
PHYSICAL REVIEW C, VOLUME 61, 035502
Nuclear octupole correlations and the enhancement of atomic time-reversal violation
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We examine the time-reversal-violating nuclear ‘‘Schiff moment’’ that induces electric dipole moments in
atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the
distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different
from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant
dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that
confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with
low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong en-
hancement of Schiff moments in octupole-deformed nuclei over that of199Hg, for example. We concur that
there is a significant enhancement while pointing to effects neglected in previous work~both in the octupole-
deformed nuclides and199Hg) that may reduce it somewhat, and emphasizing the need for microscopic
calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the
development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some
could be exploited by experiment.

PACS number~s!: 24.80.1y, 21.10.Ky, 21.60.Ev, 32.80.Ys
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I. INTRODUCTION

Observation of an atomic electric dipole moment wou
signal the violation of time-reversal~T! symmetry@1#, which
kaon decay tells us is present at some level@2#. So far all
measurements, whether on elementary particles or atoms
despite rather high sensitivity, have been statistically ze
but experiments continue to improve@3#. The level at which
dipole moments are finally seen will help decide among
number of candidates for the fundamental source ofT viola-
tion.

Several theorists have proposed that the light actini
would be the best elements in which to detect a small dip
moment@4–6#. Most recently, the authors of Refs.@5,6# have
argued that the existence of octupole~pear-shaped! deforma-
tion in the nuclei of these atoms enhances the sensitivit
atomic dipole moments to nuclear parity~P! andT violation
by factors of 100–1000~typically about 400 in the later ref
erence! over the sensitivity in the atom with the best curre
experimental limit,199Hg. This level of enhancement is du
in large part to the existence of close-lying parity doubl
and favorable atomic structure in the light actinides, but a
to fact that it is not the dipole moment of the nucleus th
induces a dipole moment in the surrounding electrons,
rather the ‘‘Schiff moment,’’ a quantity that reflects th
mean-square radius of the nuclear dipole distribution. Asy
metric nuclei have large intrinsic Schiff moments ev
though their intrinsic dipole moments are very small, in t
same way that a neutral particle can have a finite cha
radius.

The arguments of Refs.@5,6# warrant careful investiga
tion. In this paper, we give a pedagogical derivation of
Schiff operator, explore its action on nuclear ground sta
and address the role of octupole correlations in genera
ground-state Schiff moments. The discussion is organize
follows: Section I contains a derivation of the nucleu
0556-2813/2000/61~3!/035502~13!/$15.00 61 0355
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electron interaction responsible for atomic-dipole mome
and introduces the Schiff operator. The section conclu
with an evaluation of the nuclear Schiff moment under t
assumption that the dominant source of time-reversal inv
ance is a nucleon electric dipole moment. Section II reve
important differences between the dipole and Schiff ope
tors, showing that in the Goldhaber-Teller model no Sch
strength is produced by the giant dipole resonance. In S
III, we look at Schiff moments in light nuclei, particularl
19F, confirming the near absence of Schiff strength in
giant resonance and pointing out a strong componen
strength correlated with low-lying octupole excitations. T
first excited state provides the largest contribution to
Schiff moment. Section IV takes up octupole correlations
heavy nuclei, focusing on octupole deformation. We find
flaw in the argument that moments in such nuclei are coll
tive and enhanced, but point to physics that may make
enhancement less dramatic than claimed in Refs.@5,6# ~more
detailed microscopic calculations of both the octupo
deformed nuclei and those that are currently used in exp
ments should resolve the uncertainty!. In Sec. V we argue
that the collective Schiff moments do not depend on
delicate and sometimes unanswerable question of wheth
nucleus is octupole deformed. Low-lying octupole vibratio
generate them in the same way as static octupole defor
tion, increasing the number of atoms in which one can exp
large effects. Section VI summarizes our findings.

II. SCHIFF MOMENTS

We begin by deriving the nucleus-electron interaction
sponsible for generating atomic dipole moments. Though
result is well known@6–8#, a complete derivation has neve
appeared in one place, and our derivation differs in its det
from the others.

In 1939 Feynman@9# developed a quantum theory of mo
©2000 The American Physical Society02-1



n
re

a
si
ce
th

tr
th
lv

li
eu
th
e
a

f
ry

ult

in

s
ts

tin
o-
In
u

ea

lea

Eq
r

or-

om
n

ies
-
an
us

he
olds
a

ant
o-

nt
of

n
ve-
le
m:
s
nts
ing
n-

J. ENGEL, J. L. FRIAR, AND A. C. HAYES PHYSICAL REVIEW C61 035502
lecular forces as part of what is now called the Hellman
Feynman theorem, or sometimes the parameter theo
This charming relative of the virial theorem@10# allows in-
sight into how forces in a complex quantum system are b
anced against one another, just as they are in a clas
system. In a molecule, for example, internal Coulomb for
between electrons and nuclei counter each other so that
is no net force on the molecule~or it would move!. In the
system we consider here, a neutral atom in a uniform elec
field, there is no net charge so there is no net force on
system. To achieve this the electrons rearrange themse
@11# so that there is no net electric field at the nucleus~or it
would move!.

This shielding effect has dramatic and unfortunate imp
cations for experiments that would probe the atom-nucl
system. Because nuclei are of finite extent, however,
shielding of the electrons varies over the nuclear volum
and this makes probing the nuclear interior possible,
shown originally by Schiff@12#. We present next a variant o
Schiff’s derivation that uses modern effective-field-theo
techniques@13# to produce the simpler approximate res
that has been obtained more recently@6–8#.

We assume a neutral~nonrelativistic, for simplicity! atom
containing an extremely heavy nucleus with nonvanish
spin sitting in a uniform electric field,EW 0. The atom contains
Z electrons, each with chargee, while the nuclear charge i
Zep , whereep52e is the proton charge, and in our uni
the fine-structure constant is given bya5ep

2/4p. The
nucleus has both an electric monopole distribution and a
electric dipole distribution leading to an electric dipole m
ment dW [epdW 0; other moments can be easily added.
electric-field gauge the atomic-plus-interacting-nucle
Hamiltonian can be written in the form

Hatom5(
i 51

Z

@Ki1Vi1ef~rW i !2eEW 0•rW i #2epEW 0•dW 0 , ~1!

whereKi is the kinetic energy of thei th electron (pW i
2/2me in

the nonrelativistic approximation!, rW i and pW i are that elec-
tron’s coordinate and momentum relative to the nucl
center-of-mass~c.m.!, me is the electron mass,

Vi5a(
j , i

1

urW i2rW j u
, ~2!

is the electron-electron Coulomb interaction, and

f~rW i !5
ep

4pE d3xr~xW !

uxW2rW i u
~3!

is the electrostatic potential due to the complete nuc
charge distributionr(xW ) ~with dimensionsl 23, and normal-
ized toZ).

To explore the physics of Eq.~1! we employ a trick to
remove the last term in that equation. BecauseudW 0u[d0 is
tiny even on nuclear scales, it is sufficient to manipulate
~1! to first order in that quantity, ignoring all higher-orde
03550
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terms. For example, performing a first-order unitary transf
mation onHatom producesH̄atom.Hatom1 i @U,Hatom#, where
U;d0 in our case is the Hermitian operator

U5
dW 0

Z
•(

i 51

Z

pW i . ~4!

Performing the commutator generates two terms, one fr
the last bracketed term in Eq.~1! that cancels the interactio
of the nucleus and the external field (U was constructed to
do this!, and a second that takes its place:

H̄atom5(
i 51

Z S Ki1Vi2eEW 0•rW i1ef~rW i !2
ep

Z
dW 0•¹W if~rW i ! D .

~5!

The difference,D, between Eqs.~5! and ~1!, which cannot
lead to an energy shift to first order ind0, is given by

D5epdW 0•S EW 02
1

Z (
i 51

Z

¹W if~rW i !D 50. ~6!

This type of relationship, generated by obvious equalit
such aŝ @U,Hatom#&[0, is often called a hypervirial theo
rem @14# and can be derived from the Hellmann-Feynm
theorem@9#. If one neglects the finite extent of the nucle
and replacesr(xW ) by Zd3(xW ), Eq. ~6! can be rearranged into
the form

Dpoint5epdW 0•~EW 01EW e![0, ~7!

whereEW e is the electric field at the nucleus caused by t
electrons. This simple result states that exact screening h
in the point-nucleus approximation, and highlights how
nonzero nuclear volume leads to a small but signific
breakdown of screening. Screening is now directly incorp
rated intoH̄atom.

We can now take advantage of the two very differe
scales — atomic and nuclear — in the Hamiltonian. All
the nuclear physics is contained inr(xW ) and reflected in
f(rW); since (RN /RA);(1 fm/1 Å);1025, only a few mo-
ments ofr(xW ) will have practical importance. For this reaso
we apply a derivative expansion of the type used in effecti
field theories@13# to r(xW ). We assume that the monopo
part of r(xW ) can be expanded in a series of the for
ad3(xW )1b¹W 2d3(xW )1•••. An analogous expression hold
for the dipole part. For this to make sense the coefficie
a,b, . . . together with the derivatives must reflect increas
powers of RN /RA . Moreover, we must preserve conve
tional definitions, such as

E d3xr~xW !5Z, ~8!

E d3xx2r~xW !5Z^r 2&ch, ~9!
2-2
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E d3xxWr~xW !5dW 0 , ~10!

E d3xxWx2r~xW !5OW 0 , ~11!

where the vector quantityOW 0 @15#, which is the second mo
ment of the dipole distribution, bears a similar relationship
dW 0 asZ^r 2&ch does toZ. Thus, we posit

r~xW !5FZd3~xW !1Z
^r 2&ch

6
¹W 2d3~xW !G

2FdW 0•¹W d3~xW !1
OW 0•¹W

10
¹W 2d3~xW !G1•••

[rmon~xW !1rdip~xW !1••• ~12!

as a sum of monopole and dipole parts. Because deriva
with respect toxW in f ~viz., from r) can be transformed into
derivatives with respect torW i through integration by parts
this is indeed an expansion inRN /RA .

We next separateH̄atom into a part independent of dipol
momentsdW 0 and OW 0 and another time-reversal- and parit
violating part proportional to these moments:

H̄atom5Hatom
0 1Hatom

PT . ~13!

Expandingr(xW ) as in Eq.~45!, we get

Hatom
0 5(

i 51

Z

Ki1Vi2eEW 0•rW i2
Za

r i
1•••, ~14!

Hatom
PT 52a(

i 51

Z

Dh~rW i !, ~15!

Dh~rW !5E d3xrdip~xW !

uxW2rWu
1

dW 0•¹W

Z E d3xrmon~x!

uxW2rWu
. ~16!

Writing out the explicit expansions forrmon andrdip leads to
the general result forDh expressed in terms of the Schi
moment@8#, SW :

Dh~rW !54pSW •¹W d3~rW !1•••

SW 5
1

10FOW 02
5

3
dW 0^r

2&chG . ~17!

Thus, the coupling of the nuclear dipole distribution to t
atomic electrons is through the Schiff moment.1 The result
~17! depends in leading order on terms of orderRN

3 , because
Eq. ~7! mandates the cancellation of terms of orderRN .

1The factor of 4p in the first of Eqs.~17! is often @3,7# incorpo-

rated in the definition ofSW .
03550
o
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One can make contact with Schiff’s paper@12# by defin-
ing quantities rC(x) and rM(x) such that rmon(x)/Z
5rC(x) andrdip(xW )52dW 0•¹W rM(x). Equation~10! of Ref.
@12# then follows from Eq.~16! above:

DhSchiff~rW !5
dW 0• r̂

r 2 E d3x„rM~x!2rC~x!…u~r 2x!.

~18!

This result is exact but not particularly useful. ExpandingrC
and rM in the form of Eq.~12! leads to the approximate
result

DhSchiff~rW !.
2p

3
dW 0•¹W d3~rW !~^r 2&M2^r 2&C!, ~19!

from which we deduce his form2 of OW 0:

OW 0
Schiff5

5

3
dW 0^r

2&M. ~20!

Finally, the hypervirial~or Hellmann-Feynman! quantity
D in Eq. ~6! can be written using Eq.~12! in the form

D5epdW 0•S EW 01EW e1¹W 2EW e

^r 2&ch

6
1••• D[0, ~21!

whereEW e is the electrons’ electric field at the nuclear c.m
and the last term arises from averaging that electric field o
the nuclear volume. Because it is the averaged field that c
cels the external field at the nuclear c.m., we see explic
how nuclear finite size affects screening. Moreover, beca
that last term is equivalent to

2pa

3
^r 2&ch(

i 51

Z

dW 0•¹W id
3~rW i !, ~22!

we can see that it produces thedW 0 term in the Schiff moment
in Eq. ~17! @via the second term in Eq.~16!#. TheOW 0 term in
Eq. ~17! arises from the first term in Eq.~16!.

Having formulated expressions for nuclear Schiff m
ments, we want to use them together with assumptions a
the dominant source ofP andT violation to evaluate Schiff
moments in real nuclei. In the rest of this paper we w
assume that aP,T-violating component of the nucleon
nucleon interaction causes a Schiff moment in the distri
tion of protons, but we conclude this section by briefly d
scribing another possibility: that dipole moments
individual nucleons are responsible for the nuclear Sc
moment.3

2This result is a little misleading because it seems to imply t

the magnitude ofOW 0 should bed0 times a typical nuclear size; thi
need not be the case.

3Meson-exchange currents can also generateP,T-violating
nuclear moments directly.
2-3
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We introduce proton and neutron~isotopic! projection op-
erators,p̂i and n̂i , for the i th nucleon. The dipole momen
must point along the spin,sW i , of the nucleon, leading to th
impulse-approximation result@7#

rdip~rW !5K (
i 51

A

p̂idpsW i•¹W irPT
p ~rW i2rW !

1n̂idnsW i•¹W irPT
n ~rW i2rW !L , ~23!

whererPT
p andrPT

n are the proton and neutron electric dipo
densities~normalized to 1! associated withdp anddn . This
yields

dW 05K (
i 51

A

~ p̂idp1n̂idn!sW i L [dW 0
p1dW 0

n , ~24!

which depends only on the ground-state expectation valu
nucleon spin and isospin operators. The Schiff moment
be obtained by evaluatingOW 0 with Eq. ~23!, producing

OW 0

10
5

dW 0
p

6
~^r 2&PT

p 1^r 2&PT
Z !1

dW 0
n

6
~^r 2&PT

n 1^r 2&PT
N !, ~25!

where ^r 2&PT
p and ^r 2&PT

n are the mean-square radii of th
densitiesrPT

p andrPT
n and

K (
i 51

A

p̂idpsW i r i
2L [dW 0

p^r 2&PT
Z ;

K (
i 51

A

n̂idnsW i r i
2L [dW 0

n^r 2&PT
N . ~26!

We expect^r 2&PT
Z,N to be comparable to nuclear sizes, a

thus much larger than̂r 2&PT
p,n , which should be comparabl

to nucleon sizes.

III. DISTRIBUTION OF SCHIFF STRENGTH: ITS
SIGNIFICANCE AND THE ROLE OF THE

GIANT DIPOLE RESONANCE

For our considerations, as we have said, the most im
tant mechanism for a nuclear ground-state electric dipole
Schiff moment is the action of a pseudoscalarT-violating
nucleon-nucleon potential,V̂PT . This induces a Schiff mo-
ment given by second-order perturbation theory:

S[^Sz&5(
iÞ0

^C0uSzuC i&^C i uV̂PTuC0&
E02Ei

1c.c., ~27!

where the stateuC0& hasJz5JÞ0 andSz is thez component
of the Schiff-moment operatorSW . The distribution of Schiff
strength to the excited statesuC i& is, therefore, a crucia
ingredient in the ground-state moment. At first sight, o
might think that this distribution should resemble that of t
03550
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electric dipole operatorrWtz , but the two are remarkably dif
ferent. Most of the electric dipole strength is in a broad re
nance at 10–20 MeV of excitation energy. Almost none
the Schiff strength, however, goes to the states in the g
resonance. In fact, in the simple but venerable Goldhab
Teller ~GT! model, in which the giant dipole resonance co
responds to the 1\v oscillation of all the protons with re-
spect to all the neutrons, the Schiff strength to the resona
is identically zero.

To see this, we start by assuming@16# rigid distributions
for the Z protons and for theN neutrons, which oscillate
harmonically about their c.m. with frequencyv. The sepa-
ration of the two rigid spherical~for simplicity! distributions
is denotedqW and the distance of the proton c.m. from th
overall c.m. isNqW /A. The charge distribution is then give
by

r̂GT~xW !5r0~ uxW2NqW /Au!, ~28!

wherer0 is the ‘‘bare’’ nuclear-ground-state charge distrib
tion normalized toZ protons. Expanding this equation, on
finds components ofr̂GT proportional touqW u, uqW u2, uqW u3, . . . ,
or equivalently~becauseqW oscillates harmonically!, 1\v, 0
and 2\v, 1 and 3\v, etc. In particular one finds that theqW 2

term renormalizes the ground-state charge distribut
through ‘‘vacuum fluctuations’’~viz., the net 0\v part,
where the nucleus is excited 1\v and then deexcited by th
same amount!, a result that we will neglect for the momen
since it does not affect the basic physics. Ignoring all but
monopole and dipole parts in Eq.~28!, we have

r̂GT.r0~x!2
N

A
qW •¹W r0~x!2

N3

10A3
qW •¹W qW 2¹2r0~x!u3\v1•••.

~29!

We perform the usual decomposition ofqW in terms of nor-
malized~Cartesian! creation and destruction operators

qW 5~aW †1aW !A \

2mv
, ~30!

with

@ai ,aj
†#5d i j , ~31!

wherem215@Zm#211@Nm#21 is the inverse reduced mas
of the ~rigid! protons-neutrons system, andm is the nucleon
mass.

We discuss the effects of vacuum fluctuations under R
@17# in the reference list. The only modification they produ
is the replacement ofr0 in Eq. ~29! by the complete ground
state charge density of the model,rch. This ‘‘renormaliza-
tion’’ ~removal of the vacuum fluctuations! has, for example,
shifted the 1\v component of the operatorq2qW @the last term
in Eq. ~29!# to the second term of that equation, and only tr
3\v excitations remain from that operator. The modified E
~29! then expresses the nuclear charge-density operato
2-4
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terms of the ground-state charge density, the 1\v transition
charge density, the 3\v ~dipole! transition density, etc.

The contribution of the 1\v excitations to the nuclea
momentsdW 0, andOW 0 are now easy to obtain. To evaluate t
matrix element of the Schiff operator in Eq.~27! we need
these two moments of the transition charge density, defi
by the second term in Eq. ~29! @rdip(xW )
52@N/A#qW •¹W rch(x) when vacuum fluctuations are in
cluded#, expressed in terms ofqW , which contains the nuclea
raising and lowering operators. One determines the 1\v
components of these moments from Eqs.~8!–~11!:

dW 0
GT5

ZN

A
qW , ~32!

OW 0
GT~1\v!5

5

3
dW 0

GT^r 2&ch. ~33!

The electron-nucleus coupling is defined byDh(rW) in Eq.
~16!. Recalling thatrmon in that equation is justrch here, and
using Eq.~32! in rdip , we immediately obtain

DhGT~1\v![0, ~34!

implying that

SW GT~1\v![0. ~35!

The last conclusion also follows directly from Eqs.~33! and
~17!. Equation~34! is more general than Eq.~35!, however,
because it is true to all orders inRN /RA .

Thus, despite the fact that it contains all the dipo
strength, the Goldhaber-Teller giant resonance generate
contribution to the Schiff moment and therefore to t
atomic dipole moment. In the next section we will see th
the same is nearly true in real nuclei.

IV. SCHIFF-STRENGTH DISTRIBUTIONS, OCTUPOLE
CORRELATIONS, AND SCHIFF MOMENTS

IN LIGHT NUCLEI

To understand in greater detail the distribution of Sch
strength and the resulting ground-state Schiff moment,
first examine the situation in light nuclei. Although the sm
radii and charges of light nuclei mean that their Schiff m
ments will not be large compared to those of heavy nuc
they have the advantage that their structure can be calcu
at a detailed microscopic level.

What kinds of excitations will carry the Schiff strength
We describe elementary excitations in terms of harmon
oscillator shell-model quanta (\v); these are not exactly th
same as the\v of the Goldhaber-Teller model, but the tw
are related. As shown by Brink@18#, the electric dipole op-
eratordW 0 can excite only those components of the harmon
oscillator shell-model Hamiltonian~with no residual interac-
tions! corresponding to the giant resonance. That is,
simple 1\v electric dipole excitations in the harmonic osc
lator are exactly the same as in the Goldhaber-Teller mo
03550
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The operatorOW 0, on the other hand, can excite other she
model modes — isoscalar 1\v and all kinds of 3\v — that
are not a part of the GT model. The GT part of the 1\v

excitations will cancel inSW as shown above; the isoscal
1\v and all 3\v excitations, by contrast, will contribute t

SW .

Octupole modes are important because theE3 and OW 0

operators are in some sense theL53 and L51 angular-
momentum projections of the same operator. Theisoscalar
O0 and E3 strengths, which contain both 1\v and 3\v
components, are pulled down into low-lying 12 and 32

states~in even-even nuclei! with similar structure. In combi-
nation with the suppression of the Schiff strength in t
giant-resonance region, this similarity in structure results
most of the available Schiff strength being strongly cor
lated with octupole excitations. The correlation can be s
in the closed-shell nucleus16O even without much calcula
tion. The lowest 32(6.05 MeV; T50) state in 16O has an
enhancedE3 transition to the ground state,B(E3)513.5
60.7 Weisskopf units~W.u.!. The lowest 12(7.12 MeV; T
50) state decays to this 32 state through an enhancedE2
transition, B(E2)52165 W.u., suggesting that the tw
states are of similar structure~i.e., that the 12 state is a
quadrupole phonon coupled to the 32 state!. The 12 state
shows an enhanced isospin-forbiddenE1 transition to the
ground state,B(E1)5(3.660.4)31024 W.u. Although
isospin mixing obviously contributes to the transition, a s
nificant portion of the isospin-forbiddenE1 strength appears
to come from a large isoscalar matrix element ofOW 0, a part
of the E1 operator that is normally masked@19#.

Shell-model calculations reflect the strong correlation
tween the lowest isoscalar 32 and 12 states@20,21#. Further-
more, the 2p22h ground-state correlations in such calcul
tions have a large overlap with the state formed by acting
the closed shell with two successiveE3 operators. These
higher-\v correlations in the ground-state wave function e
hance the excitation of octupolelike 3\v components in the
12 and 32 states, leading to larger low-lying isoscalarE3
andOW 0 matrix elements.

Let us see how this physics works out in19F, which has
odd A and is therefore able to have a ground-state Sc
moment. The ground state of19F is the 1/21 head of aK
51/21(sd)3 rotational band, while the first excited state~a
1/22 state at 110 keV! is the basis for a 4p-1h @p21(sd)4#
K51/22 band. SU~3!-basis shell-model calculations@22# for
these two bands indicate that the 1/22 band is an octupole
excitation of the ground-state band~in fact 19F is considered
the closest thing among light nuclei@23# to an octupole-
deformed system, though a nonnegligible part of the 12

state is an isovector excitation!. Though this relation in itself
implies largeE3 and Schiff matrix elements between the
two bands, we have to go beyond these old restricted ca
lations to get the full picture, for two reasons. First, the ju
mentioned octupole ground-state correlations that further
hance the Schiff strength were omitted. Second, we nee
ensure realistic behavior for the strength distribution of
P,T-violating NN interaction, which according to Eq.~27! is
2-5
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as important as the Schiff-strength distribution in determ
ing the ground-state Schiff moment. Fortunately, its behav
is much simpler. For the sake of pedagogy, we conside
this section a simple but often accurate@24# one-body ap-
proximation toV̂PT : const3sW •rW in both isovector and iso
scalar channels~we will use a more sophisticated one-bo
approximation later!. The 1\v E1 and V̂PT operators then
differ only in their effect on spin@they are in the same SU~4!

multiplet#. The strength from the isovectorsW •rW is therefore
concentrated in an SU~4! analog of the giant dipole reso
nance, and to first approximation lies at the same ene
The isoscalar strength is also mostly in a resonance
similar energy, so that low-lyingP,T-violating strength is
depleted@25#. There will be some strength at low energi
where the Schiff strength is concentrated, just as ther
someE1 strength, but it will represent the tail of a res
nance. This tail was not included in the calculations of R
@22#.

Figures 1–3 display the results of a complete (011)\v
shell-model calculation for19F, with the center-of-mass mo
tion fully eliminated. In these calculations contributions
the Schiff moment from 2 and 3\v excitations have been
included through the use of an effective charge.4 Figure 1
shows the isovectorO0 distribution, and above it the isovec
tor S strength. The extent of the cancellation suggested
the Goldhaber-Teller model is remarkable. Also displayed
the isoscalar Schiff strength, which is uncancelled and h

4It is difficult to treat the important 2\v and 3\v excitations
consistently in the low-lying states. However, the concept of
effective charge forE3 transitions works well throughout this mas
region. The results of very truncated (0111213)\v calculations

suggest a similar prescription for theOW 0 operator, and in our 1\v

calculations we applied octupole effective charges toOW 0. Reference
@19# makes a case for this same kind of renormalization.

FIG. 1. The distribution of isovectorO0 strength~bottom!, is-
ovector Schiff strength~middle!, and isoscalar Schiff (}O0)
strength~top! in a shell-model calculation of19F. See text for dis-
cussion.
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significant low-lying component~again correlated with the
E3 distribution!. Figure 2 displays the calculatedsW •rW
strength, and the giant resonances~including tails! are evi-
dent in both the isovector and isoscalar channels. Finally
Fig. 3 we graph the terms in Eq.~27! as a function of the
excitation energy, assuming that the isoscalar and isove
potentials have equal strength; from this it is clear that
lowest 1/22 state almost completely determines the Sch
moment, which is given by the sum of all the lines in th
plot.

We expect the gross features of the Schiff andVPT distri-
butions to be general. The Schiff strength will be correla
with the E3 strength and lie low in energy. Nuclei wit
octupole deformation, where theE3 strength lies as low as
;50 keV and is particularly concentrated, will show th
most-enhanced Schiff moments. Nuclei with strong lo
lying octupole vibrations should also show enhancement.

n

FIG. 2. Distributions of the isovector~bottom! and isoscalar

~top! sW •rW strengths in19F. The corresponding operators are a
proximations to theP,T-violating nuclear potential.

FIG. 3. The contributions of individual states in19F to the
ground-state Schiff moment through Eq.~27!. The first excited state
is dominant.
2-6
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NUCLEAR OCTUPOLE CORRELATIONS AND THE . . . PHYSICAL REVIEW C 61 035502
the E3 strength moves up in energy~and/or the octupole
collectivity is diluted!, so should the dominant contributio
to the Schiff strength, and the Schiff moments will becom
smaller. In the remainder of this paper we examine the ex
to which these statements are true in heavy nuclei, wh
shell-model calculations are not possible.

V. COLLECTIVE SCHIFF MOMENTS IN HEAVY
OCTUPOLE-DEFORMED NUCLEI

We begin our discussion with a short review of the arg
ments of Ref.@6#, the crux of which is related to what w
have already discussed: the ground-state Schiff moment
not be directly related to the dipole moment, and in the c
of octupole-deformed nuclei is considerably more enhanc
The authors adopted the particle-rotor model, which is
fully microscopic and omits a certain amount of valenc
space physics. The arguments are based on collective o
pole correlations, however, and this model represents t
clearly and efficiently.

In the particle-rotor model the nucleus is described a
single particle coupled to a collective core, the shape
which can be specified through a function that describes
dependence of its radius on angle:

R~u,f!5R0S 11(
l ,m

~21!ma l ,mYl ,2mD , ~36!

where R051.2A1/3. In the intrinsic frame of a deformed
nucleus three of thea variables are no longer independen
they are replaced by three Euler anglesu i( i 51,2,3) that
specify the orientation with respect to the laboratory. W
will assume axial symmetry so that all intrinsica ’s vanish
except for thea l ,0’s, which we denote byb l . The valence
particle, in the ‘‘strong-coupling’’ version of the mode
moves in a potential that is deformed to match the shap
the core. The full nuclear wave function~for a state with
angular momentum quantum numbersJ and M, intrinsic
magnetic quantum numberK, and parityp) thus depends on
the Euler angles, the intrinsic deformation parametersb l ,
and the intrinsic space (rW) and spin~s! coordinates of the odd
particle:

^u i ,b l ,rW,suCJMK,p&5N@11R̂2#DMK
J* ~u i !@11pP̂#

3^b l ,rW,suC int&, ~37!

where the intrinsic particle-core state factorizes as5

^b l ,rW,suC int&5F~b l !cK~rW,s!. ~38!

Here N is a normalization constant,R̂2 rotates the
D-functions and the intrinsic wave function by 180 degre
around they axis, andP̂ changes the sign ofrW and of the

5In axially symmetric nuclei, the componentK of total angular
momentum along the symmetry axis is equal to that of the partic
angular momentum~sometimes denotedV).
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odd-multipoleb l ’s in the intrinsic wave function. As long a
we do not allow nonaxial core vibrations to be excited, w
can, for the purposes of this paper, write the Schiff opera
Sz as

Sz5D00
1* ~u i !Ŝint~ b̂ l ,rW,sW !, ~39!

where Ŝint is the intrinsic-frame operator, with only theK
50 component relevant because others do not generate
lective excitations in the absence of nonaxial deformation

vibration.@For V̂PT , the transformation to the intrinsic fram
is trivial because that operator is invariant under rotatio#
We have placed hats on theb ’s and~on Sint) because at the
quantum level they are operators that act on the wave fu
tionsF(b l) in Eq. ~38!. All of this formalism can be justified
at least in part through projected mean-field calculations
which the state is a function of allA nucleon coordinates; we
will argue shortly that such calculations are necessary to
swer questions that arise in the simpler description.

In the simple particle-rotor model, matrix elements
one-body operators likeSz are straightforward to calculate
The coordinates of the individual nucleons in the core
integrated over in the intrinsic frame to give an operator t
is a function of the collective coordinates and those of
odd particle, and can be applied to wave functions of th
same coordinates. When one does the integration for
Schiff operator, assuming a nuclear charge density prop
tional to the mass density~so that the intrinsic dipole mo
ment is zero!, the result is

Ŝint5ZeR0
3 3

20p (
l 52

~ l 11!b̂ l b̂ l 11

A~2l 11!~2l 13!
1Sint~s.p.!,

~40!

where the last term is the contribution of the valence partic
which in this case can be neglected compared to the co
tive piece. Without the hats, the first term in Eq.~40! is just
the classical Schiff moment of a deformed drop.

Interesting things happen when a core is both quadrup
and octupole deformed@i.e., whenF(b l) is peaked around
nonzero values ofb2 andb3]. ~For a comprehensive review
of the subject, see Ref.@23#.! The reflection asymmetry im
plies a double-well potential in the coordinateb3, which in
turn means that the wave functions with good parity will
linear combinations of functions peaked around someb3 and
its negative. If the barrier between the two wells is hi
enough, the result will be parity doubling; low-lying state
will have partners nearby with the same angular momen
but opposite parity. This means, for one thing, that there w
be an intermediate state in Eq.~27! that enters with a smal
energy denominator and therefore a large amplitude. In f
it is often reasonable to ignore all other states in the sum~see
the shell-model result for19F in Fig. 3!, mainly because of

’s
2-7
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the energy denominator, but also because if the deforma
is strong enough the matrix element of the Schiff operato
that state is likely to be large. The reason for that is that
doublets can be viewed as the projection onto positive
negative parity of the same reflection-asymmetric intrin
stateuC int&.

The existence of more than one state with the same in
sic structure is exactly the same phenomenon as the
tional bands associated with ordinary reflection-symme
deformation. The matrix element of an operator between
two states of the same doublet is proportional to the diago
intrinsic-state matrix element of the intrinsic operator, just
it is for states within a rotational band. For the operatorŜint ,
this diagonal matrix element is large; it is given roughly
the expression in Eq.~40! with the operatorsb̂ l replaced by
the values around which the wave functionF(b l) is peaked
~i.e., by the classical Schiff moment of the deformed asy
metric core!, with coherent contributions from all the nucle
ons in it.6 Thus, from Eq.~27!, the physical ground-stat
Schiff momentS that determines the atomic electric dipo
moment should be approximately
n
re
t

ho
t

uc
e

ng
ffe

f
-
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J

J11
Sint

^C̃0uV̂PTuC0&
DE

, ~41!

whereuC̃0& is the opposite-parity partner of the ground sta
uC0&, DE is the energy difference between the two stat
andSint is the intrinsic Schiff moment~the J-dependent fac-
tor is from the Euler-angle integration!. The conclusion from
all this is that large intrinsic Schiff moments and small e
ergy denominators should make atoms with octupo
deformed nuclei especially sensitive tests ofP,T violation in
the nucleon-nucleon interaction.

Just how sensitive the tests will be depends on the ma
element of the interactionV̂PT , to which we now turn. We
will supply more detail in addressing this subject because
treatment of Ref.@6# is incomplete and not entirely accurat
We assume that the pion is responsible for transmitting m
of the T-violating force from one nucleon to another@24#.
The nucleon-nucleon interaction produced by one-pion
change then has the general form@4,26#
V̂PT~12!5H ~s1
W2s2

W !•~r 1
W2r 2

W !@C0t1
W
•t2
W1C1~t1z1t2z!1C2~3t1zt2z2t1

W
•t2
W !#

1C1~s1
W1s2

W !•~r 1
W2r 2

W !~t1z2t2z!
J

3
exp~2mpur 1

W2r 2
W u!

mpur 1
W2r 2

W u2
F11

1

mpur 1
W2r 2

W u
G , ~42!
r
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where theCi ’s label isoscalar, isovector, and isotensor co
tributions. As long as we excite no particles out of the co
P,T-violating interactions between these particles sum
zero ~see Ref.@6# for discussion!, and we need worry only
about the interactions between the valence particle and t
in the core. In what follows, we take the total mass density
be proportional to the charge density, and in factfrom now
on use the symbolr to represent the mass density. This as-
sumption means that the terms with different isospin str
ture in Eq.~42! enter in similar ways. Taking the range of th
pion to be very short~a decent approximation@25#!, sum-
ming Eq. ~42! over the particles in the core, and assumi
the neutron and proton densities to be equal gives the e
tive nucleon-core interaction

ÛPT5h
G

2mA2
sW •¹W r̂, ~43!

where~again! r̂ is the core mass-density operator,G is the

6As pointed out in Refs.@5# and@6#, the collective enhancement o
the dipole moment is much smaller~zero in fact if the charge dis
tribution is proportional to the mass distribution! because the dipole
moment is measured from the center of mass.
-
,
o

se
o

-

c-

Fermi constant, andm is the nucleon mass~these factors are
inserted to follow convention!. The dimensionless paramete
h then depends on the coupling strengthsCi of the two-body
interactions and the isospin of the nucleus. Despite its sl
dependence on nuclear structure, this parameter is o
taken as a ‘‘heuristic’’ fundamental quantity. The one-bo
approximation given by Eq.~43! is slightly different from
the simpler and more phenomenological one we used in
discussion of light nuclei.

The form of Eq.~43! makes the Schiff moment unplea
antly sensitive to the distribution of spin near the nucle
surface, where¹W r is largest. The results of Ref.@6# some-
times differ by factors of several from those of Ref.@5#,
primarily because of differences in the valence sing
particle wave function, which carries all the nuclear spinsW in
the particle-rotor model. Only a significantly more sophis
cated calculation~which we advocate! will reduce this un-
certainty. We, therefore, do not present our own compl
‘‘particle-rotor-model-with-octupole-deformation’’ calcula
tions in this section, but instead use that model in its simp
form, together with qualitative arguments, to identify a fe
systematic effects overlooked in the existing calculatio
Our estimate of the size of these effects is obviously unc
tain, but indicates what can be expected in more soph
cated calculations. The new physics always tends to les
the enhancement.
2-8
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To see the what was neglected in Refs.@5,6# we follow Ref. @27# and expand the density in the deformation paramete

r~rW !'r0@r 2R~u,f!1R0#

'r0~r !2R0r08~r !(
l

b lYl ,011/2R0
2r09~r !S (

l
b lYl ,0D 2

1•••, ~44!

where nowr0(r ) is the bare~spherical! ground-state mass density of the core, a constant up to radiusR0 in the simplest
version of the liquid-drop picture. The operatorsW •¹W r̂ in ÛPT therefore depends on theb̂ ’s, and, contrary to the statements
Ref. @6#, cannot be broken up into pseudoscalar pieces that act separately on the core and particle. In fact, from Eq~44! we
have

sW •¹W r̂5sW •¹W r01R0(
l

b̂ lFA l 11

2l 11S d

dr
2

l

r D r08@Yl 11s#0
l 2A l

2l 11S d

dr
1

l 11

r D r08@Yl 21s#0
l G

21/2R0
2 (

l ,l 8,L

b̂ l b̂ l 8A~2l 11!~2l 811!

4p~2L11!2
^ l0,l 80uL0&

3FAL11S d

dr
2

L

r D r09@YL11s#0
L2ALS d

dr
1

L11

r D r09@YL21s#0
LG , ~45!
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where the small square brackets indicate angular-momen
coupling. Reference@6# considers only the first term in thi
expression, which changes the parity of the single part
and leaves the core alone. The terms with odd powers ob̂3
can do the opposite, however.

Including these other terms is important because in
strong-coupling limit of the particle-rotor model they tend
cancel the first term. The reason is hinted at in Ref.@6#,
where it is argued that Schiff moments between close-ly
states are suppressed when deformation is rigid and sym
ric. Following Ref. @8#, the authors note that to the exte
that the density is proportional to the strong one-body pot
tial Ûstrong felt by the odd particle and that the spin-orb
force is negligible, matrix elements ofsW •¹W r̂ between two
states should be proportional to the energy difference
tween those states, and therefore, very small for close-ly
doublets. The reason is that under these circumstances

sW •¹W r̂}sW •¹W Ûstrong5 i @sW •pW ,Ûstrong#5 i @sW •pW ,Ĥ~s.p.!#,
~46!

so that for two opposite-parity states labeleda andb with the
same core structure,

^CJMK,p
a uÛPTuCJMK,2p

b &}^ca,KusW •¹W rucb,K&}ea2eb ,
~47!

where thee ’s are single-particle energies. The authors th
argue that complications associated with asymmetric de
mation eliminate this effect, but in the strong-coupling lim
the situation is even worse because now the two st
uCJMK,p

a & and uCJMK,2p
b & have the same intrinsic structur

As mentioned above, the matrix element of any operator
tween two such states is proportional in the strong-coup
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limit to the intrinsic-state expectation value of the operat
In nuclei with strong octupole deformation, we therefo
have

^C0uV̂PTuC̃0&→^C intuÛPTuC int&5h
G

2mA2
^cKusW •¹W rucK&,

~48!

which, according to the argument above, should vanish.
estimates of Refs.@5,6# apparently neglect the terms inr
containing theb ’s that make the shapes of the density d
tribution and the potential similar, and so do not take t
effect into account.

Of course the spin-orbit force is not negligible and t
intrinsic density is not exactly proportional to the mean fie
so the cancellation will not be complete. To get a handle
how much the terms containing theb ’s affect the matrix
element ofÛPT , we consider the ratio of the matrix eleme
in Eq. ~48! with the terms included to that without them~the
latter being a simplified version of the quantity calculated
Refs.@5,6#! for a large number of single-particle orbits. W
use a deformed harmonic oscillator as a potential,

V~rW !52mvr 2 (
l

b lYl ,0 , ~49!

with deformationsb2 , b3, andb4 equal to those from Table
I of Ref. @6# ~we ignore higher multipoles and neglect pa
ing!. We take the density to be constant inside the liqu
drop and zero outside, a distribution that has the same a
lar shape as the potential, but a significantly different rad
dependence. Figure 4 shows the absolute value of the rat

^cKusW •¹W rucK& to the same matrix element without th
b-dependent terms, for allK51/2 andK53/2 single-particle
2-9
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J. ENGEL, J. L. FRIAR, AND A. C. HAYES PHYSICAL REVIEW C61 035502
levels in 225Ra below 8\v of single-particle energy. The
new terms generally have the opposite sign from that of
b-independent term, and the sum is usually less than the
term by itself. The average cancellation is less forj 51/2
states than for states with larger spin. Whether the decr
will be stronger or weaker in realistic calculations is an op
question. In self-consistent mean-field calculations, thou
there is obviously a correlation between the density and
spin-independent part of the field, and we could well se
significant effect.7

Other physics neglected in the earlier work will also ha
an effect. The first term in Eq.~45! @sW •¹W r05(1/r )r08sW •rW# is
the spin-flip analog of the electric dipole operator~with a
difference only in radial form and isospin!. We refer to Fig.
2, where the strength of the related operatorsW •rW in the is-
ovector and isoscalar channels is plotted for19F. As noted in
Sec. III, the strength is clearly concentrated in resonance
about the same energy as the giant dipole resonanc
simple argument@28# with a schematic residual interaction
the random-phase approximation~RPA! shows that the exis
tence of the giant dipole resonance of the core suppresseE1
transitions between low-lying single-particle states by a f
tor of 3 or 4 that depends only on the energy of the resona
and the energy at which strength would be centered if th
were no resonance. The low-lying transitions induced
sW •¹W r0 should be suppressed by roughly the same amo
because the operatorsW •rW is so much likerW ~again, see Fig.
2!. In many-body perturbation theory, this effect can be u
derstood as core polarization: the residual strong interac

7We should add that the decoupling of the particle and core@33#,
taken into account neither here nor in Ref.@6#, could act like the
spin-orbit interaction to mitigate the suppression.

FIG. 4. The ratiousW •¹W ru to usW •¹W r0u ~see text! for all K51/2
~boxes! and 3/2 states~crosses! in a deformed asymmetric potentia
for 225Ra. The ratio is usually less than one.
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can create a collective 02 p-h pair, at the same time chang
ing the parity of the valence particle. The contribution to t
Schiff moment coming from the annihilation of the pair b
ÛPT nearly cancels the contribution coming from the dire
action ofÛPT on the valence particle itself. In any event, th
resonances were completely neglected in Refs.@5,6#, and the
single-particle matrix elements in those papers should th
fore probably be three or four times smaller.

The very large Schiff moments may be saved, howev
by thecombinationof the two new effects, even though eac
reduces Schiff moments when added to the calculations
Refs.@5,6# in isolation. The spin-flip giant resonance shou
not affect those parts ofÛPT that containb3 and operators
like @Y2s#0

3 that do not change the parity of the valen
particle. The suppression by the residual interaction of o
part of the Schiff moment by a factor of 3 without any effe
on another part may upset any balance between the tw
the mean-field level produced by the similarity between
density and the potential. We will need accurate microsco
calculations to test the existence of both effects and the
tent to which they offset one another.

Such calculations are within the range of today’s me
field technology, and in even-even nuclei they have alre
been carried out@29,30#, confirming the large intrinsic Schiff
moments in the radium isotopes@31#. In self-consistent~e.g.,
Skyrme-HFB! calculations the effects of the residual intera
tion on the ground state are minimized. Therefore, not o
is the relationship between the mean field and the den
likely to be most accurate in this case, but it is also le
likely to be vitiated by corrections to the single-particle pi
ture. In odd nuclei, the first-order core polarization, whi
has to be treated as a correction to particle-rotor/Nils
models, is built into the mean-field; one-particle–one-h
excitations of the core do not mix with the ground state. T
fact, together with a realistic two-body interaction that co
tains all multipole-multipole terms, has implications for co
rections to low-lying transitions from resonances, as well
for the density. The incorporation of core polarization mea
that the interplay between collective excitations and lo
lying states is already apparent at the mean-field level, o
other words that the usual first-order particle-phonon mix
that reduces low-lying single-particle transitions need not
treated by other means~e.g., the RPA!. We should, therefore
be able at the mean-field level to go a long way towa
quantifying the influence of shape and resonances on Sc
moments in octupole-deformed nuclei.

VI. COLLECTIVE SCHIFF MOMENTS FROM OCTUPOLE
VIBRATIONS

The question of whether the light actinides are octup
deformed has a long history. In fact the question is not
tirely physical — it is really about the economy of on
collective-model basis versus another — and it should
matter so much whether the low-lying states in a nucleus
best described as the rotation of an octupole-deformed sh
or as a strong low-lying octupole vibration around a rotati
quadrupole shape. Collective Schiff moments arise in eit
scheme. This fact should not be surprising in light of o
2-10
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NUCLEAR OCTUPOLE CORRELATIONS AND THE . . . PHYSICAL REVIEW C 61 035502
calculations in19F. To see how it falls out of the collectiv
picture, we assume that the nuclear core has no equilibr
octupole deformation~i.e., ^b3&50) and write the operato
b̂3 in terms of creation and annihilation operators:

b̂3}b†1b, ~50!

whereb† creates an octupole phonon with~intrinsic! mag-
netic quantum numberK50. It is then clear from Eq.~40!
that the Schiff operator acting on a quadrupole-deform
state with no octupole phonons will create an excited s
with one phonon. The terms inÛPT @see Eq.~45!# that are
proportional tob̂3 can then destroy the phonon, reconnect
the one-phonon state to the ground state and generati
collective Schiff moment through Eq.~27!.

To see how big such a moment would be we need
know the matrix element ofb̂3 between states with zero an
one phonons. As can be seen from Eq.~50!, this quantity is

just the zero-point root-mean-square deformation, (A^b̂3
2&),

which we will call b̄3. @In other words,b̄3 measures the
spread inb3 of the intrinsic core wave functionF(b l).]
This quantity can be estimated from the collective~vibra-
tional! B(E3) transition in an even-even neighbor. Using E
~44! to lowest order inb̄3 one finds@32#

B~E3!01→325~3/4p!2~ZeR0
3!2b̄3

2 . ~51!

The important point is that if a collective vibration is soft th
r.m.s. deformationb̄3 can be as large as the value arou
which the wave function is peaked in octupole-deformed
clei, and the intrinsic Schiff moment can therefore be just
large as well. In the laboratory~physical! Schiff moment,
there is an additional factor ofb̄3 coming from the annihila-
tion of the phonon byÛPT , so that naively we expect th
moment to depend on the deformation parameters in
combinationb2b̄3

2, where an unbarredb is the value around
which the deformed wave function is peaked. The relev
quantity for octupole-deformed nuclei isb2b3

2 ~see Ref.@6#
for a discussion of why!, so that if the r.m.s. octupole defo
mationb̄3 in a vibrational nucleus is comparable to the sta
value b3 of the deformation in an octupole-deforme
nucleus, any differences in Schiff moments come from
energy denominator, single-particle structure, or other c
excitations, not from the difference between deformation a
vibration. We will refine this statement shortly.

First, however, we note that the terms inÛPT that do not
containb̂3 are usually even more important than those j
discussed, even though they do not alter the numbe
phonons, because the zero- and one-phonon states
through the residual strong particle-core interaction. The
proximate form of this coupling can be derived in ma
ways; one is to examine the change in energy under a s
deformation of the core. Not surprisingly, for an oscillat
single-particle potential this leads to the same interaction
appears in the octupole-deformed potential of the stro
coupling scheme@see Eq.~49!#:
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V̂coupl52mv2b̂3r 2Y3,0, ~52!

wherev is the oscillator energy of the~symmetric! potential,
b 3̂ acts on the core, andr 2Y3,0 acts on the particle. Denoting
a state withn phonons and a particle in orbitca,K

p by
un,ca,K

p &, we have for the matrix element of the interactio

V̂coupl between excited states with one phonon and the un
turbed ground state~assuming just for illustration that th
ground state has positive parity!:

^1,cb,K
2 uVcouplu0,ca,K

1 &52mv2b̄3^cb,K
2 ur 2Y3,0uca,K

1 &.
~53!

With a value forb̄3 from an appropriateB(E3), we can
use the ‘‘intermediate’’-coupling scheme of Ref.@33# to di-
agonalize Ĥ[Ĥ(s.p.)1Ĥ(phonon)1V̂coupl separately in
positive- and negative-parity bases@Ĥ(phonon) just contains
the diagonal vibrational energies of the zero- and o
phonon states#, so that the ground state has the form

uC0&5(
i

Ai u0,c i ,K
1 &1(

j
Bj u1,c j ,K

2 &, ~54!

and the excited states of opposite parity have the form

uC l&5(
i

Cl ,i u1,c i ,K
1 &1(

j
Dl , j u0,c j ,K

2 &, ~55!

where thec i ,K
1 and c j ,K

2 label single-particle states aroun
the Fermi surface, and we are still ignoring nonaxial vib
tions. The terms inÛPT that are independent ofb̂3 connect
the first terms in Eq.~54! to the second in Eq.~55! and vice
versa. The Schiff operator affects the core, connecting
first term in Eq.~54! to the first in Eq.~55!, and the second to
the second, effectively replacingb̂3 in Eq. ~40! by b̄3. In this
way the sphericalb̂3-independent part ofÛPT ~the only part
considered in Refs.@5,6#! can also generate a collectiv
Schiff moment.

It is possible to use the intermediate-coupling sche
even as the phonon energy goes to zero and octupole d
mation sets in. In that case, because the single-par
Hamiltonians in the two schemes are the same, energies
matrix elements should not depend strongly on wh
scheme is used.8 One implication~which is a stronger ver-
sion of a remark made above! is that if the dynamicb̄3
associated with the vibration is comparable to the staticb3 in
an octupole-deformed nucleus, and if the energy of the o
pole phonon is small compared to typical single-parti
splittings or nonaxial core-excitation energies, theonly major
difference between Schiff moments in the two cases is

8They will not be identical because in the intermediate-coupl
scheme some of the states are particles and some holes, and s
particle excitation energies are measured with respect to the F
surface@33#.
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energy denominator in Eq.~27!. To see this, one can imagin
treating the phonon as a ‘‘decoupling’’ perturbation~along
with the Coriolis interaction! in the strong-coupling scheme
as is done in Ref.@33#. Although the diagonal matrix ele
ments of the perturbation cause energy shifts, wave funct
are only affected by the off-diagonal matrix elements w
bands built on higher single-particle states or other kinds
vibrations. Thus wave functions, transition amplitudes, e
will not undergo large changes until the energy of the p
non approaches those of other excitations. For
intermediate-coupling scheme, this means that the matrix
ements ofSandV̂PT connecting ground states to low-ener
octupole phonons should not undergo radical change o
the phonon is low enough in energy, and that nothing spe
will happen in the limit that the phonons have zero ene
and the core develops static deformation. Of course if
phonon lies high in the spectrum, the matrix elements can
very different from the static limit, and one must carry o
the intermediate-coupling calculation to get a handle on
size of the Schiff moment induced by vibrations.

We have done just that in several quadrupole-deform
nuclei, taking vibrationalb̄3’s and phonon energies from
tabulations of nearby even-even nuclei@32#, and again ne-
glecting pairing. In199Hg, the most accurately measured is
tope at present, we useb̄3 5 0.09, a phonon energy of
MeV ~both taken from anE3 transition in204Hg, which may
have a largerb̄3 than 199Hg), and quadrupole and hexad
cupole parameters from Ref.@34# ~for this simple estimate
we ignore the fact that this nucleus is probably very so!.
The resulting Schiff moment is 831029h e fm3, about half
of the estimate from Ref.@35# that includes no nuclear cor
relations of any kind. In a nucleus like this, moreover, with
relatively high-energy phonon, the nonaxial octupole vib
tions will lie nearby in energy and can be expected to c
tribute comparable amounts. When all is said and done,
brations may turn out to be the dominant contribution to
Schiff moment in199Hg, and they clearly should be include
in any realistic calculation. Such a calculation has never b
done, but is crucial if we want a reliable assessment of
advantages offered by nuclei with strong octupole corre
tions. Here we need a good microscopic treatment of
kinds of vibrations, including the very softg quadrupole
mode, and must obviously go beyond mean-field theory
shell-model calculation may be possible.

An example of a large vibrational Schiff moment is in th
nucleus239Pu. This isotope has several features that mak
attractive for experiment, in particular a spin-1/2 grou
state~to eliminate quadrupole effects in a magnetic field! and
a long half-life compared to the light actinides@the drawback
is in its electronic structure, which is more complicated th
that of radium#. The collective E3 in 238Pu gives b3
50.09, and the nucleus has large quadrupole and hexad
pole deformations (b250.223, b450.095). Together with
the high value ofZ, this makes the intrinsic Schiff momen
very large. The phonon lies at 470 keV, about eight tim
higher than the lowest state in225Ra, but the large intrinsic
Schiff moment compensates in part. Our calculations, w
only the b̂-independent terms included inr̂ ~as in Ref.@6#!
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give a laboratory Schiff moment of 731027h e fm3, a
value a few times smaller than the results of Ref.@6# for most

of the light actinides. When we include theb̂-dependent
terms, this number goes up to 431026h e fm3, which is
300 times the estimate for Hg in Ref.@35# and comparable to
the results of Ref.@6# for 225Ra. These calculations are fa
from perfect; we had to push the energy of the octup
phonon well above the value from238Pu to get the energy o
the first excited state in239Pu right. The uncertainty in the
results is, therefore, quite large and we need microsco
calculations here too. But the intrinsic Schiff moments
nuclei with low-lying octupole vibrations will clearly be col
lective, and some may of these nuclides may be easie
investigate experimentally than the short-lived radium is
topes.

VII. CONCLUSION

The size of Schiff moments in nuclei with octupole co
relations is determined by three factors: intrinsic Schiff m
ments, energy denominators, and the matrix elements

V̂PT . In their discussion of the first two of these, Refs.@5,6#
are on rather firm ground; it is hard to imagine, for examp
that the matrix elements between parity doublets of
Schiff operator are radically different from those estimat
and as we have pointed out, even nuclei without asymme
cally deformed cores can benefit from the same mechan
The third factor is far trickier, however.

The particle-core calculations reported both here and
earlier work can only supply a gross estimate of the ma

element ofV̂PT . The mixing that that interaction induce
depends sensitively on the valence single-particle wave fu

tion at the nuclear surface, where¹W r is largest. Truly micro-
scopic calculations will give better valence wave functio
and, if they are self-consistent, will also better represent
correlation between density and mean field, and incorpo
the effects of resonances caused by the residual interac
In vibrational nuclei it will be necessary to go a little furthe
but even there mean-field calculations will shed light on
issues we have discussed.

Finally, for experimentalists to draw strong conclusio
about enhancements over199Hg, better calculations in tha
nucleus must be done as well. It is conceivable that
atomic dipole moment of225Ra is 400 or more times large
than that of199Hg ~this is the figure reported in Ref.@6#!, but
we have pointed to physical effects that could make
Schiff moment in199Hg a few times larger than earlier ca
culations indicated and the Schiff moments in the light a
tinides somewhat smaller than suggested by the calculat
of Refs. @5,6#, even within the same model. The machine
of modern nuclear structure theory, which is power
enough to provide reasonably accurate estimates of the
ments in both kinds of nuclei, should be used as soon
possible to provide experimentalists firm predictions for t
enhancement they can expect in difficult experiments w
radioactive nuclei.
2-12
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