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Abstract
We present the results of a National Science Foundation Project Scoping
Workshop, the purpose of which was to assess the current status of calcula-
tions for the nuclear matrix elements governing neutrinoless double-beta decay
and determine if more work on them is required. After reviewing important
recent progress in the application of effective field theory, lattice quantum
chromodynamics, and ab initio nuclear-structure theory to double-beta decay,
we discuss the state of the art in nuclear-physics uncertainty quantification and
then construct a roadmap for work in all these areas to fully complement the
increasingly sensitive experiments in operation and under development. The
roadmap includes specific projects in theoretical and computational physics as
well as the use of Bayesian methods to quantify both intra- and inter-model
uncertainties. The goal of this ambitious program is a set of accurate and
precise matrix elements, in all nuclei of interest to experimentalists, delivered
together with carefully assessed uncertainties. Such calculations will allow
crisp conclusions from the observation or non-observation of neutrinoless
double-beta decay, no matter what new physics is at play.

Keywords: neutrinoless double-beta decay, effective field theory, lattice
quantum chromodynamics, ab initio nuclear-structure theory, Bayesian
uncertainty quantification, Bayesian model mixing

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years the search for new fundamental physics, for the forces and particles that
underlie the Standard Model, for the explanation of the excess of matter over antimatter and
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similar mysteries, and for the sources of symmetries and their violation, has moved
increasingly to low-energy experiments. Among the most visible and promising are those that
seek to observe neutrinoless double-beta (0νββ) decay, a process in which two neutrons
inside an atomic nucleus turn into protons, emitting two electrons and no neutrinos. An
observation of this process would show that lepton-number is not conserved and that the
neutrino mass has a Majorana component, implying that the mass eigenstates are self-con-
jugate [1]. Observation of 0νββ decay would thus provide crucial information about neutrino
mass generation [2–4], and suggest that the matter-antimatter asymmetry in the Universe
originated in leptogenesis [5]. The major implications of an observation made the con-
struction of a ton-scale 0νββ-decay experiment the top priority for new projects in the 2015
Nuclear Science Advisory Committee Long Range Plan [6], which set the decadal priorities
for nuclear physics in the United States. The anticipated investment is in the range of
US$250–400 million.

Smaller experiments already put stringent limits on the decay rate [7–18], e.g.
T 2.3 101 2

0 26> ´n year for the decay of 136 Xe [19]. The next very few years will see stricter
limits from experiments that are currently operating or under construction, such as LEGEND-
200, CUORE, KamLAND-Zen 800, and SNO+. On a slightly longer time scale, ton-scale
experiments [19–24] based on 76Ge, 100Mo, 136Xe, and perhaps other isotopes will come
online. The goal of these large experiments is the ability to detect any decay caused by
the exchange of light Majorana neutrinos if the neutrino mass hierarchy is inverted (i.e. if the
neutrino with the largest electron-flavor component is the heaviest), as well as increased
sensitivity to decay caused primarily by the exchange of other still-hypothetical particles.

In order to extract the effective light-neutrino Majorana mass ∣ ∣m U mi ei i
2º åbb (with mi the

mass of the neutrino mass eigenstate i and Uei the elements of the Pontecorvo–Maki–Naka-
gawa–Sato matrix) from any of these impressive experiments, one needs nuclear matrix ele-
ments (denoted byM0ν) of the decay operators. The degree to which ton-scale experiments will
be sensitive to decay caused by the exchange of inverted-hierarchy light neutrinos depends on
these nuclear matrix elements, as does the extent to which experiments in more than one isotope
will prove useful. The nuclear matrix elements suffer at present from sizable uncertainties [25].
Their accurate computation, with a quantified uncertainty, is therefore an important task.

The need for precise nuclear matrix elements is in fact more general than the notion that
the exchange of light Majorana neutrinos causes 0νββ decay. That idea is based on the
assumption that lepton-number violation originates at very high energies and manifests itself
in the decay through the ‘high-scale seesaw,’ which leaves Majorana neutrino masses as its
only remnant at low energies. If that is indeed the case, 0νββ decay and neutrino-oscillation
experiments will together tell us most of what we can learn. High-scale LNV is only one
scenario, however, and even in the restricted class of seesaw models, it applies only if the new
particles are very heavy right-handed neutrinos. In many Beyond the-Standard Model (BSM)
scenarios, other lower-scale sources of LNV can also induce 0νββ decay. In left-right
symmetric models, for example, heavy neutrinos and charged scalars with TeV-scale masses
can be exchanged. In other scenarios there may be light right-handed (sterile) neutrinos with
masses much lower than the electroweak scale. The large number of ways in which the
lepton-number could be violated (see, e.g. [26] for a review) means that ton-scale searches for
0νββ decay have a significant discovery potential beyond the inverted-hierarchy high-scale
seesaw. Each kind of LNV leads to its own set of transition operators, the nuclear matrix
elements of which must be calculated. If the calculations are sufficiently accurate, we can
assess the sensitivity of the generation of experiments now coming online to various kinds of
LNV. We can also provide a subsequent generation of experiments with information on how
best to narrow the range of possibilities for LNV and neutrino mass generation through
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measurements of single-electron spectra, electron angular distributions, and the isotopic
dependence of the decay rate.

The ability to compute all the relevant nuclear matrix elements requires work at widely
separated energy scales, from the high energies at which LNV originates all the way down to
nuclear energies, and the ability to bridge the scales. Effective Field Theory (EFT) provides
the bridge by expanding observables and Lagrangians in the ratios of the important energy
scales. In reality the calculation is done via a series of EFTs—a connected set of bridges
rather than a single one; see figure 1 for an illustration. The Standard Model EFT (SM EFT)
allows us to encode the effects of different LNV mechanisms in operators involving neu-
trinos, electrons, and d and u quarks, thereby taking us from the TeV scale to the scale of
quark confinement at around 1 GeV. Converting these operators into hadronic operators that
are organized through chiral perturbation theory requires non-perturbative input from lattice
QCD (LQCD). Chiral perturbation theory operators are then used to derive operators in a
nucleons-only Hilbert space; following that step, the operators can be used in many-body
calculations of nuclei. Taken together the bridges deliver, for each LNV source, a separate
and specific set of chiral-EFT nn→ pp transition operators that can then be used in nuclear

Figure 1. A ‘tower of theories’ leading to the computation of the nuclear matrix
elements M0ν that control the rate of 0νββ decay. At the highest level, above the cutoff
ΛLNV for all effective theories, is the ultimate BSM LNV. It manifests itself at the quark
and gluon level through Standard-Model EFT, at the nucleon and pion level through
chiral perturbation theory (ChiPT), at the nucleon-only level (i.e. with pions no longer
part of the Hilbert space, but instead accounted for in multi-nucleon operators) through
chiral-EFT, and at the nuclear level through the techniques of nuclear-structure theory.
Figure adapted from [27].
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many-body calculations. The combination of SM EFT, LQCD, chiral-EFT, and ab initio
(first-principles) nuclear many-body methods, each of which has the ability to control
uncertainty, therefore provides a path—the only path, in fact—toward the reliable estimation
of uncertainties in M0ν.

Chiral-EFT is key to the progress made to this point, and to future efforts to quantify
uncertainties. Chiral-EFT [28–31] is the extension of chiral perturbation theory to the few-
nucleon problem. Just like chiral perturbation theory, chiral-EFT is organized as an expansion
in powers of p/Λ or mπ/Λ, where p is a typical nucleon momentum, mπ is the pion mass and
Λ is the theory’s ‘breakdown scale’ of about 500 MeV. But chiral-EFT is not a perturbative
theory, because it has to account for nuclear binding. Although discussions of exactly how to
do that continue (see, e.g. [32]) chiral-EFT has the virtue of delivering consistent nuclear
forces and 0νββ operators up to a given order in the chiral-EFT expansion. Even better, these
operators include the consequences of QCD’s chiral symmetry, e.g. connections between
pionic operators and the axial current that governs beta decay. Perhaps most significantly for
the purposes of this document, chiral-EFT permits estimation of the uncertainty associated
with the model of the nuclear force and the interactions that govern 0νββ decay. A kth order
chiral-EFT calculation should have a fractional error of ({ } )O p m, k k1 1Lp

+ + . It follows that
different implementations of chiral-EFT—different orders of the calculation, different reg-
ulator choices—should give answers that are consistent with one another once this error
estimate is taken into account. Bayesian techniques have recently been employed to quantify
this error [33], and show that—if the chiral-EFT calculation is implemented carefully—the
error estimate provides a good account of the predictive accuracy of chiral-EFT in light nuclei
[34, 35]. Chiral-EFT forces and operators, therefore, provide the starting point for ab initio
calculations that use the nuclear many-body methods described below.

The nuclear-theory community has made significant progress, at all the levels in this tower
of EFTs, toward more accurate calculations of M0ν. But the progress has in part served to
confirm that there are O(1) uncertainties in M0ν. These uncertainties (unless reduced) will
prevent us from learning about the sources of LNV, even if several experiments detect the
process.

There is therefore still much to do. In particular:

• The 0νββ transition operators used in nuclear-structure physics are now written in terms
of ‘low-energy constants’ (LECs) that multiply terms in the chiral-EFT Lagrangian that is
used at the hadronic scale. In chiral-EFT, the LECs multiplying the terms at the lowest
orders are thus the most important. Previously unrecognized LECs associated with zero-
range nn→ pp transition operators appear even at leading order in the 0νββ piece of the
chiral Lagrangian, for both light Majorana neutrino exchange [36] and TeV scale LNV
[27]. We must improve our knowledge of these LECs, both by relating 0νββ decay to
other ΔI= 2 processes and by direct calculation within LQCD.

• To use the results of EFT and LQCD in the computation of nuclear matrix elements—that
is, to use the chiral-EFT Hamiltonians and transition operators that these methods supply
in many-body calculations—we need to improve ab initio methods. The improvement
will involve an increase in accuracy, the use of a wide range of chiral-EFT Hamiltonians
(to allow uncertainty quantification), and a careful analysis of the way such methods
employ the EFT operators. The first two of these will require, in addition to analytic work,
more efficient use of our best supercomputing resources. Existing codes and their
extensions will need to be reworked to leverage accelerators such as GPUs.
Benchmarking with methods that are known to give very accurate results (so-called
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‘quasi-exact’ methods that have thus far been restricted by complexity to light nuclei) is
also important.

• At both the hadronic and nuclear scales, we need a consistent and unified quantification of
uncertainties. We must be able to both propagate parameter uncertainties to observables
and to account for and disentangle deficiencies in our calculations. The innovative use of
Bayesian methods will be essential.

In short, the framework developed in the last few years to combine LQCD, EFT, and
ab initio nuclear structure is not yet efficient enough to allow a genuine assessment of
uncertainty. To be of real use in the search for new physics, all three ingredients must be
improved in the coming decade and made more computationally efficient; their uncertainty
also needs to be reliably addressed. But these kinds of intelligent improvements will not, on
their own, be enough: increased access to computing resources and dedicated exascale
allocations will also be important.

Some of these issues have been discussed recently. A Snowmass white paper [37] provides
a particle-physics perspective, and [38] reviews both the nuclear and particle theory of 0νββ
decay alongside the experimental situation. This paper differs from those in focusing tightly
on modern methods of nuclear theory and on uncertainty quantification, and in particular on
the improvements that will allow accurate values for M0νwith meaningful error bars, for any
particular BSM mechanism.

In the next section, we provide a summary of the current state of-the-art in both the
nuclear-physics aspects of M0ν (section 2.1) and uncertainty quantifcation (UQ) in nuclear
theory (section 2.2). Section 3 then discusses the innovations and calculations that are needed
to advance the nuclear theory of M0ν, while section 4 describes a plan to quantify uncertainty
in those calculations. Because of the significant emphasis on UQ for 0νββ matrix elements in
this paper, sections 4 and 2.2 are quite detailed and explicit about how we think that UQ can
be carried out. We close in section 5 with a summary of the theoretical advances and
collaborative structures that are needed in order to establish precise and accurate calculations
of neutrinoless double-beta decay.

2. Summary of the current state of the art

2.1. Physics

Much of the current state of the art in the computation of M0ν arose from work in the recent
DOE-funded DBD topical theory collaboration on nuclear theory for double-beta decay and
fundamental symmetries [39]. LQCD, EFT, and nuclear many-body methods all played a role
in this effort to solve the multi-scale problem of nuclear 0νββ decay. We discuss recent
developments in each of these areas.

EFT. Until recently, the connection of nucleon operators with fundamental sources of
lepton-number violation tended to be ad hoc, with BSM models analyzed individually and
unsystematically. The first application of the framework of chiral-EFT to the problem, for
0νββ decay induced by heavy-particle exchange, appeared in [40]. In the last few years, work
of this kind has grown much more systematic. References [27, 41, 42] systematized the work
of [40], showing how the parameters that determine the rates of a very heavy-particle lepton-
number-violating physics work their way down into nucleon-level ββ operators. At around
the same time, [43] treated light-neutrino exchange, showing that working to N2LO requires
‘non-factorizable’ diagrams (those that cannot be broken in two by cutting the line repre-
senting the exchanged neutrino) that had never been considered before. Shortly after that,
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researchers made the surprising discovery [36] that a contact interaction, representing the
effects of high virtual-neutrino momenta that are integrated out of the chiral-EFT, occurs at
the leading order. Though the coefficient of the contact operator was initially unknown, it was
later determined approximately through a resonance-model-based interpolation between
perturbative QCD and low-energy pion and nucleon dynamics. [44, 45]. For the first time,
nuclear many-body computations of M0ν in the nuclei used in experiments are taking the
contact term into account. So far it has caused all ab initio matrix elements to increase.

LQCD. The hope is that LQCD will soon be able to directly supply the coefficient of the
aforementioned contact term, as well all other relevant LECs. In the last few years, the field
has made significant progress toward that goal. A contribution to 0νββ decay with TeV-scale
LNV is produced by the exchange of BSM heavy particles between two pions, each of which
are then absorbed by protons as they turn into neutrons. The exchange between these virtual
pions is easier to compute with LQCD than the direct exchange between nucleons, and in
recent work the dependence of the resulting 0νββ nucleon-level matrix elements on para-
meters that specify BSM models has been calculated [46, 47]. Pionic matrix elements in the
light-neutrino exchange scenario have also been computed in LQCD, and the corresponding
LECs in chiral perturbation theory have been constrained [48, 49]. Progress toward direct
calculations of nn→ pp matrix elements will come soon, and the formalism for constraining
contact LECs from future LQCD calculations is being developed [50, 51].

Nuclear Structure. At the nuclear-structure scale, recent progress has been mostly in
applying newly developed non-perturbative ab initio many-body methods to ββ decay. Such
methods start with interactions and operators determined from QCD and/or fit to data in very
light nuclei (A= 2 , 3, or 4), and then produce (approximate) solutions to the Schrödinger
equation in heavier nuclei. Three distinct ab initio methods have been applied together with
chiral-EFT interactions to the heavy open-shell nuclei of interest for 0νββ experiments. The
first two, the in-medium generator coordinate method (IM-GCM) and the valence space
IMSRG (VS-IMSRG) are variants of the In-Medium Similarity Renormalization Group
(IMSRG), an approach in which one uses renormalization-group flow equations to decouple a
predefined ‘reference’ state, ensemble, or subspace from the bulk of the many-body Hilbert
space. The third method is Coupled Cluster (CC) Theory; it uses an ansatz for the ground
state in which particle-hole excitation operators are exponentiated before being applied to a
Slater determinant. It also decouples a reference state, albeit via a similarity transformation
that results in a non-Hermitian Hamiltonian.

All three of these methods, along with many more phenomenological schemes, have been
applied to the computation ofM0ν for light-neutrino exchange in

48Ca, the lightest isotope that
can be used in an experiment, and the Valence Space IMSRG has been applied to heavier
isotopes. Figure 2 displays the compiled results for 48Ca. Those produced by the methods just
described—the ‘most ab initio’—are shown in green on the right of the figure. The uncer-
tainty range is more significant for these than for other methods, but still omits most sys-
tematic error.

The next section reviews the state of the art in uncertainty quantification. The rest of this
document then discusses both the ways in which physics methods can be improved in
accuracy and the ways in which remaining uncertainty in their predictions for M0ν can be
reliably estimated.

2.2. Uncertainty quantification

In 2011 Physical Review A published an Editorial that stated ‘Kthere is a broad class of
papers where estimates of theoretical uncertainties can and should be made. Papers presenting
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the results of theoretical calculations are expected to include uncertainty estimates for the
calculations whenever practicable.’ [65]. Uncertainty quantification is crucial for calculations
of 0νββ-decay in nuclei. The planning and—eventually, we hope—the interpretation of
0νββ-decay measurements requires that theorists deliver not just an expectation value for
M0ν, but also an uncertainty that represents the range of probable values that matrix element
can take and does so in a statistically meaningful way. The goal of the uncertainty quanti-
fication (UQ) is not a precise evaluation of whatever is missing from the calculation. Quoting
again from [65]: “The aim is to estimate the uncertainty, not to state the exact amount of the
error or provide a rigorous bound.”

UQ in nuclear-physics calculations pre-dated that Editorial but standard regression analysis
was prevalent for many years [66]. Since then, nuclear-theory UQ has become much more
sophisticated. This progress has taken place on several fronts.

The first, and most straightforward kind of UQ, is the estimation of error bars on the
parameters θ in the nuclear-physics model being employed, then the propagation of those
uncertainties—including their correlations—to model predictions. An early example of such
an effort is the estimation of the parameters in a sophisticated nuclear energy-density-func-
tional [67]. There are many recent examples of nuclear-structure calculations that do this, but
a particularly striking one from the ab initio world constrained the parameters of nuclear
forces using data from light nuclei and propagated the resulting uncertainties to predictions
for properties of 208Pb [68].

Three pieces of theory technology are commonly employed in such studies:

• Bayes’ theorem, which relates the multi-dimensional posterior probability density p of the
model parameters θ to the data, y, used to constrain those parameters, according to:

( ∣ ) ( ∣ ) ( ) ( )p y p y p , 1q q qµ

where p(θ) is the a priori distribution of the parameters θ.
• A method by which a representative set of samples of the posterior probability
distribution p(θ|y) can be obtained. Markov Chain Monte Carlo (MCMC) sampling is
commonly employed, and was combined with a technique called ‘history matching’ in
[68]. We note that with such a set of samples in hand, it is conceptually straightforward to

Figure 2. The light-neutrino exchangeM0ν for the transition
48Ca→48Ti, is computed in

various approaches. The four right-most values, in green, all result from the same
chiral-EFT interaction. References: EDF [52, 53], IBM [54], QRPA [55], SM-pf
[56, 57], SM-sdpf [58], SM-MBPT [59], RSM [60], QMC+SM [61], IM-GCM [62],
VS-IMSRG [63], CCSD, CCSD-T1 [64].
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obtain a predictive probability distribution for, say, M0ν. That distribution is found by
repeated forward evaluation of the model forM0ν at the different parameter values θ in the
set of samples.

• Emulators that allow rapid evaluation of the (approximate) model at different values of
the parameters θ. This makes practical the computation of the likelihood p(y|θ) within
whatever sampling framework is chosen.

Nuclear theorists have also become more attuned to the imperfections in their models. The
inclusion of a ‘model discrepancy’ term in the analysis of data is known to be crucial for
accurate parameter estimation [69, 70]. This means that one must admit that not just data, but
also calculations, have imperfections that may cause a mismatch between theory and
experiment. This idea can be formalized as

( ) ( ) ( ) ( ) ( )y x y x y x y x; , 2exp th exp thq d d= + +

where the last two terms encode, respectively, the experimental error (often taken to be
independent at the xʼs corresponding to different data y) and the theory uncertainty (which is
almost certainly not independent, i.e. we expect to be correlated across different xʼs).
Significant effort has gone into building models of δyth for EFT calculations [33, 71]; since
EFT methods are characterized by a systematic expansion in a small parameter, one can
predict how they will fail and so write down candidate functional forms for δyth. But, even
when such control is not available, model defects can still be productively introduced, e.g.
Gaussian processes can be used to model the discrepancy between density-functional-theory
calculations of masses and experimental data thereon [72].

Ultimately, though, the complex dynamics of nuclei means that different theoretical
models will be employed to describe them. This diversity of models is advantageous because
the methods have complementary strengths but also different systematic model discrepancies.
This becomes a virtue by exploiting the third area of progress, which has been in the use of
forms of Bayesian model averaging (BMA) or Bayesian model mixing (BMM) to incorporate
insights from different models into a unified prediction in a statistically rigorous way. BMM
can only be done reliably if individual models k have had their uncertainties quantified in
the ways described in the previous two paragraphs. Once that has taken place, the predictions
of those models for the observable of interest y* can be weighted according to ‘scoring
criteria’:

* *( ∣ ) ( ) ( ∣ ) ( )p y y y w y p y y, , . 3ev
k

k ev kå=

Here, *( ∣ )p y y, k is the posterior for the observable y*, given the data y, in a particular
model k , and wk(yev) is a weight that is determined by the model’s performance on a target
(or evidence) dataset, yev. While in the BMA expression (3) the weights are constant across
the domain, in the more advanced BMM they can also depend on x. We pause here to make
two crucial points:

• The data, yev that are used to assess the aspects of model performance that are pertinent
for predicting y* need not be the same as the dataset(s) used to calibrate the models.
Ideally, the data yev will be chosen because they are understood to be, or analyzed to be, a
good proxy for the quantity of interest, y*, i.e. models’ ability to predict y* is highly
correlated with their ability to predict whatever observables are selected to be part of yev.

• We note that that performance will almost certainly be addressed within the context of the
model discrepancy δyth of each model, and hence an understanding of those model
discrepancies plays a critical role in between-model UQ.
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Early nuclear-physics applications of model averaging can be found in [73, 74].
In 2020, the Bayesian analysis of nuclear dynamics (BAND) collaboration [75] began its

effort to lower the barrier for nuclear theorists to perform all three of these types of uncer-
tainty quantification. A particular interest within BAND is methodological work on BMM.
The main product the collaboration seeks to deliver is software packages and use cases that
facilitate emulation, model calibration, and model mixing. The goals of BAND are described
in [76].

Within the DBD Topical Collaboration, some ideas were proposed to quantify the
uncertainties in calculations of ab initio M0ν. However, the implementation of these ideas was
limited by the inability to rapidly evaluate these matrix elements for the nuclei of interest in
0νββ experiments. This made it difficult to even accomplish the first, parametric, kind of UQ.
The determination of model discrepancy for the different many-body methods employed in
0νββ studies remains a topic of forefront research, see section 4.

3. Physics progress required

Future work in the community to deliver reliable 0νββ nuclear matrix elements will probably
focus on advancing LQCD and EFT calculations of the underlying matrix elements in the
few-nucleon sector, and ab initio nuclear many-body calculations that use the LQCD and EFT
input in experimentally relevant isotopes. We discuss these subjects in this section and lay out
a path for rigorous UQ in the next section.

3.1. Lattice QCD and EFT

The goal of a combined EFT and LQCD effort in the 0νββ program will be the identification
and computation of the LECs multiplying nn→ pp transition operators in chiral-EFT.
Because LNV originally involves leptons and quarks, one has to evaluate matrix elements of
quark operators in hadronic states in order to link LNV parameters such as mββ to the LECs.
The program of constructing consistent and predictive nuclear EFTs has a long history and a
recent review summarizing its status and prospects can be found in [31].

As mentioned in section 2.1, analyses of the 0νββ amplitude revealed that a new nn→ pp
contact interaction is needed at leading order in chiral-EFT, even for light Majorana neutrino
exchange [36, 43]. The associated LEC, called g NN

n , is not determined by symmetry con-
siderations or experiment (at least not in a straightforward way) and so must be obtained
theoretically. The LEC g NN

n has been studied so far by applying both large-Nc and dispersive
methods, while LQCD studies require methods that are still under development. Large-Nc

QCD [77] relates g NN
n to LECs that can be extracted from the charge-independence-breaking

combination of nucleon-nucleon scattering lengths in the 1S0 channel. Meanwhile, the dis-
persion-theory approach, inspired by the Cottingham formula for electromagnetic hadron
masses [78, 79], leads to a prediction for the nn→ pp amplitude near threshold, from which
g NN
n can be extracted in any EFT regularization and renormalization scheme, including those
used in nuclear many-body theory (see [80] for an early use of this nn→ pp input in ab initio
nuclear many-body calculations). The main uncertainty in this approach comes from inelastic
intermediate states that can appear between the two insertions of the weak current (e.g. NNπ
states). The existing estimates of g NN

n can be improved by analyzing suitable ΔI= 2
observables, thus anchoring g NN

n to data. Finally, as discussed below, LQCD can play a major
role in a first-principles determination of g NN

n [51, 81, 82].
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The leading order LECs associated with TeV-scale LNV operators are currently com-
pletely unknown. Their determination will be possible through the use of dispersion-theory
techniques similar to those developed in [78, 79], as well as by a direct calculation in LQCD.
In fact, direct LQCD calculations can in principle determine the entire nn→ pp amplitude
(see [83, 84] for recent reviews of the role of LQCD in constraining nuclear observables). The
interplay between LQCD and EFT is symbiotic. On the one hand, matching EFT and LQCD
will enable an assessment of the theoretical foundation of nuclear EFT and a calibration of its
truncation scheme. On the other hand, EFT descriptions allow better quantification of the
systematic uncertainties in LQCD calculations, providing reasonable extrapolation forms for
taking continuum and infinite-volume limits. Furthermore, in order to play a role in the 0νββ
program, LQCD calculations need to be performed at quark masses that are sufficiently close
to the physical values to allow reliable extrapolations to the physical point. Such extra-
polations rely on EFTs, which in turn rely upon LQCD input to determine the relevant LECs.
Thus, an interplay between LQCD calculations of two-nucleon (NN) observables and EFT
will be necessary to determine at which quark masses one may trust results for 0νββ-decay
observables.

Before calculating the nn→ pp amplitudes with LQCD, however, the low-energy spectra
and scattering amplitudes in the NN system need to be calculated with precision. Doing so
allows one to determine which operators couple sufficiently well to the ground states of
interest, to understand the systematic uncertainties inherent to NN systems, and to match
finite-volume Euclidean matrix elements to infinite-volume transition amplitudes. The NN
studies to date have been largely carried out at very large quark masses, where extrapolation
to the physical point cannot be controlled. Fully understanding the systematic uncertainties
will become even more crucial as the quark masses are lowered toward their physical values
because of a signal-to-noise problem for nucleons, in which statistical noise grows expo-
nentially with the pion mass, atomic number, and Euclidean time [85–87]. Furthermore, in
calculations at lighter quark masses (which require larger lattice volumes), the energy gaps
that dictate the exponential decay of excited states with Euclidean time become very small,
causing a slow approach to the ground state that may be obscured by the growth in noise.
Thus, improved operators, analysis, and understanding of excited-state contamination are of
critical importance.

These complications mean that LQCD still cannot demonstrate that two nucleons form
bound states, even at large quark masses that make precise calculations easier. Recent work
within the LQCD community has highlighted the importance of fully-controlled calculations
in the NN sector. First, the use of improved interpolating-operator sets and analysis techniques
based on the variational principle of quantum mechanics has led to results [88–90] that cast
doubt on earlier spectroscopy calculations at similar quark masses. Second, a preliminary
study of the discretization effects of two-baryon calculations has shown large shifts in the
binding energies away from the continuum limit [91]. The latter finding, in particular, needs
to be verified by different groups with different lattice actions, and may indicate that NN
calculations must be performed at multiple fine lattice spacings. This would significantly
increase the cost of calculations.

To use LQCD to access the 0νββ amplitude, one needs to develop indirect mapping
relations. This is because the notion of asymptotic states is absent in the finite Euclidean
spacetime that is used in the LQCD setting. A general mapping exists to obtain matrix
elements of local (short-range) operators such as those appearing in the high-scale models of
0νββ decay within two-nucleon states [50]. As an input, this mapping requires two-nucleon
spectra and the energy dependence of elastic scattering amplitudes. The existing mapping for
the matrix element associated with light-neutrino exchange involves a matching to the leading
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order nucleonic EFT [51] and requires as input the two-nucleon spectra and scattering
amplitudes. The mappings for such long-range matrix elements are in general more complex
than those for local matrix elements because a straightforward analytic continuation in the
presence of on-shell intermediate states is not possible [92–95]. With properly infrared-
regulated neutrino propagators, however, analytic continuation will be straightforward in
future calculations of the 0νββ amplitude [48, 49]. Techniques for computing both the short-
and long-distance contributions to 0νββ processes have already been developed and applied
in studies of the π−→ π+e−e− and π−π−→ e−e− processes [46, 48, 49], which also con-
strain pionic contributions within nuclear 0νββ decays. Calculations of the nn→ ppe−e−

process will be significantly more involved for the reasons discussed above, but will be a
crucial next step.

With the broad goal of achieving a systematic quantification of nuclear uncertainties, we
must face the challenges of extending the analysis of the 0νββ transition operator beyond
leading order in chiral-EFT, especially in the case of light-neutrino exchange. We must also
go beyond two-nucleon observables to reliably determine the role of multi-nucleon effects in
double-beta decay. Regarding the nn→ pp amplitude, both in Weinberg’s power-counting
(WPC) and in renormalized chiral-EFT, the first corrections arise at next-to-next-to-leading
order (N2LO) [96]. In the two-body sector, the transition operator includes contributions from
the nucleon vector, axial, and induced pseudoscalar form factors (which are customarily
included in nuclear calculations), from pion-neutrino loops [43], and from new contact
interactions required to absorb the divergences in these loops. These include the couplings of
two electrons to two pions (gn

pp), to two nucleons and one pion ( )g N
n
p , and to four nucleons (a

correction to g NN
n ). gn

pp is well determined by LQCD [48, 49], while extracting the correction
to g NN

n will require the matching of LQCD and chiral-EFT amplitudes at higher orders. The
short-range structure of the two-body 0νββ operator at N2LO is at the moment unknown
beyond WPC. Reference [96] pointed out that the promotion of g NN

n to LO implies that
certain derivative operators in the spin-singlet channel are also more important than in WPC,
but a full analysis of the LNV scattering amplitudes to N2LO does not yet exist, and needs to
be developed to interpret anticipated LQCD results. A deeper question is whether the chiral
and momentum expansions of chiral-EFT converge (and converge to what is observed in
Nature). This question is open even for single baryons [84, 97] and relatively light systems
[98–100], and needs to be answered as the community moves beyond purely phenomen-
ological approaches. LQCD input for the unknown LECs at successively higher orders can
help resolve power-counting questions for LNV processes.

Moving to the question of multi-nucleon corrections, we note that two-body currents,
which are important in the gA-quenching problem in β decays [101, 102], first contribute to
0νββ decay at N2LO, by generating three-body corrections to the operator. These corrections
were considered in [103, 104] and found to be compatible with power-counting estimates.
Furthermore, in the three-body sector, a goal for the chiral-EFT community is to validate or
falsify WPC’s expectations, by studying suitable few-body amplitudes. Once calculations of
two-body transitions have been achieved with systematic control, LQCD studies of 0νββ
decay of systems with A= 4 and A= 6, if they can be carried out, will provide valuable
additional information. Such calculations can reduce systematic uncertainties in the process of
matching 0νββ amplitudes to the chiral-EFT used in nuclear many-body calculations. In
particular, constraining the same LECs from LQCD calculations of different processes will
not only reduce statistical uncertainty, but will also reduce the uncertainties in nuclear EFTs
that arise from choices of scheme or regulator. Useful transitions will probably include the
A= 4 processes 4H→4Li e−e− and 4n→4He e−e−, and the A= 6 transitions 6He→6Be e−e−
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(for which nuclear-structure calculations have been performed [105]), and 6H→6Li e−e−

(which introduces additional challenges for many-body approaches because 6H is unstable).
To reduce the cost of extrapolating such LQCD calculations to infinite-volume, directly
matching matrix elements to finite-volume EFT calculations [106–109] may be a valuable
approach to precisely determining the LECs.

In summary, while significant outstanding challenges must be overcome to reliably
determine the nn→ pp amplitude, for both the light-neutrino exchange and the short-distance
ΔI= 2 4-quark operators, there exists a clear roadmap for addressing them. Following it will
require a concerted effort in LQCD, EFT, and the coupling of these theories, as well as
computing resources at the exascale and beyond, both to quantify the uncertainties in the
relevant two-body process and to build an understanding of multi-nucleon corrections.

3.2. Many-body methods

All experimentally relevant 0νββ candidate nuclei, with the exception of 48Ca, are open-shell
and at least of medium mass. Consequently, only a subset of the currently-available ab initio
many-body methods can be used to compute the nuclear matrix elements that govern their
decay. First computations of the nuclear matrix elements have been performed in coupled
cluster theory [64], the IM-GCM [62], and the VS-IMSRG [63]. We describe each of these
methods and prospects for improving them next.

3.2.1. Coupled cluster method. In the coupled cluster method [110–112], the exact wave
function |Ψ〉 is parameterized by the exponential ansatz ∣ ⟩ ∣ ⟩ˆeT

0Y = F , where the reference
|Φ0〉 is a product state, and the cluster operator T̂ generates particle-hole excitations. One
expresses T̂ in terms of single, double, triple etc particle-hole excitations and (usually)
truncates it at the so-called doubles or triples level. This is the main approximation. The
calculation of transition matrix elements in coupled cluster theory is complicated by the fact
that T̂ is purely an excitation operator, i.e. the fact that the similarity transform Ôe eT T- of a
Hermitian operator Ô is not Hermitian. This implies that the bra version of a state needs to be
parameterized through a de-excitation operator rather than an excitation operator. An
additional complication for 0νββ decay is that the initial and final states are the ground states
of different nuclei, with each in principle requiring its own T̂ operator and reference state. In
practice, one expresses the final state as a generalized excitation of the initial state through the
equation-of-motion method as∣ ⟩ ˆ∣ ⟩ˆReF

T
0Y = F , where R̂ is a double-charge-changing

excitation operator [64]. Alternatively, one can express the initial state as an excitation of
the final state. In the absence of any truncation, these two choices should yield identical
results, so the difference between the two is an indication of the truncation error.

Like T̂ , the excitation operator R̂ is expanded in terms of charge-changing few-nucleon
‘excitations’ and truncated at a doubles or triples level. This approximation may not be
accurate when the initial and final nuclei are very different in structure, because, for example,
they differ in their intrinsic deformation. Indeed, the spherically-symmetric coupled cluster
method works well for computing properties of closed-shell nuclei such as 48Ca. However,
the ground state of 48Ti (the final state in the decay of 48Ca) is open-shell and is better treated
with an intrinsically deformed (though axially symmetric) reference state, which is
computationally more expensive. In benchmarks performed so far [64], it appears that taking
|Φ0〉 to be the deformed 48Ti state yields more accurate results, though the reason is not
entirely known.

We can expect this approach to be applied to more nuclei and with more accuracy in the
next few years. With enough computation time, it can be generalized to allow triaxial
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deformation of the reference state (and thus a good calculation, e.g. in 76Ge) and the
restoration of rotational symmetry through projection onto states with good total angular
momentum [113]. These developments will turn the method into a much more versatile tool
for the computation of 0νββ nuclear matrix elements.

3.2.2. IM-GCM. The IM-GCM [62, 114] is a combination of the GCM [115] and the
MultiReference In-Medium Similarity Renormalization Group (MR-IMSRG) [116, 117]
(‘Multireference’ refers to a generalization of the renormalization-group flow equations to
work with a reference state that is more complex than a Slater determinant). The GCM
efficiently captures the collective long-range correlations which are important in deformed
nuclei, while the MR-IMSRG captures short-range correlations associated with the repulsive
core of realistic nuclear interactions.

One can view the IMSRG as a way to generate a unitary transformation U of the
Hamiltonian that brings it to a form more amenable to solution. The transformation is
parameterized by a flow parameter s, yielding a differential equation for the transformed
Hamiltonian H(s)=U(s)HU†(s) and for other consistently-transformed operators

( ) ( ) ( )†s U s U s = . The unitary transformation, which is conveniently expressed in the
Magnus formulation as U(s)= eΩ(s) [118], is designed so that with increasing s, a reference
state |Φ0〉 increasingly approximates an eigenstate of H(s).

In the IM-GCM, the approach is to take |Φ0〉 to be the ground state of a GCM calculation.
The GCM ground state is expressed as a linear combination of configurations |Φ(q)〉 labeled
by a set of generator coordinates q (e.g. quadrupole deformation), so that
|Φ0〉=∑qf (q)|Φ(q)〉. The amplitudes f (q) are obtained by minimizing the energy via the
Hill–Wheeler–Griffin equation, which amounts to a diagonalization in the space of GCM
states |Φ(q)〉. As we noted in the context of coupled cluster theory, the initial and final states
in any 0νββ decay are different, a fact that complicates most computations. The
transformations ( )e sIW and ( )e sFW that decouple the initial and final states are different.

In [114], this complication was addressed by combining the IMSRG transformation and
GCM calculations for the initial and final states in different ways, again with the
understanding that, without approximations, all these combinations should give the same
results. In more recent work, a powerful alternative was presented in the form of an ensemble
composed of reference states in both the initial and final nuclei that allows one to use a single
transformation rather than two separate ones [62].

The main approximation in the MR-IMSRG flow equations is that all operators are
truncated at the normal ordered two-body (NO2B) level. In the next few years, with enough
computational capacity, we will be able to go beyond this approximation by either exactly or
approximately including the effects of three-body operators that are induced by the flow
equations. A first step in this direction indicated that the correction due to induced three body
operators is sub-leading (on the order of 10% of the NO2B correction) [62, 119]. The result is
encouraging, but the corrections are large enough that they should be included.

Another approximation is in the selection of generator coordinates. In principle, one can
continue to add more coordinates that are believed to be relevant (for example, proton-neutron
pairing gaps) and confirm that the answer does not change, but it is difficult to establish that
all important degrees of freedom have been explored. Historically, this has been a significant
issue for the GCM calculations based on phenomenological interactions. In the IM-GCM, this
issue can be overcome because dependence of the transformation on the flow parameter s
offers a powerful diagnostic tool: If sufficient degrees of freedom are included in the MR-
IMSRG flow and the GCM basis, the unitarity of the transformation will not be spoiled by
truncation errors, and all observables should be independent of s [120, 121].
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3.2.3. VS-IMSRG. In the VS-IMSRG [122], as in the IM-GCM, the strategy is to perform a
unitary transformation to bring the Hamiltonian into a form more amenable to solution. In this
case, the transformation block-diagonalizes the Hamiltonian such that an additional
diagonalization in a valence shell-model space yields exact results (assuming no
truncations are made in the transformation).

The VS-IMSRG calculations carried out thus far have generally performed the normal
ordering with respect to a closed-shell reference state or an uncorrelated ‘ensemble’ reference
that has the correct number of protons and neutrons on average. As with coupled cluster
theory, one needs to choose the initial or final state as the reference and, in the absence of
truncation, this should not affect the answer. The simpler reference used in the VS-IMSRG
(compared to, e.g. the IM-GCM) is somewhat compensated for by the subsequent exact
diagonalization in the valence space, resulting in a complementary approximation scheme.
Like IM-GCM, the VS-IMSRG as currently practiced truncates operators at the two-body
level after normal ordering, and the clear next step is the approximate inclusion of the effects
of induced three-body operators. Again, with sufficient computational resources and
personpower, this can be done.

3.2.4. Benchmarking with quasi-exact methods. Quasi-exact ab initio methods, namely
quantum Monte Carlo (QMC) and the no-core–shell model (NCSM), are generally limited to
light systems, which are not directly relevant for 0νββ experimental searches. They play an
important role, however, in benchmarking the methods we have discussed, which can reach
the relevant heavier systems. The three methods described above, coupled cluster theory, IM-
GCM, and VS-IMSRG, have all been benchmarked against the NCSM in light systems up to
14C (and up to 22O with the importance-truncated NCSM) [62, 64, 119, 123]. The
benchmarks showed that coupled cluster calculations that use a deformed reference state are
usually more accurate than those that use a spherical reference.

In contrast to the NCSM, IM-GCM, VS-IMSR, and CC theory, QMC approaches do not rely
on a single-particle basis expansion. Variational Monte Carlo (VMC) approximates the solution
of the many-body problem by an accurate trial wave function ΨT, obtained by applying two- and
three-body correlation operators to a Slater determinant of A single-particle wave functions
[124, 125]. The optimal set of variational parameters defining the trial wave function is obtained
by minimizing the energy expectation value 〈ΨT|H|ΨT〉 with dedicated optimization algorithms
[126]. The limitations of the variational ansatz are overcome by the Green’s function Monte Carlo
(GFMC) method that propagates the trial wave function in imaginary-time to extract the ground
state of the system ∣ ⟩ ∣ ( )⟩ [ ( ) ] ∣ ⟩H Elim lim exp T0 0t tY = Y = - - Yt t¥ ¥ . QMC methods
have no difficulty in using ‘stiff’ forces that can generate wave functions with high-momentum
components, but they are limited to local (or nearly local) Hamiltonians because non-localities
exacerbate the fermion-sign problem [127]. There have been QMC studies of the 0νββ-decay
nuclear matrix elements for light nuclei (see, e.g. [128, 129]), but the (nearly) local Hamiltonians
[130–134] used in these studies pose a substantial hurdle for direct benchmarks against the
configuration-space methods that we discussed above. More recently developed local chiral
interactions with typical cutoffs around Λ= 500 MeV lead to much slower convergence than
their nonlocal counterparts with the same scales. Renormalization group transformations may
help to mitigate this problem, but the uncertainties due to the omission of induced contributions to
the interaction and transition operators may also be more substantial than in a nonlocal
regularization scheme. Nevertheless, once RG and EFT truncation errors have been propagated to
the 0νββ matrix element, a comparison of QMC and configuration-space methods will represent
an important check.
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3.2.5. Other ab initio approaches. We have focused on the several ab initio methods that
have already been applied to experimentally relevant transitions, but there are others that may
also be able to tackle these nuclei soon. Applications of QMC have been limited almost
entirely to the p-shell and below because the number of spin/isospin states scale
exponentially with particle number A (see, e.g. [135] and references therein). However,
within the auxiliary field diffusion Monte Carlo (AFDMC) approach [136] the spin-isospin
degrees of freedom are described by single-particle spinors, the amplitudes of which are
sampled with Monte Carlo techniques based on the Hubbard–Stratonovich transformation.
The transformation reduces the computational scaling from exponential to polynomial in A.
AFDMC calculations for 16O have been reported [132], and calculations of 48Ca are
conceivable in the near future.

A recently proposed alternative is to use QMC to compute M0ν for light nuclei, and
match an effective shell-model operator to these calculations [61], using the generalized
contact formalism (GCF). The effective operator is then employed in shell-model calculations
of heavier nuclei, where QMC is not feasible. This approach can be viewed as the QMC
providing synthetic data to which a shell-model effective operator can be fit. It is justified by
the factorization of physics at the scale of nucleon-nucleon interactions from the nuclear
environment. This factorization is seen in the application of renormalization group (RG)
methods to QMC wave functions, where short-distance physics in those wave functions
evolves into effective operators at the lower resolution appropriate to the shell model [137].
The GCF implements the leading order consequences of factorization. One challenge for the
future will be quantifying the long-range correlations missed by the shell model; these will in
general depend on the valence space (see effective charges for E2 transitions as an example).
Such quantification is one aspect of a more general question about what the sub-leading
corrections to the GCF calculation carried out in [61] are.

The RG approach to this problem makes it clear that, in any of the approaches to the
nuclear many-body problem described here, the 0νββ operator must be evolved consistently
with the methods used to reduce the effective size of the space in which the many-body wave
functions are computed. It follows that the 0νββ contact operator will not necessarily be the
same as the one computed in [79], or obtained in the future from LQCD. Instead, that short-
distance operator must absorb the physics between the hadronic scale of LQCD/sum-rule
calculations and the low-energy nuclear-structure scale; i.e. it will account not just for
hadronic excitations that have been integrated out of the Hilbert space, but for high-
momentum nuclear correlations that are integrated out too.

The NCSM may also be applied to heavier isotopes in the future. Although the method in
its original form is typically limited to A 16, the importance-truncated NCSM (IT-NCSM)
[138] can significantly reduce the dimensions of the Hamiltonian and thus reach higher in
mass, conceivably up to 48Ca. One challenge will be to obtain a better understanding of the
extrapolation of M0ν in the importance truncation parameter mink .

The symmetry-adapted no-core–shell model (SA-NCSM) is a version of the NCSM that
uses irreducible representations of the symplectic symmetry group ( )Sp 3, rather than
particle-hole energy to truncate its basis [139–142]. The alternative truncation scheme allows
it to efficiently capture deformation, which is important in either the mother or daughter
nucleus in all experimentally relevant 0νββ-decay candidates. Applications of the SA-NCSM
have mostly focused on p- and sd–shell nuclei so far, but the first results for 48Ti have been
reported in [141]. These particular results serve as a demonstration that convergence of a SA-
NCSM calculation is mainly affected by the strength of the mixing between irreps in a
particular nucleus rather than the mass number: the model space dimension for 48Ti is more
than an order of magnitude smaller than the dimension for 20Ne. At present three-nucleon
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forces have not yet been included in the SA-NCSM, but once this challenge is overcome, the
SA-NCSM will be a valuable complementary approach to the coupled cluster and VS-IMSRG
methods that employ particle-hole based truncations. It is also complementary to the IM-
GCM because the ( )Sp 3, irreps offer a more systematic approach to basis construction than
the selection of relevant generator coordinates.

Both the conventional NCSM and SA-NCSM can also be combined with an (MR-)
IMSRG preprocessing of the Hamiltonian and transition operators to accelerate convergence
[120]. A combination of MR-IMSRG evolution and SA-NCSM, in particular, would embrace
a similar philosophy as does the IM-GCM.

3.2.6. Other methods. Besides the ab initio methods described in the previous subsections,
a variety of other methods have been used to compute M0ν in nuclei of interest to
experimentalists. These others can be broadly grouped into categories: the interacting shell
model [143–151], energy-density-functional (EDF) methods [152], the quasi-particle random
phase approximation (QRPA) [153–156, 55], and the interacting boson model (IBM)
[157, 158].

In this article, the emphasis is on methods that can, in principle, quantify the theoretical
uncertainties of the underlying strong-interaction Hamiltonian and of the transition operators.
However, methods such as the ‘phenomenological’ shell model still have a valuable role to
play, because they preserve underlying nuclear many-body symmetries and thus capture the
most relevant degrees of freedom. In addition, the heavy work of finding optimized effective
shell-model Hamiltonians and effective transition operators that capture the landscape of
realistic nuclear spectra and of the experimentally accessible nuclear observables has already
been done in these approaches. We envision that semi-phenomenological methods, such as
the shell model, can be used to explore correlations between observables, helping us identify
the quantities that best reflect the accuracy of an ab initio calculation. For example, an
ensemble of shell model Hamiltonians can be generated by adding random contributions to
the two-body matrix elements of some ‘seed’ Hamiltonians [159]. These Hamiltonians can
then be used to obtain M0ν, as well as excitation spectra and electroweak transitions and
moments (for which data exist or could be obtained). Any observables which are significantly
correlated with M0ν would then be explored in the more expensive ab initio calculations,
producing input for subsequent model mixing analysis. An initial study along these lines for
the 0νββ decay of 48Ca-48Sc-48Ti system can be found in [160]. See also [161].

4. A program for uncertainty quantification

The preceding sections outlined a variety of many-body methods that can be used to perform
ab initio calculations of 0νββ nuclear matrix elements. It might be supposed that the goal of a
UQ analysis should be to determine the ‘best’ of these methods and that whichever method
turns out to be ‘best’ should then be used exclusively. In fact, these methods have com-
plementary strengths and deficiencies, so the goal instead is to use all of them to optimize the
overall predictions. Therefore in this section, we outline a procedure, depicted in figure 3, by
which the results forM0ν obtained in those different methods—as well as their uncertainties—
can be combined into a single, unified prediction forM0ν. We also explain how that procedure
will naturally suggest alternative strategies for calibration of the ab initio calculations which
should, in turn, lead to refined predictions for M0ν.

Throughout this section, we have in mind that we are considering ab initio predictions for
M0ν that are obtained with chiral-EFT forces and decay operators. Differences between
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different implementations of the chiral-EFT force should therefore be encompassed within the
uncertainty assigned due to truncation of the EFT expansion, cf section 2.1 above. The source
of uncertainty that is hardest to assess is therefore that due to the use of different methods for
solving the A-body problem: these are associated with different ways of truncating the A-body
Hilbert space. In what follows we denote the different many-body methods that have been, or
may in the future be, adopted to solve this problem as k . We treat these as different

Figure 3. The road to calculations of M0ν with UQ that accounts for all limitations of
the nuclear-physics calculation: truncation errors in chiral-EFT, uncertainties in the
theory’s parameters, and deficiencies of the many-body methods used. Emulator
development is the first step, as it is key to facilitating subsequent calculations. Model
parameters θ can be calibrated against a dataset y. Weights for the different many-body
methods will be obtained by assessing methods’ performance on a set of observables
{yev}. The weights wk(yev) are to be computed via scoring rules that gauge predictive
accuracy [162] and will also take account of the extent to which different members of
{yev} are correlated with M0ν.
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‘models’ in the statistical sense of the term ‘model’ and seek to combine their predictions into
a single prediction that accurately assesses uncertainties in the evaluation of M0ν. We assume
that uncertainties due to the truncation of the chiral-EFT expansion are reflected in the
posterior distribution that must be provided by each many-body method, k .

Method k ʼs prediction also has an inherent parametric uncertainty, coming both from
the parameters of the Hamiltonian used to obtain the wave function of the initial and final
state in the double-beta-decay process, and from the contact piece of the 0νββ operator. In
what follows we denote the low-energy constant that multiplies the contact piece by η and the
parameters of the Hamiltonian as θ.

Recently, η has been determined [163] by reproducing the synthetic datum, ysynth provided
in [44, 45]. Meanwhile, for most of this section we will assume that the parameters θ are
calibrated to a dataset y (see section 2.2) that does not have to include observables that we
expect are correlated with 0νββ decay. This is, after all, the stated orientation of most
ab initio approaches, which calibrate the parameters of NN and three-nucleon forces (3NFs) to
NN scattering data and a few observables in light nuclei. The posterior probability distribution
for the parameters θ that is obtained from such an analysis is denoted p(θ|y).

From a Bayesian perspective, each many-body method’s prediction of M0ν also comes
with a systematic error that depends on parameters of the approach employed, e.g. Hilbert
space size, accuracy of treatment of 3NFs, etc. The statistical modeling of this systematic
error is referred to as discrepancy learning (see equation (2)). Simultaneous learning of
discrepancy and parameters is a complicated practical and theoretical exercise. Moreover,
with no information to leverage near the quantity of interest M0ν, verification of discrepancy
can be difficult. Nonetheless, grounded, informed priors on the discrepancy can improve
prediction—especially when we seek to leverage the predictions made across several many-
body methods. We therefore write:

( ) ( ) ( ) ( )M M Mtrue , ; , 40 0 0
 q h l d l= +n n n

where ( )M , ;0
 q h ln is the prediction obtained in method with method hyperparameters λ

(and at specific Hamiltonian and operator parameter values) and ( )M0
d ln is the

corresponding model uncertainty.
If we, for the moment, ignore the issue of the discrepancy function, then the method-

prediction of M0ν is formed by marginalizing over θ and η using the distributions established
for them from the data {y, ysynth}:

( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )p M p M p y p y, , , d d . 50 0 synth   ò q q h q h=n n

Here it should be noted that we have allowed for the possibility that the probability density
obtained for both the Hamiltonian parameters and η is different for different methods, i.e.
depends on the method. We have, however, assumed that all methods are calibrated using
a common dataset y.

But the problem of model discrepancy is critical in predictions for neutrinoless double-beta
decay: different approaches to the nuclear many-body problem are based on different physics
assumptions, and so have different model discrepancies. In order to get a handle on the model
discrepancy we propose to assess that method’s ability to predict observables that may share
similar physics features to the 0νββ decay in the nucleus of interest. Candidate processes
include:

• Single β-decay rates in neighboring nuclei, e.g. in the intermediate nucleus in 0νββ
decay;

• β-strength distributions;
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• Known 2νββ decay rates [161, 164];
• Magnetic moments and B(M1) rates in the three nuclei involved in any particular 0νββ
decay;

• Energies of the lowest Jπ= 2+ states and B(E2, 2+→ 0+) rates in initial and final nuclei;
• Charge radii;
• Observables probing a 100MeV momentum-transfer scale, e.g. in muon capture.

The idea is then that a method that performs well on these observables, which we denote
collectively as yev, should be a more accurate predictor of M0ν than one that does not.

But which of these observables are most important for constraining the 0νββ decay rates?
Until now discussion on this point has been largely driven by qualitiative arguments. We
propose that, by using properly calibrated Hamiltonians, this question can be answered by
analyzing the correlations between the observables on the list above and M0ν. Those corre-
lations can be well approximated by drawing a finite number of samples from p(θ|y) (say
≈100), using one model to compute each observable in the set yev and M0ν, and extracting
the empirical correlation coefficient of M0ν and each quantity in yev for that model .
Examples of such sensitivity studies can be found in, e.g. [165–167].

A few supplementary points regarding this correlation analysis need to be made:

• This correlation need not be the same in every method. Different methods have different
discrepancy functions, because different methods truncate the nuclear many-body
problem in different ways. A particular example of this is that methods with different
resolution scales may differ in whether their discrepancy function reflects errors in the
long-distance physics or errors in the short-distance physics. Indeed, the balance between
these two types of errors could shift within a particular method as the value of the
hyperparameters λ changes. It follows that the correlation found for method  at
particular values of λ may depend on either λ or. But, analysis of these correlations,
when combined with data on the observables in the set yev, will help us pin down the
discrepancy functions, or at least minimize their impact on the M0ν prediction.

• The prediction of the observables yev may depend on additional parameters γ, that are not
part of the set θ, and are not a priori needed to predict M0ν. The posterior prediction for
yev is then formed by marginalizing over γ, using a probability distribution function that
can be thought of as a prior for our purposes, but may be informed by studies of the
pertinent observable(s) in nuclei that are some distance from the 0νββ candidate

( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )p y y p y p y p, , , , d d . 6ev ev  ò q g q g q g=

Marginalizing over η will certainly be necessary for the prediction of M0ν. Such
marginalization (over η and γ) may affect the correlation.

• As discussed in section 3.2.6, the correlation analysis does not need to be initiated within
computationally-expensive ab initio calculations. In the first instance, it can be carried out
using lower resolution approaches that can be viewed as computationally less expensive
emulators of ab initio methods. Examples of ongoing work along these lines can be found
in, e.g. [160, 161, 168, 169].

Such a correlation analysis is useful in its own right. But, with these correlation coeffi-
cients in hand we can form an ‘improved Bayesian model average’ of the results from the
different many-body methods. In BMA [76], a set of candidate methods , , p1 ¼ are
combined to form a predictive distribution via equation (3):
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( ∣ ) ( ) ( ∣ ) ( )p M y y w y p M y, , , 7ev
k

p

k ev k0
1

0 å=n n
=

where wk(yev) represents the underlying weight given to each method. The weight wk is
proportional to ( ∣ ) ( )p y pev k k ´ , where ( ∣ )p yev k represents the evidence for method

k present in data yev and ( )p k is a prior probability that method k is correct. This prior is
usually taken to be flat across the methods k , i.e. the methods are all taken to be equally
plausible. The formula (7) is aspirational in that there are complications in its deployment that
are both practical and theoretical.

The selection of the weights requires careful documentation of the source of the systematic
errors between method predictions and observables. Extraneous observables, i.e. observables
that are no more than weakly related to 0νββ, are less dangerous to the resulting inference if
all error sources were only experimental and independent throughout the observable space as
no method has a specific advantageous bias. However, in the context of 0νββ one expects that
a significant portion of the error can be attributed to systematic method deficiencies δyth. The
result is significantly related error that exists across the observable space.

It is therefore critical to carefully select observables in yev. Observables that are closely
related to the target observable, y* =M0ν should receive higher weights—something that
classical BMA does not do. If observables in yev that are not significantly related to M0ν can
influence the weight of a method in the BMA formula (7), they are likely to dilute—or even
bias—the prediction for M0ν. Parsimony is also important for a practical reason: the Bayesian
model averaging formula requires the same yev should be used across all many-body methods,
meaning all of them need to be able to produce predictions of these quantities. A parsimo-
nious choice of observables makes it more feasible that yev can be predicted in all candidate
approaches to the nuclear many-body problem.

The program for UQ that we have laid out up to this point in the section could be carried
out using ab initio methods and already calibrated chiral-EFT forces and operators. We now
discuss a longer-term strategy for refining the prediction of M0ν. Once it has been established
which observables in yev are strongly correlated with M0ν the predictive power of the methods

k can be improved by including those members of the dataset yev in the dataset used to
calibrate the nuclear Hamiltonian and decay operators. The parameter vector θ would then be
readjusted within each calculation k . This would open a window for a more refined
combined prediction of the different many-body methods.

One critical challenge to overcome is providing predictions of quantities for various values
of θ, η, and γ for all methods. Part of this is needed for the integration to compute ( ∣ )p y k —

see equations (5) and (6)—where MCMC must be leveraged for both the core Hamiltonian
parameters θ as well as the ancillary parameters γ and the 0νββ parameter η. This problem is
amplified in the case of high-dimensional parameter space.

There are a few statistical and computational tools that can be deployed to resolve this
problem. Firstly, reducing the space of parameters through screening will be critical for each
method, thereby including only the parameters that are critical for predicting yev and M0ν.
Secondly, emulators (or surrogates) can play a vital role to conduct Bayesian inference from
only a few full ab initio evaluations of the matrix element. Emulators can take on a variety of
forms but the function is shared: to provide a computationally inexpensive approximation of
yev and M0ν for any value of θ, η, and γ. Gaussian process-type emulators exploit smoothness
in the computation’s response to the parameters. Other reduced-basis emulators instead build
modified, cheaper alternatives to the full ab initio result when it is subject to specific structure
[170–175]. Variational machine learning methods [176–178] form another path that produce
efficient emulators that intrinsically learn the optimal latent parameter space needed for robust
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interpolation and prediction. These methods have an advantage over many forms of emulation
as they can learn highly non-linear manifolds while still generating a notion of the emulators’
internal uncertainty.

One common theme across all methods is they rely on using specific computations at
designated parameter combinations to build predictions at other ones. The amount of com-
putations needed to build an adequate emulator varies across methodologies. Classical lit-
erature on Gaussian process-type emulators suggest computing at ten times the dimension of
the parameters, but that suggestion has recently been reconsidered and higher-dimensional
parameter spaces perhaps need more computation. Good emulators will naturally come with
their own uncertainty quantification, which is critical for producing valid approximations of

( ∣ )p yev k as well as predictions of ( ∣ )p M k0 n .
As mentioned above, lower resolution approaches, such as DFT, can be used to construct

emulators of higher resolution ab initio methods. This construction can follow equation (2) in
which ( )y x;exp q is replaced by ab initio predictions and the model discrepancy δyth would
model the difference between predictions of ab initio and lower resolution models.

5. Summary

Accurate calculation of the nuclear matrix elements governing neutrinoless double-beta
decay, with quantified uncertainty, is essential for the success of the impressive experimental
and theoretical worldwide effort in this area [37]. The purpose of this article is to lay out the
challenges to the nuclear-theory community—in regard to both nuclear-physics calculations
and uncertainty quantification therein—and map out a path for near- and long-term progress.

It will require a concerted effort in both LQCD and EFT, as well as the coupling of these
theories, to fully quantify the theoretical uncertainties related to the 0νββ-decay operator and
associated matrix elements at the hadronic level. Systematic improvements in nuclear many-
body methods are underway, and should be ready to produce a new generation of M0ν matrix
elements in the next few years. The complexity of the problem makes the use of multiple
many-body methods well worthwhile. Their complementary strengths and deficiencies cannot
only be exploited for validation but also combined through Bayesian methods to yield better
overall predictions.

The implementation and application of both QCD/chiral-EFT and nuclear many-body
approaches will require exascale computing resources and beyond. One focus of future work
in this area will be ensuring optimal use of the heterogeneous architectures that characterize
leadership-class computers.

A crucial feature of our paper is the emphasis it places on UQ. Without principled UQ, the
usefulness of predicted M0ν values for guiding experimental efforts, interpreting measure-
ments, and assessing new physics will be limited. At present, few physicists working on the
problem of M0ν make informed choices about UQ, understand the modern UQ glossary, or
consider UQ to be an essential part of ‘the answer’. This situation can be improved through
coherent inter-disciplinary collaboration of nuclear physicists with applied mathematicians,
statisticians, and computer-science experts.

Such a collaboration could carry out the concrete, multi-staged, and interwoven program
of nuclear-physics and UQ methodological improvements and computations laid out in this
article. In concert with continued strong support for the efforts of PIs and research groups
working on 0νββ decay, this will make the ultimate goal of accurate and precise M0ν pre-
dictions achievable.
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