the same way.

5.4.2. Systematic error and gA. Systematic error, the uncer-
tainty related to the insufficiency of models, is harder to 
assess. Once a model incorporates as many of the known-
to-be-important correlations as possible—isoscalar pairing, 
or like-particle pairing correlations involving single-particle 
orbitals away from the Fermi level, for example—its deficien-
cies can only be assessed by a confrontation with data and 
with other models. Here there is a lot to do. The statistical 
error analysis just discussed can shed light on systematic error 
as well; if there are no sensible sets of parameters that lead to 
an accurate description of the available data, we know that our 
model is systematically deficient [311].

Benchmarking is another important tool. The ab ini-
tio methods reviewed here unavoidably entail some kind of 
truncation, but a different kind in each. For instance, CC the-
ory and the IMSRG both impose a cutoff on the maximum 
numbers of particles within a cluster (roughly speaking) or 
the maximum number of single-particle oscillator orbitals. 
Meanwhile, the NCSM instead allows only configurations 

with excitation energy below a certain cutoff and the GFMC 
discretizes time and constrains paths to cope with the fermion 
sign problem. Comparing the predictions of these approaches 
in nuclei for which they are all implementable—e.g. nuclei 
with a valence sd shell—can reveal a lot. Agreement between 
ground state energies of oxygen isotopes in this kind of inter-
method test is at the few percent level [24]. There is no reason 
not to test calculations of νββ0  matrix elements in the same 
way, even though the corresponding transitions are not observ-
able. Benchmarking complementary methods can reveal the 
importance of each kind of truncation, and agreement among 
methods could reduce uncertainty considerably.

The renormalization of the spin-isospin operator (gA 
quenching) is particularly ripe for analysis in light nuclei. 
The ab initio methods appear powerful enough to include all 
important correlations as well as the leading two-body currents 
in those isotopes, for which there is no shortage of measured 
single-β decay rates. The analysis can also include magnetic 
moments and transitions, which, like β-decay, involve the spin 
operator and sometimes require that its strength be quenched 
to agree with data. If ab initio calculations all fail to repro-
duce experimental β-decay rates, then there will have to be 
some other source of systematic uncertainty that we cannot 
currently imagine. If, on the other hand, one or more succeed, 
the result will be a reduction of systematic uncertainty in the 
νββ0  decay matrix elements and a clear path to ab initio ββ 

decay calculations in the heavier nuclei used or contemplated 
by experimentalists. Understanding the cause of quenching 
will also allow the development of realistic procedures for 
improving the more phenomenological methods.

These tests and similar ones in heavier nuclei, where data 
for νββ2  decay can be directly confronted, will not in them-
selves yield a precise error bar for νββ0  matrix elements, 
especially for those in 76Ge or 136Xe. One can never be sure 
that all sources of systematic error are understood. But a good 
protocol (e.g. based on popular Bayesian methods) should 
lead to error bars in which we can be reasonably confident, 
much more confident than we are in the ‘uncertainty’ associ-
ated with the spread in the predictions of only partially tested 
models. A good protocol will require collaboration among all 
kinds of theorists. The necessary groundwork for such col-
laboration now exists.

6. Summary and prospects

Next-generation experiments could well be in a position to 
observe νββ0  decay if neutrinos are Majorana particles and 
neutrino masses are arranged according to the inverted hier-
archy. They may also be able to discover new fundamental 
physics even if the mass hierarchy is normal. The rate of any 
kind of ββ decay, however, depends on nuclear matrix ele-
ments, and informed decisions about which and how much 
material to use in experiments rely on our ability to calcu-
late them accurately. If νββ0  decay is actually observed, 
the matrix elements will play a key role in identifying the 
 mech anism responsible and/or extracting information about 
neutrino masses.
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At present, a handful of many-body methods produce 
matrix elements that differ from one another by factors of 
up to about three. The range suggests that each approach is 
missing important physics. We have identified the most obvi-
ous weaknesses of each approach—usually either a restricted 
configuration space or simplified correlations—and have dis-
cussed programs to improve each of them. Phenomenological 
models are not in themselves sufficient to produce truly reli-
able matrix elements, however, as the longstanding need 
to renormalize gA makes clear. Without a more systematic 
approach to nuclear structure we are unlikely either to under-
stand the implications of gA quenching for νββ0  decay or to 
assign meaningful theoretical uncertainty to matrix elements.

We are hopeful that ab initio nuclear-structure theory will 
help with these tasks. Once limited to very light nuclei, ab 
initio methods have progressed rapidly and will soon allow 
the matrix element of the lightest ββ emitter, 48Ca, to be com-
puted. They promise to do the same in the heavier isotopes 
that are currently used in experiments: 76Ge, 130Te, and 136Xe. 
Comparing the by now wide variety of ab initio methods to 
one another in lighter nuclei will facilitate the assignment of 
uncertainty. The ab initio methods can also revitalize tradi-
tional models, e.g. by supplying input for the shell model or 
using states produced by EDF calculations as references. And 
they provide tools that should let us, finally, solve the gA prob-
lem. That step alone will significantly reduce the systematic 
uncertainty in νββ0  matrix elements.

We are in an exciting time. After years of development, ββ 
decay experiments are poised to scale up, opening new win-
dows into fundamental physics. We are optimistic that nuclear 
theory will soon produce the accurate matrix elements and 
controlled theoretical error that these experiments demand.
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