
Complex Systems 2 (1988) 641-648

Teaching Feed-Forward N eural N etworks by
Simulated Annealing

Jonathan Engel
Norman Bridge Laboratory of Pllysics 161-33, California Institute of Technology,

Pasadena, CA 91125, USA

Abstract. Simulated ann ealing is applied to the problem of teachin g
feed-forward neural networks with discret e-valued weights . Network
performance is optimized by repea ted present ation of tr aining data at
lower and lower temperatures. Several examples, including the parity
and "clump-recognition " problem s are treated, scaling with network
complexity is discussed , and the viabilit y of mean -field approximations
to the annealing pro cess is considered.

1. Introduction

Back propagation [1] and related te chniques have focu sed attention on the
prospect of effective learning by feed-forward neural networks with hidden
layer s. Most current teaching methods suffer from one of several problems,
including the tendency to get stuck in local minima, and poor performance in
lar ge-scale exam ples. In addit ion, gradient -descent methods ar e applicable
only when the weights can assume a cont inuum of values. T he solut ions
reached by back propagat ion a re sometimes only marginally stable agai nst
perturbations , and rounding off weights aft er or during the proced ure can
severely affect network performance. If t he weights are restr icted to a few
discrete values, an alternat ive is required.

At first sight, such a restriction seems coun terprod uctive. Why decrease
the flexib ility of the network any more th an necessary? One answer is that
truly tunable analog weights are still a bi t beyond the capabili ties of current
VLSI technology. New te chniques will no doubt be developed, bu t th ere are
other more fundamental reason s to p refer discret e-weight networks. Appli­
cation of back propagat ion often result s in weights that vary grea tly , mu st
be preci sely specified, and em body no parti cular pat tern . If t he network is
to incorporate st ruct ured rul es underlying t he exam ples it has learned , the
weights ought oft en to ass ume regular, in teger values . Examples of such very
structured sets of weights include the "human solution" to the "clump recog­
nit ion" problem [2] discussed in sect ion 2.2, and th e configurat ion presen ted
in reference [1] that solves the parit y problem. T he relatively low number of
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correct solutions to an y problem when weights are rest ricted to a few inte­
gers increases the probability that by finding one the network discovers real
rules. Discrete weights can th us in certain instances improve the abili ty of a
network to generalize.

Abandoning the cont inuum necessarily complica tes the teaching prob ­
lem; combinatorial minization is always harder than gradient descent . New
techniques, however, have in certain cases mit igated the problem. Simulated
annealing [3L and more recently, a mean- field approximation to it [4,5], are
proving successful in a nu mber of opt im izat ion task s. In what follows, we
apply the technique to the problem of determining the best set of weights in
feed-forward neural networks .

For simplicity, we rest rict ourse lves here to networks with one hidden
layer and a sing le output. A measure of network pe rform ance is given by t he
"energy"

E = Dt"- 0"]',

where

0 " = g(- Wo+ I: WiV," ),

and

W = g(-TiO+I: Tijlj).
j

(11)

(1.2)

(1.3)

Here 9 is a step funct ion with t hreshold 0 and taking values {I , - I}, and
the W i and T i j are weights for the output and hidde n layers resp ectively;
a subscript 0 indica tes a threshold unit . The Ii are the inp ut values for
quest ion a , and t el is th e target output value (answer) for that quest ion. Back
propaga tion works by taking derivatives of E with respect to th e weights and
following a path downhill on th e E surface. Since the weights are restricted
here to a few discrete values , t his procedure is not applicable and find ing
minima of E , as noted above, becomes a combinatorial problem.

The approach we adopt is to sweep t hrough the weights W i and Ti j one
at a time in cycl ic order, present ing each with t he t ra ining data and a llowing
it the option of changing its value to another (chosen at random ) from th e
allowed set. T he weight acce pts the change with probabili ty

P = exp[-(E"ow - Eo1d)/TJ (1.4 )

if E n ew > E old ' and with probabili ty P = 1 if the chan ge decreases the
ene rgy. Th e par amet er T is init ially set at some relatively large value , and
then decreased accord ing to the prescript ion

T ---4 IT, 1<1 , (1.5)
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after a fixed number of sweeps N aw , during which t ime the system "equili­
brates."

It is far from obvious that th is ann ealing algori thm will prove a useful tool
for minimi zing E. Equations (1.1-1.3) specify a function very different from
t he energ ies associated with spin glasses or the Trav eling Salesman Problem,
systems to which annealing has been successfully ap plied. In th e next sect ion,
we test the procedure on a few simple learning prob lems.

2. E xamples

2 .1 P ar ity

The XOR problem and it s generalizat ion to mor e inputs (t he pari ty problem)
hav e been widely studied as measur es of th e efficiency of training algor ithms.
W hile not "rea list ic," these problems elucidate some of the issues that ar ise
in the applicat ion of annealing.

We consider first a network wit h two hidden un its connected to th e inputs,
an output unit connected to the hidd en laye r, and th reshold values for each
unit . All the weights and thresholds may take the values - 1, 1, or O. ',..,re add
an extra constraint term to the energy discouraging configuration s in which
the to tal input into some unit (for some question Q) is exactly equal to the
threshold for that unit.

Wh en the temperature T is set to zero fro m the start, t he an nealing
algorithm reduces to a kind of iterated improvemen t. Changes in the network
are accepted only if they decrease the ene rgy, or leave it unchange d. T he
XOR problem specified above has enough solut ions th at th e algorit hm will
find one about half the time st art ing at T = O. It t akes, on the average, 100­
300 presentat ions of th e input data to find the minimum. If, on the other
hand, anneal ing is performed , start ing a t To R::: 1, it er ating 20 t imes at each
tem perat ure, and cooling with 'Y = .9 after each set of iterations, a solution
is always found after (on aver age) abou t 400 presentat ions. In this context ,
therefore , annealing offers no real advantage. Furtherm ore, by increasing th e
nu mber of hidden units to four , we can increase th e likelihood that the T = 0
netwo rk find s a solution to 90%. T hese resu lt s per sist when we go from the
XOR problem with two hidden units to the par ity problem with four inp ut s
and four hidden units (we now allow the thresholds to take all integer values
between - 3 and 3). Th ere , by taking To = 3.3 and 'Y = .95, the annealing
algori thm always find s a solut ion, typi cally aft er ab out 15,000 presen tat ions.
However, the T = 0 net finds a solut ion once every 30 or 40 a ttempts, so
that the work involved is com parable to or less th an that needed to anneal.
And as before, increasin g the number of hidden unit s makes the T = 0 sear ch
even faster.

Neither of these points will ret ain it s force when we move to more com ­
plicated , int eresting, and realisti c problems. Wh en th e ra tio of solutions to
to tal configurat ions becomes too small, it erated im provement techniques per­
form badly, and will not solve the pro blem in a reasonable am ount of t im e.
And increasing the number of hidden units is not a good remedy. T he more
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ni - 6
> 2, 000, 000

Table 1: Aver age number of data-set presentations needed to find a
zero-energ y solut ion to one-vs.-two clumps problem by ite rated im­
provement.

solutions avail abl e to the network, the less likely it is that any part icul ar
one will generalize well to data outside the set prese nt ed. We want to train
the network by finding one of only few solutions, not by alt ering network
structure to allow more .

2. 2 Recog n iz ing clum ps - scalin g behavior

To test our algo rithms in mor e charact eri sti c situat ions , we prese nt the net ­
work with th e prob lem of dist inguishing two-or-more clumps of 1'5 in a binary
str ing (of l 's an d _l 's) from one-or-fewer [2]. This predicate has order two,
no matter the number of input units ni ' In what follows we always take the
number of hidden units equal to the number of inputs, allow the weights to
take values -c l , 0, I, and let the thresholds assume any integer value between
-(ni - 1) an d ni + 1. By examining the performance of the network on the
entire 2n i input strings for n i equal to four, five , and six, we hope to get
a rudimentary idea of how well the performance scales wit h the number of
neurons.

To establ ish some kind of benchmark, we aga in disc uss the T = 0 iter ated
improvement algorithm. For Hi = 4, the technique works very well, but slows
considera bly for ni = 5. By the t im e the number of inpu ts reaches six, we
are unable to find a zero-e nergy solution in many hours of VAX 11/ 780
time . These results are sum marized in table I, where we present the average
number of quest ion presentation s needed to find a correct solut ion .

T he full annealing algorithm is slower th an iterated improvemen t for ni =
4, but by ni = 5, it is alr eady a bet ter approach. The ave rage number of
presentations for each ni l with the anne aling schedule adjusted so t ha t the
ground state is found at least 80% of the t ime, is shown in table 2. While
it is not possible to reliably extrapolate to larger ni (for n i = 7, running
times were already t oo long to gather statist ics), it is clear that for these
small values the learning takes substant ially longe r with each increm ent in
the number of hidde n units an d corresp onding doubl ing of the number of
exa mples. One fact or intrinsic to the algorithm par ti ally accounts for the
increase. The num ber of weigh ts and thres holds in the network is (ni + 1)2.
Since a sweep consists of changing each weight, it takes (ni +1)2 presentations
to expose th e ent ire network to the input data one time. But it is also clear
that more sweeps and a slower annealing schedule are required as ni increases.
A better quantificat ion of these tendencies awaits further study.

One interesting feature of the solut ions found is that many of the weights
allotted to the network are not used, that is they ass ume the value zero .
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n j - 4 nj - 5 nj - 6
To 10 20 33

N,w 40 40 40

'1 0.9 0.95 0.993
presentations 19,000 131,000 652,000

Table 2: Average num ber of presen ta tions needed to an neal into a
zero-energy solution in one-vs.-two clumps problem.

F igure 1 shows two typi cal solut ions for nj = 6. In the second of these,
one of the output weight s is zero, so that on ly five hidden units are utili zed .
While the network shows no inclinat ion to set t le into the very low order
"huma n" solut ion of [2] , its tendency to eliminat e man y allotted connect ions
is encouraging, and could be increased by adding a term to t he ene rgy that
pe nalizes large numbers of weights . An algorithm like back propagation tha t
is designed for continuous-valued connections will cert ain ly find solut ions [2],
but can not be expected to set weights exactly to zero.

Is it poss ible that a modification in the procedure could speed conver­
gence? Szu [6] has shown that for continuous funct ions a sampling less local
than the usual one leads to quicker freezing. Our sampling here is extremely
local; we change only one weight at a ti me, and it can therefore be d ifficult
for t he network to extract itself from false minima. An approach in which
severa l weights are sometimes changed needs to be t ried . Thi s will certainly
increase the t ime needed to simulate th e effect of a networ k cha nge on th e
energy. A ha rdware or par allel implementa tion , however , avoids the problem .

3. Mean fie ld approach

One might hope to speed lea rning in other ways. In spin glasses [7], cer­
tain representative NP-complete combinatorial problems [4], and Boltzmann­
machine learning [5], mean-field approximati ons to the Monte Carlo equ ili­
bration have resulted in good solut ions while redu cing comp utat ion ti me by
an order of magni tude. In these calc ulat ions, the configurat ions are not ex­
plicitly varied, bu t rather an average value at any te mpe rature is calcu lated
(sell-consistently) for each var iable under the assumption that all the others
are fixed at their average values. T he procedure, which is quite sim ilar to
the Hopfield- net app roach to combinatorial minimization detailed in refer­
ence {S], resul ts in the equat ions

(X;) = Lx;X; exp[-E(X ;, (X»)JT]
L X ; exp[-E(X;, (X»)JTJ

(3.1)

where Xi st ands for the one of the weight s Wi or Ti,j, () denot es the average
value, and t he expression (X) means that all the weights except Xi are fixed
at t heir average values. These equations are iterated at each temperature
until self-consistent solut ions for the weights are reached. At very high T ,



646 Jonathan Engel

al

bl

F igure 1: Typical solutions to t he clump-recognit ion probl em found by
t he simulated annealing algorithm . Th e black lines denote weights of
st rength +1 and the dashed lines weights of st rengt h ~1. T hreshold
values are displayed inside t he circles corres ponding to hidden an d
ou t put neurons . Many of the weights are zero (absent ), including one
of t he out pu t weights in (b) .
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there is on ly one such solut ion: all weights equal to zero. By using the self­
consistent solutions at a given T as st ar t ing poin ts at the next tem perature,
we hope to reach a zero-energy network at T = O.

Although t he algorithm works well for simple tasks like th e XOR, it funs
into pro blems when extend ed to clump recogni tion . The difficul ties ar ise [rom
th e discont inuit ies in the energy induced by the step function (threshold) 9 in
equations (1.2) and (1.3) ; steep variations can cau se the iterat ion pro cedure
to fail. At certain te mperatures, the self-consist ent solut ions either disappear
or becom e unstable in our iteration scheme, and the equat ions neve r settle
down. The problem can be avoided by replacing th e step with a relat ively
shallow-sloped sigmoid fun ction but th en , because the weight s mus t take
discrete values, no zero-energy solut ion ex ists . By changing th e outpu t unit
from a sigmoid funct ion to a step (to determ ine right and wrong answers)
after the teaching, we can obtain solut ions in which the netwo rk makes 2 or
3 mistakes (in 56 examp les) but none in which perfo rmance is perfect.

Some of t hese d ifficu lties can conceivably be overcome. In an art icle on
mean-fi eld theor y in spin glasses [9], Ling et al. introduce a. more sophist i­
cated iteration procedure that greatly improves the chances of convergence.
Their method} however} seems to require the reformulation of our problem
in terms of neurons that can take only two values (on or off}, and enta ils a
significant amount of matrix diagonali za tion , making it less practical as the
size of the net is increased. Scaling difficulties plague every other teachi ng
algorit hm as well thoug h, so while mean-field techniques do not a t first sight
offer clea r improvement over full-sca le an nea ling, they do deserve cont inued
invest igat ion .

4 . Conclusions

We have shown that simulated annea ling can be used to t rain discre te-valued
weights; questions concern ing scaling and general ization, tou ched on br iefly
here, remain to be explored in more detai l. How well will the procedure
perform in truly large-scale problems? T he results presented here do not
inspire excitement, but the algorit hm is to a certain extent paral lelizab le , has
already been implemented in hardware in a different context [10], and can be
mod ified to sample far-away configurations. How well do the discrete-weight
nets general ize? Is our intuition about integer s and rules really correct? A
systematic study of th ese all these issues is st ill needed.
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