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Abstract: We discuss the problem of describing low-lying collective negative-parity states within the 

framework of the interacting boson model. We suggest that a simultaneous description of quadrupole 

and octupole states in nuclei be done in terms of the group U(16), which includes f- and p-bosons 

in addition to the usual d- and s-bosons. We analyze the dynamical symmetries associated with 

the rotational limit of this model and discuss their classical (large-N) analogs. We conclude with 

a preliminary application of the model to the radium isotopes. 

1. Introduction 

Low-lying collective nuclear states are dominated by the occurrence of quadrupole 

vibrations and deformations. Their properties can be described in terms of shape 

variables, aZcL (CL = 0, kl, *2), ref ‘) or alternatively in terms of interacting s- and 

d-bosons with Jp = O+ and Jp = 2+ respectively ‘). The role played by d-bosons is 

easily understood since they can be thought of as a quantization of the variables 

(yzcI. The introduction of s-bosons is less obviously necessary and arose from a study 

of the underlying microscopic structure which led to an interpretation of bosons in 

terms of nucleon pairs ‘). It reflects the existence in nuclei of a pairing interaction 

in addition to the quadrupole interaction. An important consequence of the introduc- 

tion of s-bosons is that it facilitates phenomenological descriptions of spectra. For 

example, with s- and d-bosons it is straightforward to obtain an SU(3) symmetry 

that describes accurately quadrupole deformations. 

Although quadrupole degrees of freedom dominate the low-lying features of 

nuclei, other degrees of freedom may play some role. The next multipolarity is the 

octupole, introduced into nuclear physics early on by Bohr and Mottelson “) through 

the shape variables ff3@ (p = 0, kl, *2, +3). In th’ 1s a rt 1 ic e, we discuss how to describe 

octupole degrees of freedom in terms of interacting bosons. It is obvious that one 

needs here Jp = 3- (octupole or f) bosons. As long as only octupole vibrations are 

considered the introduction of only f-bosons appears to be sufficient to describe 

data; recently Barfield ‘) analyzed spectra of several nuclei in the rare-earth region 

’ Present address: Norman Bridge Laboratory, 161-33, California Institute of Technology, Pasadena, 
CA 91125, USA. 
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using a model consisting of s-d bosons plus one f-boson. However, there is growing 

evidence that octupole deformation may also occur in nuclei “). One important 

question that has arisen recently is how best to describe these deformations. This 

problem has been addressed in the framework of Bohr-type hamiltonians by 

Rohozinski ‘). We discuss here how to address the problem in terms of interacting 

bosons. We suggest that in general octupole deformed nuclei be described by a 

system consisting of Jp = l- and Jp = 3- (p and f) bosons in addition to the usual 

s- and d-bosons. The introduction of p-bosons here is similar to that of s-bosons in 

the description of quadrupole deformation in that it both facilitates the phenomeno- 

logical treatment, and appears to be dictated by the underlying microscopic 

structure *T9). 

When p- and f-bosons are introduced alongside s and d, the space spanned by 

single boson states becomes 1-C 3 + 5 + 7 = 16 dimensional. The corresponding alge- 

braic structure is U(16). This structure is rather large and when treated as a 

phenomenological model it contains many adjustable parameters. We find it con- 

venient then to study the dynamic symmetries of this structure. As in the correspond- 

ing case of quadrupole vibrations and deformations, dynamic symmetries provide 

appropriate benchmarks for phenomenological descriptions. In this article we 

describe the dynamic symmetries of the U(16) model associated with rotational 

spectra. Using these symmetries as starting points, we then analyze numerically 

spectra and transitions in light actinide nuclei. A similar, but simpler, numerical 

analysis of the role of p-bosons in octupole vibrational states has been presented 

recently by Han et al. lo). 

2. The model 

The single boson states contained in U(16) are depicted schematically in fig. 1. 

Since, in a microscopic interpretation, bosons are related to fermion pairs in 

shell-model states 3), the appropriate counting of the boson number N is here more 

complicated than in the case of U(6). While s- and d-bosons have their origin largely 

in valence shell (Ohw) pairing, f and especially p bosons must include excitations 

across the major shells (lhiw). We will consider here, for simplicity, the case in 

which both protons and neutrons are particle-like. The number N will then be taken 

as the total number of proton, N,, and neutron, N,,, pairs outside the doubly closed 

shells, N = N,, + NV. For example, in 2ziRa132, N, = 3, NV = 3, N = 6. This counting 

implies that both sd and pf bosons are considered to be nucleon pairs. The situation 

is shown schematically in fig. 2 where the pair states(bosons) corresponding to 6 

particles (either protons or neutrons) are shown. 

A question that immediately arises is to what extent p bosons represent “spurious” 

center-of-mass excitations. It appears ‘) that even when the spurious excitations are 

removed, a moderately collective pair state remains. Without the removal of the 

center-of-mass motion, the p-state would be very collective and in fact appear at 
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Fig. 1. Schematic representation of the boson states included in the U(16) model. 

s ondd 
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Fig. 2. Schematic representation of the pair states that provide a microscopic interpretation of the U(M) 

model. The example shown in the figure corresponds to 6 particles described as N = 3 bosom, 2 sd 

bosons and 1 pf boson. 
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zero energy in an exact calculation. Removing the center-of-mass motion results in 

a higher energy for the p-boson, as depicted schematically in fig. 3. This may reflect 

the fact that the p-state is collective not with respect to the single particle operator 

rYi,, but rather to the operator r3 YIP. The p-collectivity is then similar to that of 

the octupole operator r3Y3P. 

From the phenomenological point of view the microscopic origin of the bosons 

(although an interesting and important problem) is not relevant as long as one 

specifies the total boson number N We henceforth consider the phenomenology of 

a system of N s, p, d, f bosons. In general, the hamiltonian for U(16) will contain 

a part describing s- and d-bosons, a part describing p- and f-bosons and a part 

describing their interaction 

H = Kd + HP,+ v,,,pr . (2.1) 

This hamiltonian, as well as the transition operators, can be written in terms of 

boson creation and annihilation operators, 

SI s 

d: 4 /*=O,fl,f2 

P: P, /_L=O,*l 

f:. f, /1=0,+1,*2,+3. 

EI (MeV) 

*i f i 

d 

N- 

(2.2) 

Fig. 3. Schematic representation of the expected single boson energies in a major shell. N is the number 

of boson particles and N the number of boson holes. 
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The hamiltonian will contain all bilinear and quadrilinear terms that conserve 

boson number, angular momentum and parity. We shall not explicitly write down 

all the numerous terms in such a hamiltonian, but rather discuss some of the 

associated transition operators, which are simpler to enumerate. Since we have 

bosons with both parities, we can construct transition operators both with positive 

and negative parity. Particularly important are the El, E2 and E3 operators. The 

most general form of a one-boson El operator is 

T(E’)=~,(p+X~+f+X~)(~)+~l(p+X~+d+X~)(’) 

+~y,(f+xd”+d+xJ)(‘), (2.3) 

where we have used the standard notation for boson operators and their tensor 

products ‘l). In a model without p-bosons only the last term in (2.3) survives. This 

term, by all accounts “,r’) including our own extensive attempts to model octupole 

deformations without p-bosons, is unable to describe the observed properties of El 

transitions between low-lying collective states of opposite parity. The p-bosons thus 

appear to be a necessary ingredient in any successful phenomenological treatment 

of the data. 

The E3 operator can be written as 

T’E3’=~3(f+~~+~+~J:)~3~+~3(~+~d”+d+~~)~3~+~3(f+~d+d+~j:)~3~. (2.4) 

EO, E2 and E4 operators are appropriately modified by the introduction of p- and 

f-bosons. For example, the E2 operator becomes 

TCE2) = Ly*(d+ x s’+ s+ x d)(2)+ /&(d+ x d’)(2) 

+ y*(f+X@+p+Xj)(*)+ 8*(p+xp”)(*)+ &-+Xfy). (2.5) 

3. Dynamic symmetries. The SU(3) limit 

Since the algebra of U(16) is rather large, there are several possible dynamic 

symmetry chains that originating from it terminate in the rotation group O(3). For 

example, U(16) can be shown to contain all the chains of the s-d interacting boson 

model 13), i.e. those going through U(5), SU(3) and O(6), in a non-trivial way. In 

addition, it has other chains which were not present in the U(6) model. 

We begin by mentioning that, on the basis of microscopic calculations ‘), one 

expects a behavior of the single boson energies with boson number N as shown 

schematically in fig. 3. Thus, there should be regions in which the p-boson has 

sufficiently high energy that it can be neglected. This corresponds to the separation 

U(16) = U(13)OU(3) (3.1) 

and leads to a model of low-lying states in terms of U(13). As mentioned above, 

we have analyzed this model in detail and found it unable to describe octupole 
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deformations in a simple way 14). If the energy of f-bosons is high enough, U(13) 

can be further separated into an s, d-part and an f-part leading to 

U(13) =U(6)OU(7). (3.2) 

This model, was discussed by Goidi et al. 15) and used with only one f-boson in 

refs. ‘,12). It describes octupole vibrations superimposed on quadrupole vibrations 

and/or rotations, and implies single boson energies E,,s== .sf% E, = Q. Since it has 

been considered previously we shall not discuss it here further. Instead we consider 

the case in which all bosons have comparable energies Ed = Ed= E, = E,, , leading to 

octupole deformations. 

There are two dynamic symmetry chains in U( 16) that produce rotational spectra 

(i.e. spectra composed of bands with energies increasing as L(L+ 1)). The first chain 

is 

U(16)=U(6)OU(1O)=SU(3),OSU(3), 

= W(3) = O(3) = O(2) ) (1). (3.3) 

This chain arises from the fact that the single s- and d-boson states transform as 

the (2,O) representation of SU(3), while the p- and f-bosons transform as the (3,O) 

representation. The labels a and b in (I) refer to the SU(3) algebras formed by s, d 

and p, f operators respectively. These algebras are generated by the operators 

~~=((d+xs’+s+xd)‘2’-~~(d+x~)(*), 

i,=?/B(d+xd”)“‘, 

~b=(f+X~+p+xj:)(*)+~~~(p+X~)(2)+J~(f+XJ)(2), 

~b=~(p+xp”)(l)+2J7(f+Xj:)(1). (3.4) 

The total SU(3) algebra is generated by the sum of the operators of SU(3), and 

SU(3)lH 

6=&+& 

i=i,+i,. (3.5) 

The energies of eigenstates for this symmetry can be obtained in the usual way by 

writing the hamiltonian in terms of Casimir invariants of the group chain (I), 

H”‘=E0+~,C,(U6)+/3,C,(U6)+cu,C,(U10)+&,C2(U10) 

+KaC(SU3,)+K&(SU3~)+KC(SU3)+K’C(03), (3.6) 

where we have used the notation of ref. “). The eigenvalues are given by 

E(N N,, Nb, A,, ~a, hb, pb, w, A, I-% K k ML) 

=E,+a,N,+P,N,(N,+5)+(YbNb+PbNb(Nb+9)+K,C(h,,CL,) 

+ KbC(hb, pb) + KC(h, P) + K’L(L+ 1) , (3.7) 
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where 16) 

C(A,/1)=h2+~2+t~+33+3/_L (3.8) 

The quantum numbers w, K in (3.7) denote missing labels, while the other quantum 

numbers corresponds to the groups in the chain (3.3), 

U(16) =U(6)OU(lO) = SU(3),0SU(3)h 1 

1 1 1 1 1 

A’ N, Nb (‘bk) (hb,pb) 

SU(3) = O(3) 1 O(2) 

1 1 1 
~,(A,P),K L ML. (3.9) 

One can show, using the methods of ref. “), p. 151, that the total number of labels 

needed to classify uniquely the totally symmetric representations of U(16) is 16. 

The missing labels 6.1 are thus four in number and they arise from the reduction of 

U(10) to SU(3)b. The actual decomposition of representations of U(6) and U(10) 

into those of SU(3), and SU(3)b is described in ref. 16). For N,, Nb C 4 the results 

are summarized in table 1. In order to obtain the values of the quantum numbers 

(A, p) of the combined SU(3) group, one must take tensor products of representations 

of SU(3), and SU(3)b. For example, 

(2,0)0(3,0) = (5,0)0(3,1)0(1,2). (3.10) 

For appropriate values of the parameters, the lowest bands will have N, s, d bosons 

and Nb p, f bosons. Note that, since N = N, + Nb, two of the terms in (3.7) can be 

TABLE 1 

Decomposition ofthe representations of U(6) and U(10) 

into those of SU(3), and SU(3)b 

U(6) SU(3), 

Cl1 (2,O) 
PI (4, O), (092) 

[31 (6,O) C-L21 (O,O) 
[41 (8,O) (472) CO,41 (LO) 

U(lO) SU(3)b 

[II (3,O) 
PI (60) (2,2) 
[31 (990) (5,2) (393) (330) co,31 
[41 (GO) (8,2) (63) C&O) (3,3) 

(4,4) (4,1) (O,@ C&2) (%O) 
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eliminated and included in E,, yielding 

E(N, N,, Nb, ha, pa, hb, pb, 0, A, P, K, L, ML) 

=E~+~‘Nb+~‘N~+K,C(A,,~U,)+KbC(hb,~b)+KC(A,~)+K’~(~+1). 

(3.11) 

If Nb # 0 in the lowest bands, eq. (3.11) describes a system with octupole defornrations 
(i.e. the ground state is a condensate that includes f-bosons). The corresponding 
spectrum is shown in fig. 4. 

Eq. (3.11) does not however describe the spectrum of a rigid body with octupole 
deformations. One property of this latter spectrum is the occurrence ofpurity doublets, 
as observed for example in molecules (NH3 molecule). Parity doublets can be 
obtained in this chain only through a rather artificial procedure: the inclusion of 
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Fig. 4. Schematic representation of the spectrum of a nucleus in the SU(3) limit of the U(16) model 
with N = 6. The Lowest positive parity bands belonging to the configuration N, = 4, Nb = 2 and negative- 
parity bands belonging to N, = 3, Nb = 3 are shown. The excitation energies are computed using eq. 

(3.11) with cz’= -693.4 keV, p’z346.7 keV, K,=K&=@, rc=-20keV, K’=6keV. 
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signature-dependent interactions, i.e. interactions that depend on parity, (-)“. 

Including the appropriate signature-dependent forces in Ho) leads to the energy 

formula “) 

E(N, N,, Nb, A,, PU,, hb, pb, w, A, PU, K, L, ML) 

(3.12) 

The corresponding spectrum in the limit of large N, and Nb is shown in fig. 5. 

We will have more to say about parity doubling in SU(3) in the next section. 

Here we digress briefly in order to clarify the complex vibrational structure of fig. 

5. To this end, we consider a model with only s, p and f bosons (no quadrupole 
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Fig. 5. Schematic representation of the vibrational spectrum of a nucleus with both quadrupole and 

octupole deformations. The spectrum is calculated from eq. (3.12) in the large-N limit with appropriately 

selected parameters. There are three types of vibrations, with scales set by K, K, and IQ,. The first of 

these is labelled with molecular spectroscopic symbols (E, II, A,. . .) in addition to the parity and value 

of K. The second type if labeled as in fig. 6 and the third type according to the usual nuclear quadrupole 

notation (/3 and y). Other sets of vibrational bands, corresponding to different values of N, and N,,, 

have been pushed higher up in the spectrum and are not shown in the figure. On top of each vibrational 

state shown here, there is built a rotational band as in fig. 4. 
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degree of freedom). The corresponding algebraic structure is that of U(ll). The 

same type of analysis that led to eq. (3.12) can be applied to this model, since the 

s-boson transforms as the (0,O) representation of SU(3). Paralleling the steps 

described above, one then obtains the energy formula 

E(N Nb, hb, pb, w, K, L, ML) 

(3.13) 

The low-lying part of the spectrum of eq. (3.13) is shown in fig. 6. Particularly 

interesting is the structure of the lowest (parity doubled) vibrations; they have 

quantum numbers KP = O*;, 2’, l’, 3’ and are denoted here by a, 8, rr and 4, 

respectively. These four vibrational bands are the octupole analogs of the two 

vibrational bands /3 and y of a quadrupole deformed body. In fig. 5, which represents 

the spectrum associated with a body having both octupole and quadrupole deforma- 

tions, both the a, S, n, 4 and p, y types of oscillations are present, along with modes 
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Fig. 6. Schematic representation of the spectrum of a nucleus with purely octupole-dipole deformations. 

The spectrum is calculated using eq. (3.13) with a’= p’=O in the large-N limit. The rotational constants 
are chosen to be K~ = (-50/N) keV and K’ = 10 keV. 
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we have labelled X, LX, A,. . . that correspond to the motion of the deformed quad- 

rupole and octupole shapes with respect to one another. 

We turn now to a discussion of electromagnetic transition rates. For the most 

general forms of the operators, given in eqs. (2.3)-(2.5), these are somewhat difficult 

to compute. However, if the operators have simple tensorial properties under the 

groups considered, they can be calculated simply by using a generalized Wigner- 

Eckart theorem i8). For example, if the E2 operator is 

TCE2) = a&, + y*& , (3.14) 

its matrix elements in the SU(3) chain can be calculated easily. Similarly, one can 

calculate the matrix elements of the El operator constructed with s, d and p, f bosons 

if it transforms as a tensor of rank (1,O) under SU(3). Consider, for example, the 

case in which the lowest positive parity band has quantum numbers (A,, 0), (Ab, 0), 

(A = A, + Ab, 0) and the lowest negative parity band has (A, +2,0), (hb -3,O), (A = 

A, + Ab - 1,O). Then one obtains 

B(El;(A,0),L+(A-l,0),L-l)=g(A,,A,,A)A2+LL+:1L, 

B(E1; (A - l,O), L-, (A, 0), L- 1) = g(A,, Ah, A) EL. (3.15) 

The coefficient g(h,, Ab, A) does not depend on L. In the limit of large A, these 

values go over into the values given by the Alaga rule 

B(E1~L~~L~)~g(L~~O~1~O~L~~0)2~ (3.16) 

corresponding to rigid deformations. Similar results apply to other operators and 

are given in ref. 14). 

4. Dynamic symmetries. The O(4) limit 

Within U(16), there is another group chain that produces rotational spectra. 

Although we believe, for reasons discussed below, that this chain is not appropriate 

for describing octupole defo~ations in nuciei, we nonetheless discuss it here in 

order to point out differences and similarities with chain I. Furthermore, this chain 

can be used in other fields of physics, i.e. molecular physics. Its existence is due to 

the fact that s, d, p and f bosons transform as the (3,0) representation of O(4). Thus, 

the algebra of O(4) is contained in U(16) and can be used to generate a dynamic 

symmetry. 

A reduction of representations of U(16) to representations of O(4) and the 

construction of the intermediate subalgebras is rather complex. A convenient way 

to perform it is by making a transformation on the boson operators b,,, (I = 0, 1,2,3), 

introducing the operators 

f umrnP = & (2, m, f, rnt/ 1, m + mf)b:,+,T. (4.1) 
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The operators at carry two indices m and m' which can take the values *i, 24. 
The action of the parity operator, P, on these objects is given by 

p&m,, P-’ = -a;,,, . (4.2) 

This follows from the relation 

Pb;, P-l = (-)%_, (4.3) 

and the symmet~ properties of Cfebsch-Gordan coefficients under permutation of 
indices. 

The generators of U(16), composed of all the bilinear products b:,blt,,+, can be 
rewritten in terms of the bilinear products a~,mran,nf. A summation over the first (or 
second) index of the creation and annihilation operators allows one to construct 
from the operators ak,,can,,c two commuting U(4) algebras and thus to break U( 16) 
into U(4)OU(4). In order to distinguish the two U(4)‘s, we will attach labels a and 
b to the appropriate groups. Each U(4) can then be further broken down by using 
the decomposition 19) 

U(4) = Sp(4, C) ilz_J O(5) 1 W(2) = O(3) * 

This procedure leads to the chain 
(4.4) 

U(16) = UNDUE 13 Sp(4),0Sp(4), = SU(2),0SU (2)b 

= O(4) 1 O(3) 2 O(2)) (11) (4.5) 

where we have deleted the letter C from Sp(4, C) following common practice. The 
symbol = in (4.4) and (4.5) denotes isomorphic algebras. The O(4) algebra contained 
in (4.5) is generated by six operators, divided into a vector and a pseudovector. 
These six operators can be written in terms of the original boson operators 9, by 
performing the transformation (4.1) backwards. They correspond physically to the 
angular momentum operator i, 

i=~(pix~)“‘_t~(d’Xd’)“‘+2217(ffxJ‘)”’ (4.6) 

and the dipole operator L?, 

Lj=JS(p+xs’+stx$ (‘)-2JZ(d+xp”+p+xd”)“‘+J7(f+xd+d+Xi)”’ (4.7) 

The basis states for the group chain (II) are labelled as follows 

U(16) =) U(4), 0 U(4)b = SP(4)* 0 SP(4)b 

4 J 4 J & 

N (nr, n2, n3, nd (n,, n2, n3, n4) (&, nL) (nib, n&b) 

=) SU(2), x SU(2)bX O(3) = O(2) 

J J & J 

y _L jb L ML 
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where we have indicated by Y any missing labels. The fact that we are dealing with 
totally symmetric representations of U(16) requires that the quantum numbers 
y1r, n2, n3, n4 be identical for U(4), and U(4),. A method similar to that discussed 
in sect. 3, eq. (3.9), shows that, in this case, the missing labels are three in number. 
In eq. (4.8) the representations of O(4) are labelled by the SU(2),QSU(2), labels 
(j,,j,). It is straightforward to convert these labels to the usuat O(4) labels (0, w’) 
by using 

w =& +.L 

w‘= /.i, -&I - (4.9) 

The representations of O(4) contained in a given totally symmetric representation 
of U( 16), [IV], are obtained by standard rules after noting that the fundamental 
representation [l] of U( 16) corresponds to the representation (1, 0, 0,O) 0 (1, 0, 0,O) 

of U(4), 0 U(4)b. (One needs to know as well the decomposition of representations 
of U(4) into those of SU(2). This step is discussed in ref. “).) The results are 
presented for NC 3 in table 2. For larger N’s they can be obtained as discussed 
above. An important result is that whenever a representation (j,,j,) with j, #j, 
appears, so does the representation (jb,ja). The representation (j,,j,) contains 
angular momenta 

L=Ij,-JihjtjJa-.~trjflr.-*./ja+jbj* (4.10) 

TABLE 2 

Decomposition of the representations of U(16) into those of O(4) 

8; ;; + (I),@ (792) 

PI (3,0,0,0)0(3,R RO) (3,0)0(3,0) (63) (590) 

(4,1X3,0) 

t2,1,0, WO(2, LO. 0) (79 0) (61) 
(5*2) (5,O) 

0 (4,3) (4,1) 

(3,2) (90) 

(2911 (1, @) 
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From the above and the action of the parity operator given in (4.2), one can conclude 

that all representations with 1 j, -j,,] Z 0 will be parity doubled. Explicit construction 

of the representations with j, = j,, i.e. w’ = 0, shows that they alternate in parity. 

For example, the representation (6,O) in table 2 contains O+, l-, 2+, 3-, 4+, S,6+. 

We now consider explicitly the dynamic symmetry associated with the group 

chain II. Although in principle we could consider Hamiltonians containing Casimir 

invariants of all the groups appearing in (4.5), the intermediate groups contribute 

little to the physics and we shall thus restrict our attention to the hamiltonian 

H'"'=E,-Ab 6+Si. f=E,-AC(04)+(B+A)C(03), (4.11) 

where we have used the fact that the quadratic Casimir invariant of O(4) is given by 

C(O4)=fi* B+i* f. (4.12) 

The energy eigenvalues of (4.11) are given by 

E(N nl, %, %, n4, da, & nib, nib, v,.k_ibs L, ML) 

E,-2A[j,(j,+l)+j,(j,+l)]+(B+A)L(L+l). (4.13) 

The term j,(j,+l)+jb(jb+l) can be rewritten in the form $[w(w+~)+o”]. The 

spectrum associated with (4.13) is shown in fig. 7. 
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Fig. 7. Schematic representation of the spectrum in the O(4) limit of the U( 16) model and N = 4. The 

excitation energies are computed using eq. (4.13) with A = 15 keV, B = -9 keV. Only the low-lying portion 

of the spectrum is shown. 
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Electromagnetic transition rates can also be computed using standard techniques. 
To this end, it is convenient to rewrite the transition operators in terms of tensor 
operators that have well-defined properties with respect to the groups appearing in 
eq. (4.8). The dependence of the matrix elements on the angular momenta of the 
states can then be obtained easily, following the discussion of ref. r8), p. 240. If we 
denote by T y~(nx *)J a tensor operator of multipolarity A, that transforms under 
SU(2),@SU(2)b as the representation (ax b) and under the other groups as the 
representations globally denoted by y, we can write the following expression for 
the matrix elements between states that transform as ]IX, (j, x jb), L): 

(a, (j, x j,), Lit Ty*(axb)ah {la’, (jh x j’,), L’) 

jG jb L 

=J{2L4 1)(2L’+ 1)(2h + 1) jh 

i ) 

jb L’ ((u, (j, x.jb)/ Ty,(axbf]j~‘, (jh x jb>) , 

a b h 

(4.14) 

where the last matrix element is “doubly reduced”. The entire angular momentum 
dependence is contained in the first two terms in the rhs of eq. (4.14). From this 
expression one can extract information on the behavior of the matrix elements. For 
example, since 

j j L 

i } 

j j L’ z C--j 
L+b (CO, hOjLO>(aO, AOlbO) 

(2j+ 1)J(2r;+ 1)(2L’+ 1) ’ 
(4.15) 

a b h 

one obtains, for states with j, = jb = $N, j, = jb = $N (ground state baud), 

B(EA; L’+ L) --&(a, b, A, N)(L’O, hOI LO)2, (4.16) 

i.e. the Alaga rule. (Here f is an L, L’ independent factor.) Explicit expressions, 
valid for any N, can be obtained by evaluating the last term in the rhs of eq. (4.14). 
The evaluation is particularly simple for El transitions and in the case in which the 
transition operator is proportional to the dipole operator a of eq. (4.7). Since 3 
is a generator of 0(4)=SU(2),OSU(2),, excited bands will not be connected to 
the ground band, and only intraband transitions will be allowed. Using a technique 
similar to that discussed in ref. “), p, 304 one obtains 

B[El; ($N, $N), L-+ (;N, ;N), L- l] = o2 
(3N+L-1)(3N-L+l)L 

2L+l > 

(4.17) 

where 6 is the proportionality constant between I’@‘) and 5. 
For all the reasons mentioned above, and in particular because of the natural 

occurrence of parity doubling, O(4) appears to provide the most faithful representa- 
tion of asymmetric shape deformations. However, this symmetry implies strong 
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dip& interactions. While these are the dominant forces in molecules, in nuclei the 
strongest interactions are of pairing and quadrupole type. We are therefore led to 
the conclusion that the O(4) chain is not as relevant in nuclei as the SU(3) chain 
and that parity doubling, to the extent that it occurs, remains an accidental fact. 
Although we have obtained this result from an analysis of boson dynamic symmetries, 
we suspect that this statement is true of any bosonic hamiltonian not incorporating 
dipole interactions. It is an open question as well to what extent this statement is 
true of other realizations of octupole deformations, e.g. shape variables. In this 
respect, it would be interesting to produce Bohr-like hamiltonians with continuous, 
differentiable potential functions (i.e. not panty-dependent or discontinuous poten- 
tials) which yield rotational spectra with parity doubling. 

5. Classical limit 

We have seen, through examination of spectra and transitions, that the dynamical 
symmetries discussed above yield properties similar to those of rotating deformed 
shapes. To make the relation more explicit, it is helpful to study the classical (or 
geometric) limit of our boson hamiltonians. In the shape variable description one 
parametrizes the nuclear surface as 

R = &(l++,,Y,,(@, #)+~;L@zJy21*(~, &)+&fy3py%.L(@, #)) * (5.1) 

Geometric properties of boson models can be studied by considering coherent states 
of the form 

Km a) =j$(&u, * aNlO) 9 (5.2) 

where the dot denotes a scalar product. The c-numbers ar+ in (5.2) are related to 
the parameters CQ~ in (S.l), by a simple renormalization (see, for example, p. 105 
of ref. “)). The total energy surface corresponding to a given hamiltonian W is 
obtained from 

(5.3) 

In the case of pure quad~pole deformations, the study of the properties of E(a) 

is relatively simple. In the presence of all the degrees of freedom considered here 
(I = 0, 1,2,3) it is rather complex. We have therefore analyzed only the two special 
cases discussed in the previous sections. 

The analysis of the dynamic symmetry (II) is straightforward. The O(4) hamil- 
tonian (4.11) yields in the large N limit an energy surface with a well defined 
minimum at 

Ly;; = 3/J& a;:= , 1 a;:==1/J5, cr;z=o (p#O). (5.4) 

The system has a simultaneous dipole, quadrupole and octupole deformation. The 
values of the deformations are all related. 
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The analysis of the dynamic symmetry (I) is more difficult. Because the hamiltonian 

separately conserves N, and Nb in (3.9), the coherent state (5.2) will not yield a 

stable minimum in E ( CY). A more suitable coherent state has the form 

(st+ff, .dt)NQ(n,.p++tYj’f+)“blo), (5.5) 

i.e. a state with fixed N, and Nb. The SU(3) hamiltonian (3.5) yields an energy 

surface with a stable minimum at 

CY;z=&, (a30/a,$q = -JZ , 
a $ = arbitrary , a;;=0 (ilLff-0. (5.6) 

(The arbitrariness in a~;: reflects freedom in the way the state (5.5) is normalized.) 

This case also represents a system with simultaneous dipole, quadrupole and 

octupole deformation, but where the quadrupole deformation is independent from 

the dipole-octupole deformation. 

Since in both cases, the minima occur for values of al,& # 0 only when p = 0, both 

symmetries correspond to axial deformations in which the axes of the various 

deformations are all aligned. An example of such a shape is shown in the insert of 

fig. 5. The study of triaxial deformations and/or cases in which the axes are not 

aligned is very compIex. This, together with the geometric interpretation of the 

normal modes of the system, denoted by fl, Z, A,. . . in fig. 5, could be done using 

the techniques developed recently by Leviatan *“). 

6. Numerical studies 

A major problem in studying octupole degrees of freedom in nuclei is the lack 

of experimental data. This situation is very different from that encountered in the 

study of quadrupole degrees of freedom. Four possible interpretations of collective 

low-lying negative-parity states in nuclei have been suggested: (i) octupole vibra- 

tions 472’,22); (ii) octupole deformations “); (iii) dipole vibrations 23) and (iv) dipole 

deformations 23). We have included here (iii) and (iv) for completeness although 

we shall not discuss them in the context of the present work. It is well known from 

the study of the quadrupole case that what distinguishes between a deformation 

and a vibration is the structure of the side bands. For example, a body with 

quadrupole deformation has excited /3 and y bands while a spherical body has two 

and three phonon multiplets. Unfortunately, only the lowest negative-parity band 

is usually known. On the basis of the energies of this band it is not possible to 

distinguish between deformations and vibrations. The only measured quantity that 

appears to be somewhat sensitive to different physical interpretations is the ratio 

R=B(El;J-,J-l) 

B(E2; J+J-2)’ 
Jp=2+,3-,4+,5- ,..., (6.1) 

between states in the lowest positive- and negative-parity bands. We shall therefore 

concentrate our discussion on this quantity. 
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We first remark that the behavior of R with J does not support the interpretation 

of the negative parity levels as simple f-boson excitations (octupole vibrations). In 

a model without p-bosons, the one-body El operator necessarily has the form 

TCE’) = cu,(df xf+f+ x d)(i) . (6.2) 

This operator, in an octupole vibration picture, produces El transitions that are 

much larger in the J-odd to J-even direction than they are in the opposite direction, 

contrary to the observed data which indicate relative equality of the two types of 

transitions. This deficiency was remedied in ref. ‘*) through the addition of higher 

order terms to the operator (6.2). However, even with these terms, the final fit relied 

on a delicate balancing of the one- and two-body terms in the operator. It seems 

to be necessary to introduce p-bosons to obtain the smoothness in R observed in 

experiment. Even within U( 16), there are two possible schemes: (i) octupole-dipole 

vibrations; (ii) octupole-dipole deformations. We have analyzed the available experi- 

mental data in the Ra region in terms of both pictures and present some of the 

results below. In doing this analysis one may attempt to use the dynamic symmetries 

discussed above, i.e. 

U(16) ~U(6)OU(7)OU(3) (6.3) 

for vibrational spectra and 

SU(3),OSU(3), = SU(3) (I) 
f 

U(I6) (6.4) 
1 

U(4), 0 U(4), = O(4) (II) 

for rotational spectra. Unfortunately, this cannot be done for several reasons: 

(i) the radium isotopes are in a transitional region with respect to the quadrupole 

(U(5) spherical+ SU(3) deformed transition); 

(ii) none of the typical features of the chains (I) and (II) appear to be present 

in the data. 

We are thus led to the conclusion that both the quadrupole and the octupole 

degrees of freedom are in a soft transitional region. Numerical calculations are then 

needed in order to study the situation. To this end, one of us (JE) wrote a computer 

program 24) that diagonalizes the U( 16) hamiltonian for iV c 10. The complexity of 

the problem clearly increases considerably with increasing N. Rohozinski ‘) has 

listed the states off N configuration for N ~8. As one can see from his table, the 

number increases rapidly. In the diagonalization one needs the coefficients of 

fractional parentage (c.f.p.) for f-bosons. These were generated with the procedure 

discussed in ref. 25). Because of the limitation N s 10, our calculations could not 

be carried out in Ra beyond A = 228. Our results are as follows: 

(i) Vibrations. We have used here the hamiltonian 

H=EdAd+fc&’ gsd+K&id+ Epfip+ &$r+ T(&+ n^#+ f?&. &+ fPia * Lb ) 

(6.5) 
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where 6 denotes number operators, ea, &, i, and & are the operators in (3.4) 

and osd is the usual quadrupole operator of s, d bosons ‘l), 

& = (d+ x t-t St x d”)(*)+X(d+ x d”)(2) ) (6.6) 

with x = -0.75 = fixed. This hamiltonian is suggested by microscopic considerations 

under the assumption that the dominant interactions are of pairing and quadrupole 

type. The parameter values are listed in table 3 and the corresponding fit to the 

energies is shown in fig. 8. Since we want here to analyze a vibration-like situation, 

we have restricted the calculations to nr,, nf s 1. The ground-state band thus contains 

TABLE 3 

Parameters (MeV) of the lpf fit to the radium isotopes 

Isotope 

**ORa 0.43 -0.035 -0.0128 0.732 1.152 0.050 -0.1410 0.0174 
**‘Ra 0.35 -0.035 -0.0097 0.742 1.242 0.050 -0.1396 0.0142 
Z24Ra 0.35 -0.035 -0.0097 0.742 1.242 0.050 -0.1271 0.0142 
226Ra 0.35 -0.035 -0.0099 0.742 1.242 0.050 -0.1327 0.0142 
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Fig. 8. Measured spectra in radium isotopes and U(l6) theoretical fits in the vibrational limit (one pf 
boson in the negative-parity band). The hamiltonian is given in eq. (6.5). Parameter values are in table 3. 
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no negative parity bosons, while the first negative-parity band contains one negative- 

parity boson. 

Using the wave functions obtained from the numerical diagonalization, the El 

operator of eq. (2.3) and the E2 operator 

TCE2) = a:&+p;(f+ xf)(2) ) (6.7) 

we then calculated the ratio R. The comparison with experiment in 220Ra is shown 

in fig. 9. Although the observed values can be reproduced fairly well, the fit requires 

a fine tuning of parameters similar to that discussed above. The reason is that, in 

this vibrational picture, each of the three terms in (2.3) produces transitions primarily 

in one direction. This fine tuning is a somewhat undesirable feature of our fit. 

(ii) Deformations. 
Because of the complexity of the problem we have not analyzed all possible 

deformation schemes. One way to produce octupole deformations is as discussed 

in sect. 3. One adds N, and Nb dependent terms which produce a minimum for 

some value of Nb, as shown in fig. 4. We find this somewhat unjustified from a 

microscopic point of view. We have therefore considered another possibility. We 

start from the hamiltonian (6.5). This hamiltonian conserves separately s, d and p, f 

bosons. We add to it a term of the type 

V=-A8.6, (6.8) 

where 6 is the dipole operator of (4.7). when A is small, the interaction V can be 

thought as originating microscopically from a small dipole-dipole interaction. 

0 I I I I I I 

7 8 9 IO II 12 

J 

Fig. 9. Measured *“Ra R-ratios and theoretical fits with one p-f boson in the negative-parity band. The 

El parameters in eq. (2.3) are (Ye = 0.39, p, = 1.70, y, = -1.55 (all in units of lO-5eZ fm’). The E2 
parameters in eq. (6.7) are (2; = 1.0, pi = -3.0 (all in units of e* fm4). 
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Alternatively, one could add an interaction 

V’=-B$+.& (6.9) 

where 

@+= (St *s+)+(d+*d+)+(p+*p+)+(j-+-j-t) (6.10) 

is the pairing operator. The interaction V’ would then arise from a pairing interaction. 

Both interactions (6.8) and (6.9) mix s, d and p, f bosons producing an octupole- 

dipole deformation (p-f admixtures in the ground state bands). 

Fig. 10 shows a fit to the energy levels of ‘18Ra obtained by diagonalizing the 

hamiltonian in the full s, d, p, f space with N = 6. This fit is comparable in quality 

to those shown in fig. 8. The effects of the p-boson on the energies are minor except 

in the l- state. However, it appears that even small admixtures of p bosons are 

enough to obtain well-behaved El transitions. Fig. 11 shows a fit for the measured 

ratio R in 218Ra. Although specific values for the coefficients CY~, p,, y1 in (2.3) have 

2’8Rc 

EXPERIMENT THEORY 
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Fig. 10. Measured spectrum of *‘*Ra and theoretical fit with many f- and p-bosons. The hamiltonian is 
given in eqs. (6.5) and (6.8). The parameters are Em = .55 MeV, K = -0.027 MeV, K’= -0.147 MeV, 

~~=1.376MeV, ef=0.416MeV, K”=-0.0629 MeV, P=O.O119MeV, A=O.O12MeV, 7’0. 
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oi 
6 7 8 9 IO II I2 13 

J 

Fig. 11. Measured “sRa R-ratios and theoretical fits with many f- and p-bosons. The El parameters are 
(Ye = 0, p, = 2.4, y1 = 0 (all in units of IO-se* fm*). The E2 parameters are (~4 = 1.0, p; = -12.0 (in units 

of ez fm?. 

TABLE 4 

Expectation values of “Ir and A, in the 

yrast band of “*Ra 

0 0.001 0.22 

1 0.008 1.18 

2 0.028 0.28 

3 0.92 0.21 

4 0.089 0.28 

5 0.97 0.20 

6 0.19 0.27 

7 1.04 0.17 

8 0.56 0.23 

9 1.10 0.14 

10 1.78 0.11 

11 1.14 0.09 

12 2.06 0.04 

been used, the results do not depend on balancing contributions of different terms, 

i.e. no fine-tuning is required. It is also instructive to examine the expectation values 

of the operators A, and $, in the yrast band of 218Ra. These are shown in table 4. 

It is quite interesting that (63 increases with J, i.e. the octupole deformation appears 

to become larger with larger angular momentum. 

7. Conclusions 

In this article we have analyzed a description of collective low-lying negative-parity 

states in nuclei in terms of interacting bosons, suggesting that p, f bosons be added 
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to the usual s, d bosons that describe quadrupole degrees of freedom. We have 

discussed in detail two rotational limits of the corresponding U(16) algebraic model, 

one, SU(3), generated by quadrupole interactions and the other, O(4), generated 

by dipole interactions. We have noted that the former is likely to be of greater 

significance in nuclei than the latter due to the predominance of quadrupole forces 

between protons and neutrons. 

U( 16) is a large, complicated algebra and contains other non-rotational dynamic 

symmetries. Within the realm of groups generated by quadrupole interactions is 

O(6). This limit does not correspond to stable deformations in all variables and a 

preliminary examination of the spectra it produces does not immediately suggest 

applications to known data. A detailed analysis of the situation, however, remains 

to be done. Another interesting limit, generated by octupole interactions, corresponds 
to the group O(7). This limit represents unstable octupole deformations and also 
remains to be explored in detail. 

Finally, we have analyzed here the experimental data on the Ra isotopes. The 
dynamic symmetry limits discussed earlier are not relevant here, as these nuclei 
appear to belong to transitional regions. Numerical analysis of the data indicate 
that both vibration- and deformation-like interpretations are possible, though the 
latter, incorporating small ground state octupole correlations, appears to be more 
natural. Whether examples of rotational dynamic symmetries of the SU(3) or O(4) 
type can be found remains to be seen; the present experimental situation does not 
show any evidence of them. 

This work was performed in part under the US Department of Energy Contract 
No. DE-AC-02-76 ER 03074. 
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