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Nuclear octupole correlations and the enhancement of atomic time-reversal violation
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We examine the time-reversal-violating nuclear “Schiff moment” that induces electric dipole moments in
atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the
distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different
from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant
dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that
confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with
low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong en-
hancement of Schiff moments in octupole-deformed nuclei over tha?®siy, for example. We concur that
there is a significant enhancement while pointing to effects neglected in previougledhkin the octupole-
deformed nuclides and®Hg) that may reduce it somewhat, and emphasizing the need for microscopic
calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the
development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some
could be exploited by experiment.

PACS numbgs): 24.80:+y, 21.10.Ky, 21.60.Ev, 32.80.Ys

[. INTRODUCTION electron interaction responsible for atomic-dipole moments
and introduces the Schiff operator. The section concludes
Observation of an atomic electric dipole moment wouldwith an evaluation of the nuclear Schiff moment under the
signal the violation of time-reversél) symmetry[ 1], which assumption that the dominant source of time-reversal invari-
kaon decay tells us is present at some |d@| So far all ~ance is a nucleon electric dipole moment. Section Il reveals
measurements, whether on elementary particles or atoms affiportant differences between the dipole and Schiff opera-
despite rather high sensitivity, have been statistically zerotors, showing that in the Goldhaber-Teller model no Schiff
but experiments continue to improy@]. The level at which ~ strength is produced by the giant dipole resonance. In Sec.
dipole moments are finally seen will help decide among dll, we look at Schiff moments in light nuclei, particularly
number of candidates for the fundamental sourc® wiola-  F, confirming the near absence of Schiff strength in the
tion. giant resonance and pointing out a strong component of
Several theorists have proposed that the light actinidestrength correlated with low-lying octupole excitations. The
would be the best elements in which to detect a small dipoldirst excited state provides the largest contribution to the
moment4—6]. Most recently, the authors of Ref&,6] have  Schiff moment. Section IV takes up octupole correlations in
argued that the existence of octup¢ear-shapeddeforma- heavy nuclei, focusing on octupole deformation. We find no
tion in the nuclei of these atoms enhances the sensitivity oflaw in the argument that moments in such nuclei are collec-
atomic dipole moments to nuclear parify) andT violation ~ tive and enhanced, but point to physics that may make the
by factors of 100—100Qtypically about 400 in the later ref- €nhancement less dramatic than claimed in R&{§] (more
erence over the sensitivity in the atom with the best currentdetailed microscopic calculations of both the octupole-
experimental limit,'%Hg. This level of enhancement is due deformed nuclei and those that are currently used in experi-
in large part to the existence of close-lying parity doubletsments should resolve the uncertaintin Sec. V we argue
and favorable atomic structure in the light actinides, but alsdhat the collective Schiff moments do not depend on the
to fact that it is not the dipole moment of the nucleus thatdelicate and sometimes unanswerable question of whether a
induces a dipole moment in the surrounding electrons, bugucleus is octupole deformed. Low-lying octupole vibrations
rather the “Schiff moment,” a quantity that reflects the generate them in the same way as static octupole deforma-
mean-square radius of the nuclear dipole distribution. Asymtion, increasing the number of atoms in which one can expect
metric nuclei have large intrinsic Schiff moments evenlarge effects. Section VI summarizes our findings.
though their intrinsic dipole moments are very small, in the

same way that a neutral particle can have a finite charge Il SCHIFE MOMENTS
radius. '
The arguments of Ref$5,6] warrant careful investiga- We begin by deriving the nucleus-electron interaction re-

tion. In this paper, we give a pedagogical derivation of thesponsible for generating atomic dipole moments. Though the
Schiff operator, explore its action on nuclear ground statesiesult is well known6—8], a complete derivation has never
and address the role of octupole correlations in generatingppeared in one place, and our derivation differs in its details
ground-state Schiff moments. The discussion is organized &som the others.

follows: Section | contains a derivation of the nucleus- In 1939 Feynmai9] developed a quantum theory of mo-
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lecular forces as part of what is now called the Hellmann-terms. For example, performing a first-order unitary transfor-
Feynman t.heorem,. or sometimes the parameter theorermation ONH g0 ProducesH aion=Hawonit i[U, Hawoml, Where
This charming relative of the virial theorefd0] allows in-  y~d, in our case is the Hermitian operator

sight into how forces in a complex quantum system are bal-

anced against one another, just as they are in a classical

system. In a molecule, for example, internal Coulomb forces U=
between electrons and nuclei counter each other so that there

is no net force on the molecul@r it would move. In the
system we consider here, a neutral atom in a uniform electri
field, there is no net charge so there is no net force on th
system. To achieve this the electrons rearrange themselv
[11] so that there is no net electric field at the nucléwsit
would movse. 7 o

This shielding effect has dramatic and unfortunate impli- 7 _ RPN e SN PGS s
cations for experiments that would probe the atom-nucleus Hatom ;1 KitVimeB-ri+ed(r)— 7 do V'¢(r'))'
system. Because nuclei are of finite extent, however, the (5)
shielding of the electrons varies over the nuclear volume,
and this makes probing the nuclear interior possible, adhe differenceA, between Eqgs(5) and (1), which cannot
shown originally by Schiff12]. We present next a variant of l€ad to an energy shift to first order dy, is given by
Schiff's derivation that uses modern effective-field-theory
techniqueg13] to produce the simpler approximate result
that has been obtained more receiy-§|.

We assume a neutr@honrelativistic, for simplicity atom
containing an extremely heavy nucleus with nonvanishingrhis type of relationship, generated by obvious equalities
spin sitting in a uniform electric field?,o. The atom contains such as([U,Homl)=0, is often called a hypervirial theo-
Z electrons, each with charge while the nuclear charge is rem [14] and can be derived from the Hellmann-Feynman
Ze,, wheree,=—e is the proton charge, and in our units theorem[9]. If one neglects the finite extent of the nucleus
the fine-structure constant is given hy=e/4w. The and replacep(x) by Z8%(x), Eq.(6) can be rearranged into
nucleus has both an electric monopole distribution and a tinyhe form
electric dipole distribution leading to an electric dipole mo-

zZ
El P . (4)

N| &

erforming the commutator generates two terms, one from
gwe last bracketed term in E@L) that cancels the interaction
gg the nucleus and the external field (was constructed to
do thig, and a second that takes its place:

EO_

Z
;l v*iqs(ﬂ)):o. (6)

N| —

A = epao'

ment d=e,d,; other moments can be easily added. In A point=€plo- (Eg+E¢) =0, @]
electric-field gauge the atomic-plus-interacting-nucleus
Hamiltonian can be written in the form where E, is the electric field at the nucleus caused by the

electrons. This simple result states that exact screening holds
-y > . > s in the point-nucleus approximation, and highlights how a
Hatom= 2 [Ki+Vitea(r)—eEri]—€Eodo, (1) nonzero nuclear volume leads to a small but significant
breakdown of screening. Screening is now directly incorpo-
wherek; is the kinetic energy of thith electron p%/2m,in  rated intoH s om. .
the nonrelativistic approximation Fi and 5i are that elec- VI\/e can now takg advlantage .Of ;he;wo'&/ery dlfze”rer;t
tron’s coordinate and momentum relative to the nucleaPCa/®S — atomic _an _nuc ear_— |n_ the Hamiltonian. ) 0
center-of-masgc.m), m, is the electron mass, the nuclear physics is contained p(x) and reflected in
&(r); since Ry/Ra)~(1fm/1 A)~1075, only a few mo-

z

Vi=aS 1 @) ments Ofp()Z) will have practical importance. For this reason
i aj<i |(i _ (j| ' we apply a derivative expansion of the type used in effective-
field theories[13] to p(x). We assume that the monopole
is the electron-electron Coulomb interaction, and part of p(X) can be expanded in a series of the form:
Pro(x as’(x)+bV25%(x)+---. An analogous expression holds
¢(Fi): S L(j() 3) for the dipole part. For this to make sense the coefficients
Am)  |x—r; a,b, ... together with the derivatives must reflect increasing

powers of Ry/R,. Moreover, we must preserve conven-

is the electrostatic potential due to the complete nucleational definitions, such as
charge distributiorp(i) (with dimensiond ~3, and normal-
ized toZ). 30

To explore the physics of Eq1l) we employ a trick to f d*xp(x)=2, (8)
remove the last term in that equation. Becaldg=d, is
tiny even on nuclear scales, it is sufficient to manipulate Eq. 302 3 oo
(1) to first order in that quantity, ignoring all higher-order d*Xx*p(X) = Z(r %), ©)
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o= - = One can make contact with Schiff's pagé2] by defin-
f d*xxp(x)=do, (100 ing quantities pc(x) and py(x) such that pyoi(X)/Z
=pc(x) and pdip(§)= —dg- Vpu(X). Equation(10) of Ref.

f Pxoop(X)= O 11) [12] then follows from Eq.(16) above:
p{X)=Vo,
- A hSehiffe 7y = aO'F d3
where the vector quantit®, [15], which is the second mo- (r)= 2 X(pm(X) = pc(X)) O(r —X).
ment of the dipole distribution, bears a similar relationship to (18)

do asZ(r?)., does tozZ. Thus, we posit
This result is exact but not particularly useful. Expandirg

) ) 2y, ) . ;
p(X)= Zb\°’(x)+Z< >ChV2(§’,(X) and py in the form of Eq.(12) leads to the approximate
6 result
o 2 .. OpV. - a2 o o
—|do-V&*(x)+ %Vzae(x) +o ARSN(r) = —=do VO (A= (), (19
= Pmor(X) + pgip(X) + - - - (120 from which we deduce his forfrof Oy:

as a sum of monopole and dipole parts. Because derivatives 5
with respect to in ¢ (viz., from p) can be transformed into O5"= §do(r2)M. (20)
derivatives with respect t6i through integration by parts,
this is indeed an expansion Ry/Rx. Finally, the hypervirial(or Hellmann-Feynmanquantity

We next separatbl 4, into a part independent of dipole A in Eq. (6) can be written using Eq12) in the form

moments&o and (30 and another time-reversal- and parity- (r?)
violating part proportional to these moments: A=ep&o- E0+ Ee+€zﬁe 2 cho 0, (1)

H atom™= Hgtom+ Hgtgm' (13 .
whereE, is the electrons’ electric field at the nuclear c.m.,
Expandingp(x) as in Eq.(45), we get and the last term arises from averaging that electric field over
the nuclear volume. Because it is the averaged field that can-
o . . Za cels the external field at the nuclear c.m., we see explicitly
Hatom:;1 Ki+Vi—eEyr| _f_i T (14 how nuclear finite size affects screening. Moreover, because
that last term is equivalent to

z

z
. Z
HEm= — a3 AR, (15) T DS, o T80, (22

(16)  We can see that it produces t&@term in the Schiff moment

|x—r] in Eq. (17) [via the second term in E416)]. Theéo termin
Eq. (17) arises from the first term in E{16).
Having formulated expressions for nuclear Schiff mo-
S ments, we want to use them together with assumptions about
moment[8], S: the dominant source d® and T violation to evaluate Schiff
- o e o moments in real nuclei. In the rest of this paper we will
Ah(r)=47S-V&3(r)+--- assume that &P,T-violating component of the nucleon-
nucleon interaction causes a Schiff moment in the distribu-
(17) tion of protons, but we conclude this section by briefly de-
scribing another possibility: that dipole moments of

) . o individual nucleons are responsible for the nuclear Schiff
Thus, the coupling of the nuclear dipole distribution to themoment

atomic electrons is through the Schiff moménthe result
(17) depends in leading order on terms of orégy, because
Eqg. (7) mandates the cancellation of terms of oréRgy.

R d3xpg(X) do-V [ d3x X
Ah(r)=J |_)Pd||ci(| )+ OZ J' Pmor( )
X—=r

Writing out the explicit expansions fgr,,, andpg;, leads to
the general result foAh expressed in terms of the Schiff

R N 5. 5
SZE Op— §d0(r )ch

2This result is a little misleading because it seems to imply that

the magnitude 050 should bed, times a typical nuclear size; this
need not be the case.
'The factor of 47 in the first of Eqs(17) is often[3,7] incorpo- 3Meson-exchange currents can also gener®d-violating
rated in the definition of. nuclear moments directly.
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We introduce proton and neutrdisotopio projection op-  electric dipole operatarr,, but the two are remarkably dif-
erators,p; andn;, for theith nucleon. The dipole moment ferent. Most of the electric dipole strength is in a broad reso-
must point a|ong the Spin}i , of the nuc|eon, |eading to the nance at 10—-20 MeV of excitation energy. Almost none of
impulse-approximation resulf] the Schiff strength, however, goes to the states in the giant

resonance. In fact, in the simple but venerable Goldhaber-
. AL . Teller (GT) model, in which the giant dipole resonance cor-
pdip(r):<z pidpoi- Viph(ri—r) responds to the flw oscillation of all the protons with re-
spect to all the neutrons, the Schiff strength to the resonance
is identically zero.
+ﬁidn5i-ﬁipgT(Fi—F)> , (23 To see this, we start by assumifitf] rigid distributions
for the Z protons and for theN neutrons, which oscillate
harmonically about their c.m. with frequeney. The sepa-
ration of the two rigid sphericdfor simplicity) distributions

is denotedﬁ and the distance of the proton c.m. from the
overall c.m. isN a/A. The charge distribution is then given

I B U, by
do= izl(pidp"—nidn)o'i =df+dg, (24)

wherepP andpp are the proton and neutron electric dipole
densities(normalized to ] associated withd, andd, . This
yields

pet(X)=po(|x—NG/A]), (28
which depends only on the ground-state expectation value
nucleon spin and isospin operators. The Schiff moment ¢
be obtained by evaluatin@o with Eq. (23), producing

a%herepo is the “bare” nuclear-ground-state charge distribu-
Hlon normalized toz protons. Expanding this equation, one

finds components qfg7 proportional taq|, |ql2, a3, . ..,

(30 58 58 or equivalently(becausei oscillates harmonically 14w, O
T —(<r2>ET+<r2>ET)+g(<r2>2T+<r2>§T), (25  and Ziw, 1 and Jiw, etc. In particular one finds that tig@

106 term renormalizes the ground-state charge distribution
through “vacuum fluctuations”(viz., the net 0z w part,
where the nucleus is excitedfiko and then deexcited by the
same amount a result that we will neglect for the moment

where (r?)B; and (r?)p; are the mean-square radii of the
densitiespP and pp and

A since it does not affect the basic physics. Ignoring all but the
<2 f’idp(;if.z> E&8<r2>§T; monopole and dipole parts in E®8), we have

1=

N 3
A - Vi S U A202
.~ o - pet=po(X) — =0 Vpo(X)— a-Va°Vpe(X)|zput -

PEFET T A 108 .

i=1 29

Z,N . .
We expect(r?)zr' to be comparable to nuclear sizes, andyye perform the usual decomposition gfin terms of nor-

thus much larger thagr?)py, which should be comparable majized(Cartesiai creation and destruction operators
to nucleon sizes.

e ey - h
—(Aat -
lll. DISTRIBUTION OF SCHIFF STRENGTH: ITS a=@+a) Nz o (30)
SIGNIFICANCE AND THE ROLE OF THE
GIANT DIPOLE RESONANCE with

For our considerations, as we have said, the most impor-
tant mechanism for a nuclear ground-state electric dipole or
Schiff moment is the action of a pseudoscalaviolating

nucleon-nucleon potential/p. This induces a Schiff mo-
ment given by second-order perturbation theory:

[a.a]]1=6, (32)

whereu *=[Zm] *+[Nm] ! is the inverse reduced mass

of the (rigid) protons-neutrons system, antis the nucleon

mass.

We discuss the effects of vacuum fluctuations under Ref.

27) [17] in the reference list. The only modification they produce
is the replacement gi, in Eq. (29) by the complete ground-
state charge density of the modely,. This “renormaliza-

where the statg¥ ) hasJ,=J# 0 andS, is thezcomponent tion” (removal of the vacuum fluctuationsas, for example,

of the Schiff-moment operatch. The distribution of Schiff  shifted the & w component of the operatq?(i [the last term

strength to the excited staté¥;) is, therefore, a crucial in Eq.(29)]to the second term of that equation, and only true

ingredient in the ground-state moment. At first sight, one3# w excitations remain from that operator. The modified Eq.

might think that this distribution should resemble that of the(29) then expresses the nuclear charge-density operator in

SE<SZ>:% <\I,0|Sz|q;z<_‘l,E|I|VPT|\P0> +e.c.,

035502-4



NUCLEAR OCTUPOLE CORRELATIONS AND TH . .. PHYSICAL REVIEW C 61 035502

terms of the ground-state charge density, thieoltransition  The operatoO,, on the other hand, can excite other shell-

charge density, the/8w (dipole) transition density, etc. model modes — isoscalaril» and all kinds of % w — that
The contribution of the A« excitations to the nuclear are not a part of the GT model. The GT part of thial

momentsdy, andO, are now easy to obtain. To evaluate the gxitations will cancel inS as shown above; the isoscalar

matrix element of the Schiff operator In E®7) we need_ (]jﬁw and all 3w excitations, by contrast, will contribute to
these two moments of the transition charge density, define

by the second term in  EQ. (29 [pgp(X)
=—[N/A]ﬁ-ﬁpch(x) when vacuum fluctuations are in-

cluded, expressed in terms m} which contains the nuclear
raising and lowering operators. One determines tlheo 1
components of these moments from E@—(11):

Octupole modes are important because H& and (30
operators are in some sense the3 andL=1 angular-
momentum projections of the same operator. ™uscalar
O, and E3 strengths, which contain bothid and JFiw
components, are pulled down into low-lying” land 3

R ZN. states(in even-even nuclgiwith similar structure. In combi-
dgT:Tq, (32 nation with the suppression of the Schiff strength in the
giant-resonance region, this similarity in structure results in
5 most of the available Schiff strength being strongly corre-
OST(1hw)==dST(r?),. (33 lated with octupole excitations. The correlation can be seen
3 in the closed-shell nucleu¥0 even without much calcula-
R tion. The lowest 3 (6.05 MeV; T=0) state in'%0 has an
The electron-nucleus coupling is defined My(r) in Eq.  enhancedE3 transition to the ground stat®&(E3)=13.5
(16). Recalling thajmen in that equation is jusp, here, and  +0.7 Weisskopf unit§W.u.). The lowest I (7.12 MeV; T

using Eq.(32) in pgjp, we immediately obtain =0) state decays to this 3state through an enhanc&?®
transition, B(E2)=21+5 W.u., suggesting that the two
Ahgr(17w)=0, (34) states are of similar structur@.e., that the I state is a

quadrupole phonon coupled to the 3tatg. The 1™ state
shows an enhanced isospin-forbidded transition to the
ground state,B(E1)=(3.6=0.4)x10"4 W.u. Although
isospin mixing obviously contributes to the transition, a sig-
nificant portion of the isospin-forbidddal strength appears

implying that
Ser(1hw)=0. (35)

The last conclusion also follows directly from Ed83) and , , -
(17). Equation(34) is more general than EG35), however, t© come from a large |spscalar matrix elemenQgf, a part
because it is true to all orders Ry/Ra. of the E1 operator that is normally masked9]. _

Thus, despite the fact that it contains all the dipole Shell-model calculations reflect the strong correlation be-
strength, the Goldhaber-Teller giant resonance generates figeen the lowestisoscalarand 1- stateg 20,21 Further-
contribution to the Schiff moment and therefore to theMore, the »—2h ground-state correlations in such calcula-

atomic dipole moment. In the next section we will see thations have a large overlap with the state formed by acting on
the same is nearly true in real nuclei. the closed shell with two successi&3 operators. These
higher#i w correlations in the ground-state wave function en-

IV. SCHIFF-STRENGTH DISTRIBUTIONS, OCTUPOLE g‘ﬁmgﬁghg es)i(;ltt::()g :;i(r)];uigolf:éf?;;ﬂ;’?ﬁgﬂggi;%he
CORRELATIONS, AND SCHIFF MOMENTS - ] '
IN LIGHT NUCLEI and O, matrix elemer_1ts. _ _
Let us see how this physics works out i#F, which has

To understand in greater detail the distribution of Schiffodd A and is therefore able to have a ground-state Schiff
strength and the resulting ground-state Schiff moment, wenoment. The ground state dfF is the 1/2 head of aK
first examine the situation in light nuclei. Although the small = 1/2*(sd)? rotational band, while the first excited state
radii and charges of light nuclei mean that their Schiff mo-1/2- state at 110 keVis the basis for a g-1h [p~*(sd)*]
ments will not be large compared to those of heavy nucleik = 1/2~ band. SW3)-basis shell-model calculatiofig2] for
they have the advantage that their structure can be calculatgflese two bands indicate that the 1/Band is an octupole
at a detailed microscopic level. excitation of the ground-state bafid fact 1% is considered

What kinds of excitations will carry the Schiff Strength? the closest th|ng among ||ght nuc|é23] to an Octupo|e_
We describe elementary excitations in terms of harmonicgeformed system, though a nonnegligible part of the 1/2
oscillator shell-model quantd ); these are not exactly the state is an isovector excitatipThough this relation in itself
same as thé » of the Goldhaber-Teller model, but the two jmplies largeE3 and Schiff matrix elements between these
are related. As shown by Brirfk 8], the electric dipole op-  two bands, we have to go beyond these old restricted calcu-
eratord, can excite only those components of the harmonicdations to get the full picture, for two reasons. First, the just-
oscillator shell-model Hamiltoniatwith no residual interac- mentioned octupole ground-state correlations that further en-
tions) corresponding to the giant resonance. That is, thdnance the Schiff strength were omitted. Second, we need to
simple 1 w electric dipole excitations in the harmonic oscil- ensure realistic behavior for the strength distribution of the
lator are exactly the same as in the Goldhaber-Teller modeP, T-violating NN interaction, which according to EQR7) is
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FIG. 1. The distribution of isovectod, strength(bottom), is- FIG. 2. Distributions of the isovectofbottom) and isoscalar
ovector Schiff strength(middle, and isoscalar Schiff {0,)  (toP) o T strengths in*F. The corresponding operators are ap-
strength(top) in a shell-model calculation of°F. See text for dis- Proximations to theP, T-violating nuclear potential.
cussion.

significant low-lying componentagain correlated with the
as important as the Schiff-strength distribution in determin-E3 distribution). Figure 2 displays the calculated - r
ing the ground-state Schiff moment. Fortunately, its behaviostrength, and the giant resonancexluding taily are evi-
is much simpler. For the sake of pedagogy, we consider ilent in both the isovector and isoscalar channels. Finally, in
this section a simple but often accurd®4] one-body ap- Fig. 3 we graph the terms in E¢27) as a function of the
proximation toVpr: constx o in both isovector and iso- €Xcitation energy, assuming that the isoscalar and isovector
scalar channeléve will use a more sophisticated one-body Potentials have equal strength; from this it is clear that the
approximation later The % E1 andVpr operators then lowest 1/2 state almost completely determines the Schiff

differ only in their effect on spitithey are in the same S4) moment, which is given by the sum of all the lines in the

. . - - lot
multiplet]. The strength from the isovecter-r is therefore P

di | f the ai dinol We expect the gross features of the Schiff &g distri-
concentrate In an 39 analog o t e giant dipole reso- p, inns to be general. The Schiff strength will be correlated
nance, and to first approximation lies at the same energ

. . ; Xuith the E3 strength and lie low in energy. Nuclei with
T_he_ isoscalar strength is alsp mostly In a resonance at gctupole deformation, where tHe3 strength lies as low as
similar energy, so that low-lyind®, T-violating strength is

) > ~50 keV and is particularly concentrated, will show the
depleted[25]. There will be some strength at low ENergies myost-enhanced Schiff moments. Nuclei with strong low-

where the Schiff strength IS concentrated, Ju.St as there Iﬁ/ing octupole vibrations should also show enhancement. As
someE1l strength, but it will represent the tail of a reso-

nance. This tail was not included in the calculations of Ref.
[22].

Figures 1-3 display the results of a complete-(D)% w
shell-model calculation fofF, with the center-of-mass mo-
tion fully eliminated. In these calculations contributions to et
the Schiff moment from 2 and7/3» excitations have been
included through the use of an effective chatdeigure 1
shows the isovectdd, distribution, and above it the isovec-
tor S strength. The extent of the cancellation suggested by Y
the Goldhaber-Teller model is remarkable. Also displayed is%
the isoscalar Schiff strength, which is uncancelled and has

A
o]
Lot

_4 -

41t is difficult to treat the important 2o and 3w excitations
consistently in the low-lying states. However, the concept of an » ‘ ‘ ,
effective charge foE3 transitions works well throughout this mass 0 10 120 30 40
region. The results of very truncated{@ + 2+ 3)% w calculations ol eV
suggest a similar prescription for tii&, operator, and in ourflw FIG. 3. The contributions of individual states #%F to the
calculations we applied octupole effective charge®go Reference  ground-state Schiff moment through Eg7). The first excited state
[19] makes a case for this same kind of renormalization. is dominant.
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the E3 strength moves up in energgnd/or the octupole odd-multipoles,’s in the intrinsic wave function. As long as
collectivity is diluted, so should the dominant contribution we do not allow nonaxial core vibrations to be excited, we
to the Schiff strength, and the Schiff moments will becomecan, for the purposes of this paper, write the Schiff operator
smaller. In the remainder of this paper we examine the exteng, as
to which these statements are true in heavy nuclei, where
shell-model calculations are not possible.
_nlx & nor
V. COLLECTIVE SCHIFF MOMENTS IN HEAVY 5= D5 (6)Snd 1.1, 0), (39
OCTUPOLE-DEFORMED NUCLEI

We begin our discussion with a short review of the argu-where S, is the intrinsic-frame operator, with only th¢
ments of Ref[6], the crux of which is related to what we =0 component relevant because others do not generate col-
have already discussed: the ground-state Schiff moment neggttive excitations in the absence of nonaxial deformation or
n?t bf d|r|ecgyfrelateéj to tlhe_ _d|pole gomﬁpt, and in tﬂe cas ibration.[For Vpr, the transformation to the intrinsic frame
ot octupole-detformead nuciel IS considerably more ENNAaNCeqy . ia| hecause that operator is invariant under rotation.
The authors adopted the particle-rotor model, which is no

e have placed hats on ti#s and(on S;,) because at the

fully microscopic and omits a certain amount of valence- antum level thev are operators that act on the wave func
space physics. The arguments are based on collective octfj+antu v y areé op rs wave func-

pole correlations, however, and this model represents themP"S® (A1) in Eq.(38). All of this formalism can be justified
clearly and efficiently. at least in part through projected mean-field calculations, in

In the particle-rotor model the nucleus is described as 3/Nich the state is a function of &l nucleon coordinates; we

single particle coupled to a collective core, the shape owill argue shortly that such calculations are necessary to an-
which can be specified through a function that describes th8Wer questions that arise in the simpler description.
dependence of its radius on angle: In the simple particle-rotor model, matrix elements of
one-body operators lik&, are straightforward to calculate.
The coordinates of the individual nucleons in the core are
R(0,¢)=Ro 1+§1 (=D)"a Y| —m|, (36) integrated over in the intrinsic frame to give an operator that
' is a function of the collective coordinates and those of the
where R0=1.2A1’3. In the intrinsic frame of a deformed odd particle, and can be applied to wave functions of these
nucleus three of ther variables are no longer independent; same coordinates. When one does the integration for the
they are replaced by three Euler angleé$i=1,2,3) that Schiff operator, assuming a nuclear charge density propor-
specify the orientation with respect to the laboratory. Wetional to the mass densit§so that the intrinsic dipole mo-
will assume axial symmetry so that all intrinsi¢s vanish ~ ment is zerg, the result is
except for thea, o's, which we denote by3,. The valence
particle, in the ‘“strong-coupling” version of the model,

moves in a potential that is deformed to match the shape of 3 (1+1)BB 1
the core. The full nuclear wave functioffor a state with szze%ﬂ Zz 271213 + Sin(S-p),
angular momentum quantum numbelsand M, intrinsic =2 ( )

magnetic quantum numbé&t, and parityp) thus depends on (40)

the Euler angles, the intrinsic deformation paramei@rs
and the intrinsic space ) and spin(s) coordinates of the odd  \yhere the last term is the contribution of the valence particle,

particle: which in this case can be neglected compared to the collec-
- f s - tive piece. Without the hats, the first term in E40) is just
(6;,81,1,8|V smk,p) =M1+ RIDyi(6)[ 1+ pP] the classical Schiff moment of a deformed drop.
- Interesting things happen when a core is both quadrupole
X(Br 8| Wing), (37) and octupole deformef.e., when®(g,) is peaked around

nonzero values 0B, andB;]. (For a comprehensive review
of the subject, see Reff23].) The reflection asymmetry im-

> N ~ plies a double-well potential in the coordingsg, which in
(Bi 1,8 Wing =P (B)) P(r,S). (38) turn means that the wave functions with good parity will be
linear combinations of functions peaked around sg@yand

Here A is a normalization constant]iz rotates the . ; X S
D-functions and the intrinsic wave function by 180 degreesItS negative. If the barrier between the two wells is high

i N i - enough, the result will be parity doubling; low-lying states
around they axis, andP changes the sign af and of the i have partners nearby with the same angular momentum

but opposite parity. This means, for one thing, that there will
be an intermediate state in E@7) that enters with a small
%In axially symmetric nuclei, the componeht of total angular ~ energy denominator and therefore a large amplitude. In fact,
momentum along the symmetry axis is equal to that of the particle’dt is often reasonable to ignore all other states in the &ee
angular momentunisometimes denoteft). the shell-model result fot°F in Fig. 3, mainly because of

where the intrinsic particle-core state factorize® as

035502-7



J. ENGEL, J. L. FRIAR, AND A. C. HAYES PHYSICAL REVIEW ®1 035502

the energy denominator, but also because if the deformation J <qr0|\’\/PT|\PO>

is strong enough the matrix element of the Schiff operator to S~-2 Sint , (47

that state is likely to be large. The reason for that is that the J+1 AE

doublets can be viewed as the projection onto positive and

negative parity of the same reflection-asymmetric intrinsic _

state| Vo). where|W ) is the opposite-parity partner of the ground state
The existence of more than one state with the same intrin¥,), AE is the energy difference between the two states,

sic structure is exactly the same phenomenon as the rotandS;, is the intrinsic Schiff momenfthe J-dependent fac-

tional bands associated with ordinary reflection-symmetricor is from the Euler-angle integratipriThe conclusion from

deformation. The matrix element of an operator between thell this is that large intrinsic Schiff moments and small en-

two states of the same doublet is proportional to the diagonargy denominators should make atoms with octupole-

intrinsic-state matrix element of the intrinsic operator, just ajeformed nuclei especially sensitive test®oT violation in

it is for states within a rotational band. For the oper&gy, the nucleon-nucleon interaction.

this diagonal matrix element is large; it is given roughly by  Just how sensitive the tests will be depends on the matrix

the expression in Eq40) with the operators3, replaced by  element of the interactiolp7, to which we now turn. We
the values around which the wave functi®{g,) is peaked  will supply more detail in addressing this subject because the
(i.e., by the classical Schiff moment of the deformed asym+reatment of Ref{6] is incomplete and not entirely accurate.
metric core, with coherent contributions from all the nucle- We assume that the pion is responsible for transmitting most
ons in it® Thus, from Eq.(27), the physical ground-state of the T-violating force from one nucleon to anothg24].
Schiff momentS that determines the atomic electric dipole The nucleon-nucleon interaction produced by one-pion ex-

moment should be approximately change then has the general foj26|
|
v ﬂa_rgkﬁa{a_aﬂcﬁ}5+Cﬂﬁﬁﬁﬁ+cﬂ&hnf;}gﬂ
PT = o -
+Cy(o1t02) - (ri—r2) (71— 72)

exp(—m,|r;—ra|)

(42

m,|ri—r5f? mAﬁ—GJ

where theC;’s label isoscalar, isovector, and isotensor con-Fermi constant, andh is the nucleon masghese factors are
tributions. As long as we excite no particles out of the corejnserted to follow convention The dimensionless parameter
P, T-violating interactions between these particles sum toy then depends on the coupling strengthof the two-body
zero (see Ref[6] for discussiof, and we need worry only interactions and the isospin of the nucleus. Despite its slight
about the interactions between the valence particle and thog§iependence on nuclear structure, this parameter is often
in the core. In what follows, we take the total mass density tdaken as a “heuristic” fundamental quantity. The one-body
be proportional to the charge density, and in fiiom now ~ @pproximation given by Eq43) is slightly different from

on use the symbagl to represent the mass densithis as-  the Simpler and more phenomenological one we used in our
sumption means that the terms with different isospin strucdiScussion of light nuclei. .

ture in Eq.(42) enter in similar ways. Taking the range of the The forr_n_ of Eq.(43) mak.es _the SCh'ﬁ. moment unpleas-
pion to be very shorta decent approximatiof25]), sum- antly sensitive to .the distribution of spin near the nuclear
ming Eq. (42) over the particles in the core, and assumingSurface, wheré/p is largest. The results of Refi6] some-

the neutron and proton densities to be equal gives the effedimes differ by factors of several from those of Re8],
tive nucleon-core interaction primarily because of differences in the valence single-

particle wave function, which carries all the nuclear si)in
. G . .. the particle-rotor model. Only a significantly more sophisti-
Upr=7n_—=0-Vp, (43)  cated calculatioriwhich we advocatewill reduce this un-
2my2 certainty. We, therefore, do not present our own complete
“particle-rotor-model-with-octupole-deformation” calcula-
tions in this section, but instead use that model in its simplest
form, together with qualitative arguments, to identify a few
systematic effects overlooked in the existing calculations.
8As pointed out in Refg5] and[6], the collective enhancement of Our estimate of the size of these effects is obviously uncer-
the dipole moment is much smallézero in fact if the charge dis- tain, but indicates what can be expected in more sophisti-
tribution is proportional to the mass distributidmecause the dipole cated calculations. The new physics always tends to lessen
moment is measured from the center of mass. the enhancement.

where (again p is the core mass-density operat@,is the
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To see the what was neglected in R¢fs6] we follow Ref.[27] and expand the density in the deformation parameters:

p(N)~polr —R(8,¢)+Ro]
2

oo, (44)

*Po(f)—RoPc’)(r)EI: BiY ot 1/2R(2)PS(V)< EI: BiYio

where nowp,(r) is the bare(spherical ground-state mass density of the core, a constant up to r&gius the simplest

version of the liquid-drop picture. The operaﬁ:ﬁﬁ in OPT therefore depends on tlﬁiés, and, contrary to the statements in
Ref.[6], cannot be broken up into pseudoscalar pieces that act separately on the core and particle. In fact, (#dmveg.

have
Y L [ DOV AL I L. B
o-Vp=0-VpotRo. Bl N orrtlgr ~rlPolYi+10lo= N gl gy | pol Yi-10]o
.. Jar+1)2'+1)
—1/2R? y\| ——————=10J’0|LO
OELB'ﬁ' 47T(2L+1)2< L0)

JL+1

X : (45)

r

d L d L+1
dar F)pO[YL+10']|6_ \/E(d—+ T)PO[YL—lU]Ié

where the small square brackets indicate angular-momentufimit to the intrinsic-state expectation value of the operator.
coupling. Referencg6] considers only the first term in this In nuclei with strong octupole deformation, we therefore
expression, which changes the parity of the single particldave

and leaves the core alone. The terms with odd poweﬁ%gof

can do the opposite, however. N~ - G I
Including these other terms is important because in thd Vol Ver| W o) = (Wind Upt| Wi = m<¢K|‘T'VP|¢K>’

strong-coupling limit of the particle-rotor model they tend to (48)

cancel the first term. The reason is hinted at in Réf,

where it is argued that Schiff moments between close-lyingyhich, according to the argument above, should vanish. The
states are suppressed when deformation is rigid and symmelziimates of Refs[5,6] apparently neglect the terms jn

ric. Following Ref.[8], the authors note that to the extent containing thes's that make the shapes of the density dis-

that the density is proportional to the strong one-body poteng;n tion and the potential similar, and so do not take this

tial Ugyong felt by the odd particle and that the spin-orbit effect into account.

force is negligible, matrix elements of-Vp between two Of course the spin-orbit force is not negligible and the
states should be proportional to the energy difference bentrinsic density is not exactly proportional to the mean field,
tween those states, and therefore, very small for close-lyingo the cancellation will not be complete. To get a handle on
doublets. The reason is that under these circumstances how much the terms containing th@'s affect the matrix
element ofUp, we consider the ratio of the matrix element
0-Vpxa-VUgon=i[a-p,Usyond =i[ o p,H(s.p)], in Eq. (48) with the terms included to that without theftie
(46) latter being a simplified version of the quantity calculated in
Refs.[5,6]) for a large number of single-particle orbits. We
so that for two opposite-parity states labeteaindb with the ~ use a deformed harmonic oscillator as a potential,
same core structure,

- - V(N)=—mor? > BY,, (49
<\I’§MK,p|UPTN’?MK,—p)“(‘ﬂa,KW'VP|¢b,K>°‘€a_ €p s '

(47

with deformations3,, B3, andB, equal to those from Table
where thee’s are single-particle energies. The authors therl of Ref. [6] (we ignore higher multipoles and neglect pair-
argue that complications associated with asymmetric deforing). We take the density to be constant inside the liquid
mation eliminate this effect, but in the strong-coupling limit drop and zero outside, a distribution that has the same angu-
the situation is even worse because now the two statdgr shape as the potential, but a significantly different radial
W3y and W3y o) have the same intrinsic structure. dependence. Figure 4 shows the absolute value of the ratio of
As mentioned above, the matrix element of any operator beé¢K|5-€p|¢K) to the same matrix element without the
tween two such states is proportional in the strong-coupling3-dependent terms, for afl=1/2 andK = 3/2 single-particle
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can create a collective Op-h pair, at the same time chang-
ing the parity of the valence particle. The contribution to the
Schiff moment coming from the annihilation of the pair by

UPT nearly cancels the contribution coming from the direct

action ofUpt on the valence particle itself. In any event, the
resonances were completely neglected in H&€], and the
single-particle matrix elements in those papers should there-
fore probably be three or four times smaller.

The very large Schiff moments may be saved, however,
by thecombinationof the two new effects, even though each
reduces Schiff moments when added to the calculations of
Refs.[5,6] in isolation. The spin-flip giant resonance should

not affect those parts dflpT that containB; and operators
like [Y,0]3 that do not change the parity of the valence
particle. The suppression by the residual interaction of one
part of the Schiff moment by a factor of 3 without any effect
0.001 — : ‘ —— — on another part may upset any balance between the two at
E/hw the mean-field level produced by the similarity between the
) ) density and the potential. We will need accurate microscopic
FIG. 4. The ratioo-Vp| to |- Vp,| (see textfor all K=1/2  calculations to test the existence of both effects and the ex-
(boxes and 3/2 statetcrossepin a deformed asymmetric potential tent to which they offset one another.
for ?*Ra. The ratio is usually less than one. Such calculations are within the range of today’s mean-
field technology, and in even-even nuclei they have already
been carried oUt29,30, confirming the large intrinsic Schiff
oments in the radium isotopg31]. In self-consistente.g.,

0.01

levels in ?*Ra below & w of single-particle energy. The

new terms generally have the opposite sign from that of th . . )
B-independent term, and the sum is usually less than the fir .kyrme-HFB calculations the effgct_s of the residual interac-
tion on the ground state are minimized. Therefore, not only

term by itself. The average cancellation is less ferl/2 . . : i .
states than for states with larger spin. Whether the decreaj the relationship between the mean field and the density

will be stronger or weaker in realistic calculations is an ope ! ely to be most accurate in this case, t.)Ut Itis a_lso Ie_ast
question. In self-consistent mean-field calculations, thoug ikely to be vmated_ by corrections to the smglg-pqrﬂcle pic-
there is obviously a correlation between the density and thgure. In odd nuclei, the flrst-ordgr core polgr|zat|on, Wh'Ch
spin-independent part of the field, and we could well see 82> to be treated as a correction to particle-rotor/Nilsson
models, is built into the mean-field; one-particle—one-hole

significant effect. S0 et .
Other physics neglected in the earlier work will also haveeXcitations of the core do not mix with the ground state. This

. . - = - fact, together with a realistic two-body interaction that con-
an effect. The first term in Eq45) [o-Vpo=(1/)poo-r]is  3ins g multipole-multipole terms, has implications for cor-
the spin-flip analog of the electric dipole operat@ith &  rgctions to low-lying transitions from resonances, as well as
difference only in radial form and isospinWe refer to Fig.  ¢or the density. The incorporation of core polarization means
2, where the strength of the related operator in the is-  that the interplay between collective excitations and low-
ovector and isoscalar channels is plotted f&. As noted in  lying states is already apparent at the mean-field level, or in
Sec. Ill, the strength is clearly concentrated in resonances ather words that the usual first-order particle-phonon mixing
about the same energy as the giant dipole resonance. #at reduces low-lying single-particle transitions need not be
simple argumeni28] with a schematic residual interaction in treated by other mearte.g., the RPA We should, therefore,
the random-phase approximatiRPA) shows that the exis- be able at the mean-field level to go a long way towards
tence of the giant dipole resonance of the core suppréskes quantifying the influence of shape and resonances on Schiff
transitions between low-lying single-particle states by a facmoments in octupole-deformed nuclei.
tor of 3 or 4 that depends only on the energy of the resonance
and the energy at which strength would be centered if therg| cOLLECTIVE SCHIFF MOMENTS FROM OCTUPOLE
were no resonance. The low-lying transitions induced by VIBRATIONS

o+ Vpo should be suppressed by roughly the same amount The question of whether the light actinides are octupole

because the operator-r is so much liker (again, see Fig. geformed has a long history. In fact the question is not en-
2). In many-body pertu_rba’qon theory, _thls effect can be UN<irely physical — it is really about the economy of one
derstood as core polarization: the residual strong interactiop,iective-model basis versus another — and it should not
matter so much whether the low-lying states in a nucleus are
best described as the rotation of an octupole-deformed shape
"We should add that the decoupling of the particle and £88& or as a strong low-lying octupole vibration around a rotating
taken into account neither here nor in RE§], could act like the quadrupole shape. Collective Schiff moments arise in either
spin-orbit interaction to mitigate the suppression. scheme. This fact should not be surprising in light of our
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calculations in*°F. To see how it falls out of the collective Veoup= —~Mw2B3r2Y 3, (52)
picture, we assume that the nuclear core has no equilibrium '

octupole deformatiorti.e., (83)=0) and write the operator wherew is the oscillator energy of theymmetrig potential,

B3 in terms of creation and annihilation operators: B acts on the core, andY; o acts on the particle. Denoting
R R a state withn phonons and a particle in orbig} « by
Bz*b’+b, (50 |n,y8 ), we have for the matrix element of the interaction

Voupi DEtWEEN EXCited states with one phonon and the unper-
turbed ground statéassuming just for illustration that the
éground state has positive panity

whereb' creates an octupole phonon wiimtrinsic) mag-
netic quantum numbe=0. It is then clear from Eq(40)
that the Schiff operator acting on a quadrupole-deforme
state with no octupole phonons will create an excited state

with one phonon. The terms ity [see Eq.(45)] that are
proportional toBg can then destroy the phonon, reconnecting
the one-phonon state to the ground state and generating ayjith a value forﬁg, from an appropriat®(E3), we can

collective Schiff moment through E¢27). use the “intermediate”-coupling scheme of REB3] to di-
To see how big such a moment would be we need to bing e83]

know the matrix element gB; between states with zero and agonalize H=H(s.p.J+ H(phonon)-Veoup separately in
one phonons. As can be seen from Ezf), this quantity is posmye- and ne_gatl\_/e-parlty bas_[éé(phonon) Just contains

. ) > the diagonal vibrational energies of the zero- and one-
just the zero-point root-mean-square deﬂ)rmatlovi/ﬁ?,)), phonon statds so that the ground state has the form

which we will call 8. [In other words,8; measures the

spread inB3 of the intrinsic core wave functiod(3)).]

<1’¢I;K|Vcoupl|01¢;—,K> == mw2E3< ¢6K| r2Y3,O| ¢;K>'(53

This quantity can be estimated from the collectivébra- |\I’0>=Z Ai|0"r”i+,K>+; Bj|1"/’fK>’ (54)

tional) B(E3) transition_in an even-even neighbor. Using Eq.

(44) to lowest order in3; one finds[32] and the excited states of opposite parity have the form
B(E3)o+_.3-=(3/4m)4(ZeR)?p3. (51)

[W)=20 CiilLuri)+ 2 Dyjlogi), (59
The important point is that if a collective vibration is soft the .

r.m.s. deformation3; can be as large as the value aroundynere they;'x and ¢;  label single-particle states around

which the wave function is peaked in octupole-deformed Nuthe Fermi surface, and we are still ignoring nonaxial vibra-
clei, and the intrinsic Schiff moment can therefore be just a

large as well. In the laboratorgphysica) Schiff moment, ions. The terms ity that are independent g connect

) o i o the first terms in Eq(54) to the second in Eq55) and vice
there is an additional factor ¢#; coming from the annihila- ersa. The Schiff operator affects the core, connecting the
tion of the phonon byJpr, so that naively we expect the first term in Eq.(54) to the first in Eq(55), and the second to
moment to depend on the deformation parameters in thg,q second, effectively replacifg in Eq. (40) byﬁg. In this
cor_nbination,BZE%, where an unbarrep’ is the value around way the sphericafs’g-independent part dﬁPT (the only part
which the deformed wave function is peaked. The relevantgnsidered in Refs[5,6]) can also generate a collective
quantity for octupole-deformed nuclei 8,83 (see Ref[6]  Schiff moment.
for a discussion of why so that if the r.m.s. octupole defor- |t s possible to use the intermediate-coupling scheme
mation B in a vibrational nucleus is comparable to the staticeven as the phonon energy goes to zero and octupole defor-
value B3 of the deformation in an octupole-deformed mation sets in. In that case, because the single-particle
nucleus, any differences in Schiff moments come from theHamiltonians in the two schemes are the same, energies and
energy denominator, single-particle structure, or other corgnatrix elements should not depend strongly on which
excitations, not from the difference between deformation angcheme is use¥lOne implication(which is a stronger ver-
vibration. We will refine this statement shortly. sion of a remark made aboyvés that if the dynamicg,

First, however, we note that the termsUip; that do not  associated with the vibration is comparable to the sig{in

contain 35 are usually even more important than those justan octupole-deformed nucleus, and if the energy of the octu-
discussed, even though they do not alter the number d?ole phonon is small compared to typical single-particle
phonons, because the zero- and one-phonon states rrﬁj_gllttmgs or nonaxial core-excitation energies, drrdymajo_r
through the residual strong particle-core interaction. The apdifference between Schiff moments in the two cases is the
proximate form of this coupling can be derived in many

ways; one is to examine the change in energy under a small

deformation of the core. Not surprisingly, for an oscillator 8they will not be identical because in the intermediate-coupling
single-particle potential this leads to the same interaction thajcheme some of the states are particles and some holes, and single-
appears in the octupole-deformed potential of the strongparticle excitation energies are measured with respect to the Fermi
coupling schemé¢see Eq.(49)]: surface[33].
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energy denominator in E27). To see this, one can imagine give a laboratory Schiff moment of 710 "5 e fm®, a
treating the phonon as a “decoupling” perturbatiGaong  value a few times smaller than the results of Réf.for most
with the Coriolis interactiohin the strong-coupling scheme, ¢ iheo light actinides. When we include thg-dependent
as is done in Ref[33]. Although the diagonal matrix ele- terms, this number goes up tox40 % e fm, which is
ments of the perturbation cause energy shifts, wave functiongg times the estimate for Hg in R§85] and comparable to
are only affected by the off-diagonal matrix elements withy o \oqits of Ref[6] for ?*>Ra. These calculations are far
bands built on higher single-particle states or other kinds OFrom perfect; we had to push the energy of the octupole

vibrations. Thus wave functions, transition amplitudes, etc.bhonon well above the value froR¥Pu to et the enerav of
will not undergo large changes until the energy of the pho- : . P . 9 energy
he first excited state if*%Pu right. The uncertainty in the

non approaches those of other excitations. For th its is. theref ite | d d mi .
intermediate-coupling scheme, this means that the matrix e[€SUlts Is, therefore, quite large and we need microscopic
calculations here too. But the intrinsic Schiff moments of

ements ofSandVpy connecting ground states to low-energy nuclei with low-lying octupole vibrations will clearly be col-

octupole phonons should not undergo radical change Onjective and some mav of these nuclides mav be easier to
the phonon is low enough in energy, and that nothing speci F ? i y may be )
>)nvest|gate experimentally than the short-lived radium iso-

will happen in the limit that the phonons have zero energ

and the core develops static deformation. Of course if thd®PeS:

phonon lies high in the spectrum, the matrix elements can be

very different from the static limit, and one must carry out

the intermediate-coupling calculation to get a handle on the VIl. CONCLUSION

size of the Schiff moment |n.duced by vibrations. The size of Schiff moments in nuclei with octupole cor-
We have done just that in several quadrupole-deformed | . . . L )

_ _ R _ relations is determined by three factors: intrinsic Schiff mo-
nuclei, taking vibrationaly’s and phonon energies from onq “energy denominators, and the matrix elements of
tabulations of nearby even-even nud@p], and again ne- Uor In their di .  the f fth R
glecting pairing. In'%Hg, the most accurately measured iso- VT 1N their discussion of the first two of these, R¢lf5,6]

— are on rather firm ground; it is hard to imagine, for example,
tope at present, we usg; = 0.09, a phonon energy of 3 . .
o0 . that the matrix elements between parity doublets of the
MeV (both taken from afE3 transition in?°*Hg, which may : . . .

— 199, g drupole and hexade- Schiff operator are radically different from those estimates,
havel a larges tharf1 g)’ T fq“ah_ pe I _ and as we have pointed out, even nuclei without asymmetri-
cupole parameters from .djg ] (for this simple estimate cally deformed cores can benefit from the same mechanism.
we ignore the fact that this nucleus is probably very )soft The third factor is far trickier. however

. . . _9 3 L -

The result_mg Schiff moment Is810 *7 e fm, about half The particle-core calculations reported both here and in
of the estimate from Ref35] that includes no nuclear cor- carlier work can onlv supply a aross estimate of the matrix
relations of any kind. In a nucleus like this, moreover, with a - y _p_p yag ) o
relatively high-energy phonon, the nonaxial octupole vibra-€lement ofVpr. The mixing that that interaction induces
tions will lie nearby in energy and can be expected to Condepends Sensmvely on the valence smgle-partlcle wave func-
tribu_te comparable amounts. When _aII is said _and_ done, vition at the nuclear surface, wheVe is largest. Truly micro-
brations may turn out to be the dominant contribution to thescopic calculations will give better valence wave functions
Schiff moment 'nlggHg,l and they clearly should be included and, if they are self-consistent, will also better represent the
in any realistic calculation. Such a calculation has never beegorrelation between density and mean field, and incorporate
done, but is crucial if we want a reliable assessment of thgne effects of resonances caused by the residual interaction.
advantages offered by nuclei with strong octupole correlain vibrational nuclei it will be necessary to go a little further,
tions. Here we need a good microscopic treatment of alhyt even there mean-field calculations will shed light on the
kinds of vibrations, including the very sofy quadrupole jssues we have discussed.
mode, and must obviously go beyond mean-field theory. A Finally, for experimentalists to draw strong conclusions
shell-model calculation may be possible. o about enhancements ové&*Hg, better calculations in that

An example of a large vibrational Schiff moment is in the nycleus must be done as well. It is conceivable that the
attractive for experiment, in particular a spin-1/2 groundthan that of'%Hg (this is the figure reported in Re#6]), but
state(to eliminate quadrupole effects in a magnetic fieldd  we have pointed to physical effects that could make the
a long half-life compared to the light actinidgte drawback  gchiff moment in1°Hg a few times larger than earlier cal-
is in its electronic structure, which is more complicated thancations indicated and the Schiff moments in the light ac-

H : i 23 i L. .
that of radiuni. The collective E3 in **Pu gives B3 tinides somewhat smaller than suggested by the calculations
=0.09, and the nucleus has large quadrupole and hexadecgf Refs.[5,6], even within the same model. The machinery
pole deformations £,=0.223, 8,=0.095). Together with  of modern nuclear structure theory, which is powerful
the high value ofZ, this makes the intrinsic Schiff moment enough to provide reasonably accurate estimates of the mo-
very large. The phonon lies at 470 keV, about eight timesments in both kinds of nuclei, should be used as soon as
higher than the lowest state ff'Ra, but the large intrinsic possible to provide experimentalists firm predictions for the
Schiff moment compensates in part. Our calculations, withenhancement they can expect in difficult experiments with
only the B-independent terms included n(as in Ref.[6])  radioactive nuclei.
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