Complex Systems 2 (1988) 641-648

Teaching Feed-Forward Neural Networks by
Simulated Annealing

Jonathan Engel
Norman Bridge Laboratory of Physics 161-33, California Institute of Technology,
Pasadena, CA 91125, USA

Abstract. Simulated annealing is applied to the problem of teaching
feed-forward neural networks with discrete-valued weights. Network
performance is optimized by repeated presentation of training data at
lower and lower temperatures. Several examples, including the parity
and “clump-recognition” problems are treated, scaling with network
complexity is discussed, and the viability of mean-field approximations
to the annealing process is considered.

1. Introduction

Back propagation [1] and related techniques have focused attention on the
prospect of effective learning by feed-forward neural networks with hidden
layers. Most current teaching methods suffer from one of several problems,
including the tendency to get stuck in local minima, and poor performance in
large-scale examples. In addition, gradient-descent methods are applicable
only when the weights can assume a continuum of values. The solutions
reached by back propagation are sometimes only marginally stable against
perturbations, and rounding off weights after or during the procedure can
severely affect network performance. If the weights are restricted to a few
discrete values, an alternative is required.

At first sight, such a restriction seems counterproductive. Why decrease
the flexibility of the network any more than necessary? One answer is that
truly tunable analog weights are still a bit beyond the capabilities of current
VLSI technology. New techniques will no doubt be developed, but there are
other more fundamental reasons to prefer discrete-weight networks. Appli-
cation of back propagation often results in weights that vary greatly, must
be precisely specified, and embody no particular pattern. If the network is
to incorporate structured rules underlying the examples it has learned, the
weights ought often to assume regular, integer values. Examples of such very
structured sets of weights include the “human solution” to the “clump recog-
nition” problem [2] discussed in section 2.2, and the configuration presented
in reference [1] that solves the parity problem. The relatively low number of

© 1988 Complex Systems Publications, Inc.

642 Jonathan Engel

correct solutions to any problem when weights are restricted to a few inte-
gers increases the probability that by finding one the network discovers real
rules. Discrete weights can thus in certain instances improve the ability of a
network to generalize.

Abandoning the continuum necessarily complicates the teaching prob-
lem; combinatorial minization is always harder than gradient descent. New
techniques, however, have in certain cases mitigated the problem. Simulated
annealing [3], and more recently, a mean-field approximation to it [4,5], are
proving successful in a number of optimization tasks. In what follows, we
apply the technique to the problem of determining the best set of weights in
feed-forward neural networks.

For simplicity, we restrict ourselves here to networks with one hidden
layer and a single output. A measure of network performance is given by the
“energy”

E=S[t* - 0%, (1.1)
where

0% = g(=Wo + 3 WiV), (1.2)
and

W w+2%¢ (1.3)

Here ¢ is a step function with threshold 0 and taking values {1, -1}, and
the W; and T}; are weights for the output and hidden layers respectively;
a subscript 0 indicates a threshold unit. The ¢ are the input values for
question a, and ¢* is the target output value (answer) for that question. Back
propagation works by taking derivatives of £ with respect to the weights and
following a path downhill on the E surface. Since the weights are restricted
here to a few discrete values, this procedure is not applicable and finding
minima of E, as noted above, becomes a combinatorial problem.

The approach we adopt is to sweep through the weights W; and T}; one
at a time in cyclic order, presenting each with the training data and allowing
it the option of changing its value to another (chosen at random) from the
allowed set. The weight accepts the change with probability

P= exp[_(Enew - Eoid)/T} (1'4)

il Fuew > Foa, and with probability P = 1 if the change decreases the
energy. The parameter T' is initially set at some relatively large value, and
then decreased according to the prescription

T —qT, v <1, (1.5)

Teaching Feed-Forward Neural Networks by Simulated Annealing 643

after a fixed number of sweeps N,,,, during which time the system “equili-
brates.”

It is far from obvious that this annealing algorithm will prove a useful tool
for minimizing E. Equations (1.1-1.3) specify a function very different from
the energies associated with spin glasses or the Traveling Salesman Problem,
systems to which annealing has been successfully applied. In the next section,
we test the procedure on a few simple learning problems.

2. Examples
2.1 Parity

The XOR problem and its generalization to more inputs (the parity problem)
have been widely studied as measures of the efliciency of training algorithms.
While not “realistic,” these problems elucidate some of the issues that arise
in the application of annealing.

We consider first a network with two hidden units connected to the inputs,
an output unit connected to the hidden layer, and threshold values for each
unit. All the weights and thresholds may take the values —1, 1, or 0. We add
an extra constraint term to the energy discouraging configurations in which
the total input into some unit (for some question «) is exactly equal to the
threshold for that unit.

When the temperature T is set to zero from the start, the annealing
algorithm reduces to a kind of iterated improvement. Changes in the network
are accepted only if they decrease the energy, or leave it unchanged. The
XOR problem specified above has enough solutions that the algorithm will
find one about half the time starting at 7' = 0. Tt takes, on the average, 100~
300 presentations of the input data to find the minimum. If, on the other
hand, annealing is performed, starting at Ty & 1, iterating 20 times at each
temperature, and cooling with v = .9 after each set of iterations, a solution
is always found after (on average) about 400 presentations. In this context,
therefore, annealing offers no real advantage. Furthermore, by increasing the
number of hidden units to four, we can increase the likelihood that the T' = 0
network finds a solution to 90%. These results persist when we go from the
XOR problem with two hidden units to the parity problem with four inputs
and four hidden units (we now allow the thresholds to take all integer values
between —3 and 3). There, by taking 7y = 3.3 and v = .95, the annealing
algorithm always finds a solution, typically after about 15,000 presentations.
However, the T" = 0 net finds a solution once every 30 or 40 attempts, so
that the work involved is comparable to or less than that needed to anneal.
And as before, increasing the number of hidden units makes the 7' = 0 search
even faster.

Neither of these points will retain its force when we move to more com-
plicated, interesting, and realistic problems. When the ratio of solutions to
total configurations becomes too small, iterated improvement techniques per-
form badly, and will not solve the problem in a reasonable amount of time.
And increasing the number of hidden units is not a good remedy. The more

644 Jonathan Engel

n; =4 n; =2~ n; = 6
2,400 | 1,012,500 | > 2,000,000

Table 1: Average number of data-set presentations needed to find a
zero-energy solution to one-vs.-two clumps problem by iterated im-
provement.

solutions available to the network, the less likely it is that any particular
one will generalize well to data outside the set presented. We want to train
the network by finding one of only few solutions, not by altering network
structure to allow more.

2.2 Recognizing clumps — scaling behavior

To test our algorithms in more characteristic situations, we present the net-
work with the problem of distinguishing two-or-more clumps of 1’s in a binary
string (of 1’s and —1’s) from one-or-fewer [2]. This predicate has order two,
no matter the number of input units n;. In what follows we always take the
number of hidden units equal to the number of inputs, allow the weights to
take values —1, 0, 1, and let the thresholds assume any integer value between
—(n; — 1) and n; + 1. By examining the performance of the network on the
entire 2™ input strings for n; equal to four, five, and six, we hope to get
a rudimentary idea of how well the performance scales with the number of
neurons.

To establish some kind of benchmark, we again discuss the 7' = 0 iterated
improvement algorithm. For n; = 4, the technique works very well, but slows
considerably for n; = 5. By the time the number of inputs reaches six, we
are unable to find a zero-energy solution in many hours of VAX 11/780
time. These results are summarized in table 1, where we present the average
number of question presentations needed to find a correct solution.

The full annealing algorithm is slower than iterated improvement for n; =
4, but by n; = 5, it is already a better approach. The average number of
presentations for each n;, with the annealing schedule adjusted so that the
ground state is found at least 80% of the time, is shown in table 2. While
it is not possible to reliably extrapolate to larger n; (for n; = 7, running
times were already too long to gather statistics), it is clear that for these
small values the learning takes substantially longer with each increment in
the number of hidden units and corresponding doubling of the number of
examples. One factor intrinsic to the algorithm partially accounts for the
increase. The number of weights and thresholds in the network is (n; + 1)2.
Since a sweep consists of changing each weight, it takes (n;+1)* presentations
to expose the entire network to the input data one time. But it is also clear
that more sweeps and a slower annealing schedule are required as n; increases.
A better quantification of these tendencies awaits further study.

One interesting feature of the solutions found is that many of the weights
allotted to the network are not used, that is they assume the value zero.

Teaching Feed-Forward Neural Networks by Simulated Annealing 645

n=4| n;=5 n; =06

Ty 10 20 33
N.w 40 40 40
~ 09 | 095 | 0993

presentations | 19,000 | 131,000 | 652,000

Table 2: Average number of presentations needed to anneal into a
zero-energy solution in one-vs.-two clumps problem.

Figure 1 shows two typical solutions for n; = 6. In the second of these,
one of the output weights is zero, so that only five hidden units are utilized.
While the network shows no inclination to settle into the very low order
“human” solution of [2], its tendency to eliminate many allotted connections
is encouraging, and could be increased by adding a term to the energy that
penalizes large numbers of weights. An algorithm like back propagation that
is designed for continuous-valued connections will certainly find solutions [2],
but cannot be expected to set weights exactly to zero.

Is it possible that a modification in the procedure could speed conver-
gence? Szu [6] has shown that for continuous functions a sampling less local
than the usual one leads to quicker freezing. Our sampling here is extremely
local; we change only one weight at a time, and it can therefore be difficult
for the network to extract itself from false minima. An approach in which
several weights are sometimes changed needs to be tried. This will certainly
increase the time needed to simulate the effect of a network change on the
energy. A hardware or parallel implementation, however, avoids the problem.

8. Mean field approach

One might hope to speed learning in other ways. In spin glasses [7], cer-
tain representative NP-complete combinatorial problems [4], and Boltzmann-
machine learning [5], mean-field approximations to the Monte Carlo equili-
bration have resulted in good solutions while reducing computation time by
an order of magnitude. In these calculations, the configurations are not ex-
plicitly varied, but rather an average value at any temperature is calculated
(self-consistently) for each variable under the assumption that all the others
are fixed at their average values. The procedure, which is quite similar to
the Hopfield-net approach to combinatorial minimization detailed in refer-
ence (8], results in the equations

(X;) = Yx, X; exp[—E(X;, (X))/T)
YT Tk, exp[-E(X;, (X))/T]

where Xj; stands for the one of the weights W; or T} ;, {} denotes the average
value, and the expression (X) means that all the weights except X; are fixed
at their average values. These equations are iterated at each temperature
until self-consistent solutions for the weights are reached. At very high 7',

(3.1)

646 Jonathan Engel

Figure 1: Typical solutions to the clump-recognition problem found by
the simulated annealing algorithm. The black lines denote weights of
strength +1 and the dashed lines weights of strength —1. Threshold
values are displayed inside the circles corresponding to hidden and
output neurons. Many of the weights are zero (absent), including one
of the output weights in (b).

Teaching Feed-Forward Neural Networks by Simulated Annealing 647

there is only one such solution: all weights equal to zero. By using the self-
consistent solutions at a given T' as starting points at the next temperature,
we hope to reach a zero-energy network at T' = 0.

Although the algorithm works well for simple tasks like the XOR, it runs
into problems when extended to clump recognition. The difficulties arise from
the discontinuities in the energy induced by the step function (threshold) g in
equations (1.2) and (1.3); steep variations can cause the iteration procedure
to fail. At certain temperatures, the self-consistent solutions either disappear
or become unstable in our iteration scheme, and the equations never settle
down. The problem can be avoided by replacing the step with a relatively
shallow-sloped sigmoid function but then, because the weights must take
discrete values, no zero-energy solution exists. By changing the output unit
from a sigmoid function to a step (to determine right and wrong answers)
after the teaching, we can obtain solutions in which the network makes 2 or
3 mistakes (in 56 examples) but none in which performance is perfect.

Some of these difficulties can conceivably be overcome. In an article on
mean-field theory in spin glasses [9], Ling et al. introduce a more sophisti-
cated iteration procedure that greatly improves the chances of convergence.
Their method, however, seems to require the reformulation of our problem
in terms of neurons that can take only two values (on or off), and entails a
significant amount of matrix diagonalization, making it less practical as the
size of the net is increased. Scaling difficulties plague every other teaching
algorithm as well though, so while mean-field techniques do not at first sight
offer clear improvement over full-scale annealing, they do deserve continued
investigation.

4. Conclusions

We have shown that simulated annealing can be used to train discrete-valued
weights; questions concerning scaling and generalization, touched on briefly
here, remain to be explored in more detail. How well will the procedure
perform in truly large-scale problems? The results presented here do not
inspire excitement, but the algorithm is to a certain extent parallelizable, has
already been implemented in hardware in a different context [10], and can be
modified to sample far-away configurations. How well do the discrete-weight
nets generalize? Is our intuition about integers and rules really correct? A
systematic study of these all these issues is still needed.

References

[1] D. Rummelhart and J. McClelland, Parallel Distributed Processing; Explo-
rations in the Microstructure of Cognition, (Cambridge: MIT Press, 1986).

(2] 1. Denker, et al., Complex Systems, 1 (1987) 877.
[3] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science, 220 (1983) 671.
[4] G. Bilbro, et al., North Carolina State preprint (1988).

648 Jonathan Engel

[5] C. Peterson and J.R. Anderson, Complex Systems, 1 (1987) 995. .
[6] H. Szu, Physics Letters, 122 (1987) 157.

[7] C.M. Soukoulis, G.5. Grest, and K. Levin, Physcal Review Letters, 50 (1983)
80.

(8] J.J. Hopfield and D.W. Tank, Biological Cybernetics, 52 (1985) 141.

[9] David D. Ling, David R. Bowman, and K. Levin, Physical Review, B28
(1983) 262.

[10] J. Alspector and R.B. Allen, Advanced Research in VLSI, ed. Losleber (Cam-
bridge: MIT Press, 1987).

