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Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional
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We investigate the effects of the spin-isospin channel of the Skyrme energy functional on predictions for
Gamow-Teller distributions and superdeformed rotational bands. We use the generalized Skyrme interaction
SkO' to describe even-even ground states and then analyze the effects of time-odd spin-isospin couplings, first
term by term and then together via linear regression. Some terms affect the strength and energy of the
Gamow-Teller resonance in finite nuclei without altering the Landau paramggtéhat to leading order
determines spin-isospin properties of nuclear matter. Though the existing data are not sufficient to uniquely
determine all the spin-isospin couplings, we are able to fit them locally. Altering these coupling constants does
not change the quality with which the Skyrme functional describes rotational bands.
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[. INTRODUCTION a fully self-consistent mean-field model. To this end, we treat
excited states in the quasiparticle random phase approxima-
Effective interactions for self-consistent nuclear structuretion (QRPA), with the residual interaction taken from the
calculations are usually adjusted to reproduce ground-stateecond derivative of the energy functional with respect to the
properties in even-even nuclgl]. These properties depend density matrix. This approach is equivalent to the small-
only on terms in the corresponding energy functional that aramplitude limit of time-dependent Hartree-Fock-Bogoliubov
bilinear in time-reversal-evefor “time-even”) densities and (HFB) theory. We proceed by taking the time-odd coupling
currents[2]. But the functional also contains an equal num-constants in the Skyrme energy functional to be free param-
ber of terms bilinear in time-odd densities and currdet®  eters that we can fit to GT distributions. We then check that
Refs.[2,3], and references quoted thergiand these terms  the coupling constants so deduced do not spoil the descrip-

are seldom independently adjusted to experimental d&&.  tjon of superdeformedSD) rotational bands.
the sake simplicity we refer below to terms in the functional oy formulation is nonrelativisitic. In relativistic mean-

as time even or time odd, even though strictly speaking We&iald theory (RMF) [12,13, the time-odd channels, referred

mean the densities and currents on which they O!eﬂ’g""* to as “nuclear magnetism,” are not independent from the
time odd terms can be important as soon as tme—reversﬁneeven ones because they arise from the small compo-

§ymm¢try(and with it Kramers degenera)cys. broken in the nents of the Dirac wave functions. For rotational states, the
intrinsic frame of the nucleus. Such breaking obviously oc-

curs for rotating nuclei, in which the current and spin-orbitt'me'OOIOI effects have been extensively tested and shown to

time-odd channelglinked to time-even channels by the gefirq-aortle)r]tlfOL reproducing expecrjime_ntal t;j_&me, e.?.,
gauge symmetiyplay an important role. Time-odd terms Ref-[14]). Only the current terms and spin-orbit terms play a

also interfere with pairing correlations in the masses of odd!°!€ there, however, and the time-odd spin and spin-isospin
A and odd-odd nucldi4—6] and contribute to single-particle channels of the RMF have never been tested against experi-
energie§7—9] and magnetic momenf40]. Finally, the spin- mental data. .
isospin channel of the effective interaction determines distri- This paper is structured as follows. In Sec. Il we review
butions of the Gamow-Telle(GT) strength. properties of the Skyrme energy functional. Section Il re-
The latter are the focus of this paper. We explore theviews existing parametrizations of the functional, with par-
effects of time-odd couplings on GT resonance energies ankicular emphasis on time-odd terms. Our main results are in
strengths, with an eye toward fixing the spin-isospin part ofSec. IV, where we present calculations of GT strength and
the Skyrme interaction. As discussed in our previous studyliscuss the role played by the time-odd coupling constants.
[11], there are many good reasons for looking at this channebection V describes calculations of moments of inertia for
first. For instance, a better description of the GT responseelected SD bands. Section VI contains our conclusions. We
should enable more reliable predictions fBrdecay half- supplement our results with six Appendices that provide
lives of very neutron-rich nuclei. Those predictions in turnmore detailed information on local densities and currents
may help us identify the astrophysical site reprocess nu- (Appendix A), early parametrizations of time-odd Skyrme
cleosynthesis, which produces about half of the heavy nucldunctionals (Appendix B), the limit of the infinite nuclear
with A>70. matter (Appendix Q, Landau parameters of Skyrme func-
Our goal is an improved description of GT excitations in tionals (Appendix D) and of the Gogny forcéAppendix B,
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and the residual interaction in finite nuclei from Skyrme s
functionals(Appendix . E=f d rH(r). 4
II. A GENERALIZED SKYRME ENERGY FUNCTIONAL The energy density is composed of the kinetic tét,, the

Skyrme energy densit§s,me that describes the effective

strong interaction between the nucleons, and a term arising
Many calculations performed with the Skyrme interactionfrom the electromagnetic interactidfi,

can be viewed as energy-density theory in the spirit of the

Hohenberg-Kohn-Sham approats], originally introduced H="Hyin+ Hsiymet Hem- (5)

for many-electron s.ystems..Nowadays, energy density the.or%r the electromagnetic interaction, we take the standard
is a standard tool in atomic, molecular, cluster, and solid-

. . . Coulomb expression, including the Slater approximation for
statg phys!c{_16], as well as in _nuclear physidd 7]. The the exchange term. The energy functional discussed here
starting point is an energy functionélof all local densities

i contains all possible terms bilinear in local densities and cur-
and currentp, 7, J, s, T, andj that can be constructed from ents and up to second order in the derivatives that are in-
the most general single-particle density matrix

variant under reflection, time-reversal, rotation, translation,
and isospin rotatiof20].
p=p(r,o, 71 o' 7)= 2 vﬁl/fﬁ(f'ﬂ' T (1,0, 7) Time-reversal invariance requires the energy density to be
k bilinear in either time-even densities or time-odd densities,
1) so the Skyrme energy density can be separated into a “time-
even” partH ®®"and a “time-odd” partH °¢

A. Basics of energy density theory

(see Appendix A for more detajlswherer, o, andt are the

spatial, spin, and isospin coordinates of the wave function. t
The Hohenberg-Kohn-Sham appr(_)ach maps the nuclear Heyme= > > (MY 100 (6)
many-body problem for the “real” highly correlated many- t=0,1tg=—t 3 3

body wave function on a system of independent particles in ) ) )
so-called Kohn-Sham orbitak$,. The equations of motion 1h€ Sum runs over the isospirand its third componert.

for ¢, are derived from the variational principle Only thet;=0 component of the isovector-1 terms con-
tribute to nuclear ground states and the rotational bands dis-
8E=0=hyn(r,o,7)= e (r,0,7), (2)  cussed later, while they==1 components contribute only

to charge-exchange.g., GT) excitations. In the notation of
where the single-particle Hamiltonidm is the sum of the Refs.[3,20], the time-even and time-odd Skyrme energy

kinetic termt and the self-consistent potentilthat is cal- densities read

culated from the density matrix Hﬁ‘f”: CfPtztsJF CtAppttsAptt3+ Cipu, T, + CtVtht3V Jy,
~ 08 L . . J52
h=6—A=t+I‘[p]. ©) +Cidk,» (7)

M= Cish + C%sy, Asy + Cls, Toe, + CU(V -5 )
The existence theorem for the effective energy functional =~ '@ tstzt3 €St A% TGSy T H OV -8
makes no statement about its structure. The theoretical chal +C“t2t3+ Clsi, VX, (8

lenge is to find an energy functional that incorporates all

relevant physics with as few free parameters as possible. Thgqgpin invariance of the Skyrme interaction makes the cou-
density fur_lctlonal ap_proz_ich as used here is equwalent to trﬁmg constants independent of the isospiprojection. Al
local density approximation to the nucle@matrix [18]. o pling constants might be density dependent. Following
The energy functional investigated here in detail describegg standard ansatz for the Skyrme interaction, we neglect
the particle-hole channel of the effective interaction only. For, uch a possibility except i6? andC?, for which we restrict
t to

the treatment of pairing correlations, _the energy funptlona he density dependence to the following form:
has to be complemented by an effective particle-particle in-

teraction that is constructed in a similar way from the pairing po | @
density matrix; see Ref.19] for details. We use here the Cf[po]=Cf[0]+(C{’[pnm]—C{’[O])(—) , (9)
simplestT=1 (like-particle pairing functional proportional Pom

to the square of the local pair density as describdd 1 As ¢
d_iscussed there, it affects only the HFB part of our calcula- Cf[Po]ZCf[O]JF(CtS[PnnJ—Cts[o])(If—()) . (10
tion. nm

. Herep, is the isoscalar scalar density apgl, is its value in
B. The Skyrme energy functional saturated infinite nuclear matter. The exponerthat speci-
Within the local-density approximation, the energy func-fies the density dependence®f[ po] must be about 0.25 for
tional is given by the spatial integral of the local energythe incompressibility coefficienk., to be correc{21-24.
densityH(r) Although this fact does not restrict the analogous power in
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Cilpol, Eq. (10), we keepé equal toa for simplicity here.  gument, however, applies neither to deformed shapes nor to
Usually we will consider energy functionals that are invari- time-odd fields. Moreover, neglecting this term often violates
ant under local gauge transformatidrd, which generalize self-consistency on the QRPA levigee below.
the Galilean invariance of the Skyrme interaction discussed Although one might disagree with the rationale for ne-
in REf [2] Gauge inyariance links thre(? pairs of time-eveng|ecting thejz terms, it is not easy to adjust the Coup"ng
and time-odd terms in the energy functional constantsC, to spectral data. Large values f@ can be
C{= -cr, ng _C;I', Cth= +CtVJ. (11) ruled out pecause t_hey spoil the previously obtained agree-
ment for single-particle spectra, but there are broad regions
These relations fix all orbital time-odd terms, leaving only of values where they influence the usual time-even observ-
time-odd terms corresponding to the spin-spin interactiorables too weakly to be uniquely determini&d]. Only once
with free coupling constants. Relatiofikl) lead to a simpli-  in the published literature has there been an attempt to do so
fied form of Eqgs.(6)—(8), [32].
All first-generation Skyrme interactions, e.g., Sl, B8],

t and SlII [30], used a three-body delta force instead of a

2 Ap
Hskwme:tg,l tsg_t [Cte “3+Cf§fs+ct "Pre AP, density-dependent two-body delta-force to obtain reasonable
nuclear-matter properties. The three-body interactions led to
+C{%y, Asy, + Cl(pu,m,~ i, a=1 for C? in Eq.(9), but a different density dependence of
- <, vJ the C{. a=1 is too large to get the incompressibilik.,
+Cy (Stts'Ttts_‘]tts)+Ct (P1t,V - Jutg right, and causes a spin instability in infinite nuclear matter

[34] and finite nuclei35] (again only within a microscopic
potential framework Both problems are cured with smaller

i ) i values of a (between 1/6 and 1/323]) but the second-
The time-even terms of the energy functional can be directlyyeneration interactions that did so still had problems in the
relatgd to nuc]ear bulk prppgrtles suche#, the saturation  {jme-odd channels, giving a poor description of spin and
density pny, incompressibility, symmetry energy, surface gpin_jsospin excitations and prompting several attempts to
and surface symmetry energy, and spin-orbit splittings. Thjescripe finite nuclei with extended Skyrme interactions.
remaining time-odd terms cannot. e ~ Krewaldet al.[36], Waroquieret al.[37], and Liuet al.[27],

We will set the coupling constar@; ” to 0. The term it {or example, introduced additional three-body momentum-
multiplies comes from a local two-body tensor force consid-gependent forces. Waroquiet al. added an admixture of the
ered in Skyrme's original paperf25] and discussed by density-dependent two-body delta force and a three-body
Stancuet al.[26], but omitted in all modern Skyrme param- geita force, while Liuet al. considered a tensor force. But
etrizations except the force SL1 introduced by elal.[27],  none of these interactions has been used subsequently.

+ 8, VX)) + CU(V - 5,)20. (12)

which has not been used since. Van Giai and Sagaw§38] developed the more durable
parametrization SGII, which gave a reasonable description of
I. EXISTING PARAMETRIZATIONS GT resonance data known at the time and is still used today.

The coupling constants of the time-odd Skyrme energyThe fit to ground state properties was made withoutthe

functional are usually taken from tHantisymmetrizeg ex- tgrms, howilve_r, everrll though thetht?]re uséePdAig the Q',?PA'
pectation value of a Skyrme for¢&]. When so obtained, the onseguently, in such an approach, the Q 0€s not cor-
16 coupling constants of the energy functioral) are respond to the small—amplltude limit of tlmg—dgpendent HFB.
uniquely linked to the ten parametetrs x;, Wy, anda of All these attempts to improve the description of the time-

i i ’

; dd channels impose severe restrictions on the coupling by
the standard Skyrme fordsee Appendix B and EqB2)]. odd -
Only a few parametrizations rigidly enforce these relationslmkIng them to the HF expectation value of a Skyrme force,

leading to one difficulty or another. The authors of Refs.
however. Among them are the forces of R&fl] (e.g., Z,), ) )
SKP[19], the Skyrme forces of Tonde{i28], the recent pa- [18,39 proceed differently, treating the Skyrme energy func-

ramevizations SLyS and SLyp24), and S [29] Most LRE B L0 PR G B e e e enei
other parametrizations neglect theéterm obtained from the b y 9y y

et ~functional, besides relaxing the restrictions on the time-odd
two-body Skyrme force,gettu’@t =0. Some authors do this couplings, endows the spin-orbit interaction with a more

for practical reasons; thé term is time-consuming to cal- flexible isospin structurf40—43 than can be obtained from
Culate, and its contribution to the total blndlng energy iSthe standard Skyrme forqu] Some of the parametriza_
rather small. Other authortsee, e.g., Ref[30]) find that  tions used here will take advantage of that freedom. But the
including it with a coupling dictated from the HF expectation gythors of Ref[39] include only time-odd terms that are
value of the Skyrme force can lead to unphysical solutiongjetermined by gauge invariance; the other couplings are ten-
and/or unreasonable spin-orbit splittings. For spherica{ative|y set to zero €= CtAS: 0). Such a procedure is rea-
shapes, thé® term contributes to the time-even energy den-sonable when describing natural parity excitations within the
sity in the same way as the neglected tensor force. One migh©))RPA, but the neglected spin-spin terms are crucial for the
therefore argue that by including the tensor force one couldinnatural parity states that we discuss.

counterbalance the unwantéd term exactly[30]. This ar- In this study, we use the energy-functional approék?)

054322-3



M. BENDER, J. DOBACZEWSKI, J. ENGEL, AND W. NAZAREWICZ PHYSICAL REVIEW G5 054322

with fully independent time-even and time-odd coupling +BCS calculations. They estimaig;r from the Landau pa-
constants. Our hope is that this more general formulationameters of their Skyrme interactiofhe same prescription
will improve the description of the GT properties while leav- js used in their calculations df11 resonance$57].) But

ing the good description of ground-state properties in evemowever useful this approach may be from a technical point

nuclei untouched. of view, it is not self-consistent. Nor is it equivalent to using
the original residual Skyrme interaction; see, e.g., the discus-
IV. GIANT GAMOW-TELLER RESONANCES sion in Ref.[46].

A truly self-consistent calculation, by contrast, should in-
: R : ) ; Qerpret the QRPA as the small-amplitude limit of time-
neutron holes in th8”=1" (spin-isospij channel gives rise  yenandent HFB theory. The Skyrme energy functional used

to a giant charge-exchange resonance in all nuclei with Xy, the HFB should then determine the residual interaction
cess neutrons. The centroid of the resondmdech typically between unsymmetrized states in the QRPA:
has a width of 5-10 MeY/can be roughly parametrized by

the simple formulaEgr—Ep=26A"Y3—185(N—-2Z)A"1,

) : . . 82E
whereEg is the centroid of the Fermi resonanje&t]. This Ures= i
formula, however, captures only average behavior; indi- Op(ry,01,71:72,02,72)0p(r1,01,71315,05,75)
vidual cases depend on single-particle structure, and in par- (14

ticular the spin-orbit splitting. _ . . :
The ability to model GT resonances is crucial for predic-The actual form of the residual interaction that contributes to

tions of nuclear decay. Just as the low-lyirgl strength is the QRPA matrix elements of*1states is outlined in Appen-
depleted by the giant dipole resonance, so the low-lying GHixF. o , ,
strength, responsible @ decay, is affected by the GT reso- GT distributions are a_lso affe_cted by the_ particle-particle
nance. Since one of our future goals is an improved calcula€hannel of the effective interaction, but mainly at low ener-
tion of B-decay rates in nuclei along theprocess path, it is gies. Local paring functionals as employed here might cause

important to develop a reliable description of the GT giantdivergencies when used in QRPA, see, e.g., REf]. Our
resonance. choice for theT=1 like-particle pairing interaction, how-

ever, has vanishing matrix elements in thé ¢hannel and

therefore contributes nothing to the residual interaction. The
T=0 proton-neutron pairing has no effect in our HFB calcu-
Non-self-consistent calculations often use the residualations, but affects the low-energy tail of the GT strength

A. Residual interaction in finite nuclei

Landau-Migdal interaction in the spin-isospin channel distribution. Its contribution is crucial for the proper descrip-
N , , tion of B decay. The GT resonance is not materially altered
VredT,T") =No[god(r—r") [11], so we can safely neglect the particle-particle interaction

+gik’ - S(r—t)kl(a- o) (7 7), (13 here:

whereNg is a normalization factosee Eq(D5)] andk and B. GT strength distributions from existing Skyrme
k' are defined in Appendix B. In most applications, only the interactions

swave interaction with strengt is used, and the matrix Before exploring the time-odd degrees of freedom of the
elements of the force are not antisymmetrized. The U”de”ygeneralized Skyrme energy functional, we analyze the per-
ing single-particle spectra are usually taken from a paramgormance of existing parametrizations when relati¢Bg)
etrized potential, e.g., the Woods-Saxon potential. Typicake ysed. We examine the forces $&B], SGII [38], SLy4,
values forg), obtained from fits to GT-resonance systemat-g| y5 [24], SkO, and SkO [58], which all provide a good
ics, are 1.49,<1.6 [45-47. (See Ref[48] for an early  description of ground-state properties but differ in details.
compilation of datg. Sometimes this approach is formulated Skp uses an effective mass*/m=1 and is designed to
in terms of the residual interaction between antisymmetrize@describe both the mean-field and pairing efféctdl other
states. The results are similar, egs=1.54 in the double- forces have smaller effective masses, so tmitm~0.9
B-decay calculations by Enget al.[49]. More complicated (SkOx) or evenm*/m~0.7 (SGII, SLyx). SGII represents
residual interactions, such as boson-exchange potentialan early attempt to get good GT response properties from a
have been used as well; see, e.g., RE#®-57. Borzov  standard Skyrme force. SLy4 and SLy5 are attempts to re-
et al. use a renormalized one-pion exchange potential in conproduce properties of pure neutron matter together with
nection with al =0 Landau-Migdal interaction of typ€&l3) those of normal nuclear ground states. SkO and 'Saf@
[53]. recent fits that include data from exotic nuclei, with particu-
A much simpler residual interaction in the GT channel islar emphasis on isovector trends in neutron-rich Pb isotopes;
a separabléor “schematic”) interaction,v .= kg(0o- ') they complement the spin-orbit interaction with an explicit
X(7 7'), where the strengtlkgt has to be a function oh.
This interaction is widely used in global calculations of
nuclear8 decay[54,55. Sarrigurenet al. [56] use it for a 1Since the effective mass scales the average density of
description of the GT resonances in deformed nuclei withsingle-particle states, it might visibly influence the GT strength
quasiparticle energies obtained from self-consistent HHlistribution.
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TABLE |. Landau parameters for various Skyrme interactions e '* N P Il =
from relations(B2) and the Gogny forces D1 and D1s. Missing 80 093,00 ———[0.06,0.97
entries are zero by construction.
Force 9o 91 92 9o 9 9
SkM* 0.33 0.94
SGll 0.62 0.93
SkP -0.23 -0.18 0.06 0.97
SkI3 1.89 0.85
Skl4 1.77 0.88
SLy4 1.39 0.90
SLy5 1.14 0.24 -0.15 1.05
SLy6 1.41 0.90
SLy7 094 047 0.02 0.88 frpcim
SkO 0.48 0.98 [
SkO' -161 2.16 0.79 0.19
SkX -0.63 0.18 0.51 053 i
D1 0.47 0.06 0.12 0.60 0.34 0.08 i
D1s 0.48 -0.19 0.25 0.62 0.62 -0.04 . e
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0 1
0 5 10 15,20 25 0 5 10 15 20 25
excitation energy (MeV)

isovector degree-of-freedofd2]. All other parametrizations FIG. 1. Summed GT strength i#®Pb calculated with several
use the standard prescripti@y’=3C}”. Skyrme interactions, each corresponding to the Landau parameters
Residual interactions are often summarized by the Landayg) andg; as indicated. The experimental resonance energy, taken
parameters that appear in E3.3). The parameters can be from Ref.[46], is indicated by an arrow.
derived as the corresponding coupling constants when Eq.
(14) is evaluated for infinite spin-saturated symmetriclarge (see Table IV, leading to a largeg;~1.0, but a can-
nuclear mattetsee Appendix 2 In the literature, the infinite  cellation between two terms makg§~0.0.
nuclear matteXINM) properties of the Skyrme interactions  Table | also gives values for the Landau parameters cal-
are usually calculated from EqéB2). For the generalized culated for the Gogny forces 0j59] and D1s[22] from the
energy functional(12) discussed here, the time-even INM expressions provided in Appendix E. In the spirit of the
properties such as the saturation density, energy per particleogny force as a two-body potential, one has no freedom to
effective mass, incompressibility, symmetry coefficient, andchoose the time-odd terms independently from the time-even
the time-even Landau parametdys f; are unchanged, but ones. (Note that the Gogny force, however, employs the
properties of polarized INM and expressions for the time-same local-density approximation for the density-
odd Landau parameteiy and g/ are different. We derive dependence as the Skyrme energy functional that contributes
them in Appendix D. Here we are most concerned with theto the =0 Landau parametejsThe higher-order Landau
Landau parameters in the spin and spin-isospin channels parameters are uniquely fixed by the finite-range part of the

_ s T on Gog.ny force. _
9o=No(2Cy+2CoBp5 ), (153 Figures 1 and 2 show the summed GT strer®tsT) in
208 and 12%Sn, calculated with all the selected Skyrme
90=No(2C5+2C{Bp3"), (15D forces. The ground-state energies are calculated as described
in Ref.[11], and all strengths are divided by 12€ollowing
91=—2NoC¢Bp5°, (1509  common practice, to account for GT quenching. Although
the GT resonance iR°®b comes out at about the right en-
91=—2NoCiBp5", (150 ergy for SGII, SLy4, SkO, and SKOQit is too low for SkP

o oo and SLy5. These latter two interactions also leave too much
whereNy is given by Eq.(D5) and g=(37/2)“". Values  GT strength at small excitation energies. It is tempting to

for some typical Skyrme interactions appear in Table Linterpret these findings in terms of the Landau parameters for
Higher-order Landau parameters are zero for the Skyrmehese interactions. Schematic models sugfEsthat an in-
funCtiOI’la|(12). Some Of these VaIUeS diﬁer from those given crease ofg(’) resu|ts in an increased resonance energy and
elsewhere because, unlike other authors, we insist on exactjigre GT strength in the resonance. The nucf88b indeed

the same effective interaction in the HFB and QRPA. Theyehaves in this way, as can be seen in Fig. 1. The forces SkP
coupling constant€, andC; are fixed by the gauge invari- 5nq SLy5, with small values of}, yield more low-lying
ance of the energy functional, which means t#8at=0 for  strength and a lower resonance energy than the remaining
SGll, SLy4, and SkO, because theterm was omitted in the  forces which correspond tg)~0.9.

corresponding mean-field fits. For these interactighs 0 In 124Sn, however, this simple picture does not hold, as
andgy~0.9. For SkP and SLy5, and SLy(Z,I is relatively  Fig. 2 shows. The resonance energies are sinfélad close
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FIG. 2. Same as in Fig. 1 except f&#'Sn. ,;0'2 C 1 ' ' ' |
° 2t F %y
to the experimental valyegfor SkP, SLy5, SkO, and SKO S 0 [ty <
forces with very different values afy, while SGII and SLy4 513 ‘Z - :
push the resonance energy too high. Only the amount of the 1.0 == : — —
low-lying strength seems to scale wigf} . It is interesting, 508 7 Pb otpe -
though, that the related forces SLy4 and Skyich predict L 06 ST .
very similar single-particle spectra, but have quite different r:n§ g'g r E
GT residual interactionsagree with the schematic model in ) SR P R S R R
that SLy4, with largeg;,, puts the GT resonance at a higher ~EI T
excitation energy. < g 5 / ’c_sék%l 3
It is clear that the scaling predicted by the schematic .0 N — ¢ B
model is too simple, and Fig. 3 demonstrates this clearly. Ayfp e ISkIO ]
There we show the calculated strengByjssin the GT reso- 02 00 02 04 06 08 1.0
nances relative to the sum-rule valBg,=3(N—Z), and the 80’

ﬁ]aelzl:;altsadllig:(ifn[?:r(l)creggzr}?rgscsgﬁrﬂ?stlee ;?1 égﬁgggpﬁg FI(_;. 3. Deviation of the calcul_ated GT resonance ener_gy from
— . experiment,E .~ Eeypt» @nd fraction of the GT strength in the
usedEeq=9.4, 8.9, 13.7, and 15.5 MeV, respectivéhp]. resonanceB,.s/B veprsus Landau parametey,, calculated for
Note that the calculated resonance energy depends on a pre; res —tot : call parar y '

S . . seéveral Skyrme interactior(as indicated in the lower right panel
scription (see Ref[11]) not strictly dictated by the QRPA. ~in %97y, 1%, 1%45n and 2%Pb. Experimental values are taken
The scatter neagy~0.9, in both the resonance energy and ingom Ref. [46].
the amount of low-lying strength, shows that other combina-
tions of parameters in the residual interaction besgjgaf-  is dominated by two single-particle transitions, from the neu-
fect the GT distribution. This is not entirely surprising given tron 1gq, state to the proton dy, and 1g,, States. The
the complexity of finite nuclei and of the interactiohd). In  difference between the locations of the two peaks in the GT
Sec. IV C we quantify these other important combinationsspectrum is the sum of the protoiy Spin-orbit splitting and
and discuss their effects. a contribution from the residual interactigwhich can be

But another factor, this one determined by the time-everexpected to increase the differencAs Fig. 4 shows, all
part of the Skyrme functional, affects the GT distribution: theinteractions, whatever their value fgf,, overestimate this
underlying single-particle spectrum. Since GT transitions arelifference; the resonance energy is always too large, even
especially sensitive to proton spin-orbit splittings, smallwhen the residual interaction is switched off completely.
changes in the time-even part of the force can, in principle, Most Skyrme interactions give spin-orbit splittings in
move the GT resonance considerably. Sensitivity to the spinheavy nuclei that are too lar¢é1]. We can therefore expect
orbit splitting is particularly obvious if°Zr, where detailed errors in their predicted GT strength distributiof#s,47.
information has been obtained from a recent experiment b¥igure 5 shows errors in the predicted spin-orbit energies for
Wakaseet al.[60]. Unlike in 12%Sn and?°®Pb, which respond the same forces as in Fig. 3. Interactions such as Ski3, Skl4,
to a GT excitation in a collective way, th8Zr GT spectrum or SlLy4 that overestimate the proton spin-orbit splittings
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FIG. 4. Same as in Fig. 1 except fo’Zr. The very de- FIG. 5. Relative errors in the spin-orbit splittingalculated
tailed experimental data are from a recent experiment by Wakas#om the intrinsic single-particle energiefsr the forces, nuclei, and
et al.[60]. states indicated. Only splittings between states which are both

above or both below the Fermi surface are included. Other states are
affected by core polarization and cannot be safely described by the

give the largest resonance enerdiasd tend to overestimate mean field[7,8]. The forces SLy5-SkO are ordered according to

them. The best interaction, in view of the combined infor- y .\ -\ oo forg, (see Fig. 3 SGIlu and SkM -u are two recent

mation from Fig_s. 3_and 5, appears to be Sk@herefore, forces with modified spin-orbit interactions tailored for future use in
below, we use its time-even energy functional for furthergT resonance studid62].

exploration of the time-odd terms.

We have included some new forces in Fig. 5; in a recenec |y B, values of the Landau parameggralone are in-
paper[62], Sagawaet al. attempt to improve the spin-orbit g icient to link the properties of the GT resonance to the
interaction for the standard Skyrme forces Slil, SkMind ¢, 5jing constants of the energy density functional. In this

SGill, aiming at better GT-response predictions. They 9enerzection. using the time-even functional of SkQve study
alize the spin-orbit interaction through the conditia’

, the dependence of the GT resonance on several other com-
~—2C}” and include theJ? term with a coupling given by  hinations of the coupling constants as well. Because the iso-
Eq. (B2). Although the modified forces SkMu and SGllu  scalar time-odd terms do not affect the GT transitions, we
give slightly better descriptions of GT resonances than thgocus here on the isovector coupling consta@fs, C4°,
original interactions, they generate unacceptable errors in togng CI-
tal binding energies and do not substantially improve the
overall description of single-particle spectraifiPb. 1. Study of G[pnml

A few remarks are in order before proceeding. The spin-
orbit splittings shown in Fig. 5 are calculated from intrinsic

single-particle energies. Since experimental data are obtain ot density ind dent. aiid th . f i
from binding-energy differences between even-even and adrants are aensityin eES” ent, i the spin-suriace term
can be neglected, i.eG;°=0. The only remaining free pa-

jacent odd-mass nuclei, core polarization induced by the un ) v i ariis o
paired nucleon, which depends partly on time-odd channel@Meter in the spin-isospin channelG§, which is directly
of the interaction[7,8], alters single-particle energies. The related to the Landau parameters via Eq&b) and (150):

effect is largest in small nucléof the order of 20% in‘®0),

We begin with the simplest case, assuming thatthe
éantional is gauge invariantii) all time-odd coupling con-

. . . 1
decreasing rapidly with mass numiéi. cs= Z_I\I(J(g°+gl)’ (16)
C. GT resonances from generalized Skyrme functionals whereg] is fixed byCI [also in Eq.(15d)]. Figure 6 shows

We turn now to generalized energy functionals in whichresults for the GT resonance energy whgnis systemati-
the time-odd coupling constan®;, C?S, andCtT are treated cally varied from its SkO value by alteringC;. We have
as free parameters; that is, we no longer insist that the intechosen only nuclei that can be expected to exhibit a collec-
action correspond to a two-body Hamiltonian with matrix tive response to GT excitations. Noncollective contributions
elements that should be antisymmetrized. As we showed imay show up, however, when the coupling constants are
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\2., ’3‘ FIG. 7. Spatial dependence @f[p] for various values ok
g2rdie-s - ] =C3[0]/CS[ parl, Se€ Eq(10), andg), fixed at 1.2. The value
A4r ._I..-l"' ] =1 corresponds to no density dependence. For larger values of
i i i i 7 the residual interaction becomes more repulsive outside the nucleus
0.0 0.5 1.0 15 2.0 2.5 than inside. Whex=0, Cj[p] vanishes at large distances, and for

negative values ok, the residual interaction becomes attractive

outside the nucleus. The density profilér) used in this plot cor-
FIG. 6. Deviation of calculated and experimental GT resonancgesponds ta?°éPb.

energieglower panel and a fraction of the GT strength in the GT
resonancéupper panelfor 112Sn, 124sn, and?°®Pb, calculated with
SkO' and a modified residual spin-isospin interactier.is kept at
the Skyrme-force value an@;® is set to zeroC$ is chosen to be
density-independent and varied to get@;<2.4. g;=0.19 in all
cases.

sity in the “standard” way(10). All nuclei we look at have
finite neutron excess, which means that the central density
should be slightly smaller thap,y,.

If g, andg; are fixed in saturated INM, there is one free
parameterC3[0], with which one can vary the density de-
pendence(10). (Ci[pnm] is fixed by the valueg{[ ppml
changed. In*?4Sn, for example, a state below the resonance=1.2, and we set the exponefit0.25, as it is in the time-
collects a lot of strength for small values gf. Only by  even energy functional SKQ We continue here to assume
increasingg;, does one push that strength into the resonancehat gauge invariance holds, and ti@jt*=0.

Similarly, in 11%Sn a state about 5 MeV above the resonance We vary the paramete€i[0] between—Cji[p,y] and
increasingly collects strength ag grows. 2Ci[pnml. Figure 7 shows the spatial dependenceCifp]

As the underlying single-particle spectra are the same fofor several values of the ratio=C3[0]/C3[ pyml. By chang-
all the cases in Fig. 6, the differences are due entirely to theng C3[0], one can change both the GT resonance energy
value ofgg. With increasingg,, the resonance energy in- and the amount of the low-lying strength, even W@ p ]
creases and more strength is pushed into the resonance. Tkept constant. As Fig. 8 shows, an increaseCgf0] for a
increase ofE s is nearly linear, but the lines for different given go has almost the same effect as an increasg)dor
nuclei have different slopes. It is gratifying that the curvesy givenC$[0]. Thus, the INM Landau parameters do not tell
for Ecaic— Eexp @ll have a zero around the same poig§,  the whole story in a finite nucleus. Figures 7 and 8 show that
~1.2. This value is much smaller than the empirical valuethe spin-spin coupling has the largest effect on the GT reso-
go~1.8 derived earlief63,51,53 for at least two reasoné)  nance when it is located at or even slightly outside the
the influence of the single-particle spectrum dnglthe in-  nuclear radius.
clusion in the residual interaction of@wave force charac-
terized byg; . The latter means tha,=0 does not corre-
spond to a vanishing interaction in the spin-isospin channel.

2. Study of G[0]

Thus far we have chosen not to I€f depend on the
density. Little is known about the empirical density depen-
dence of the time-odd energy functional and time-odd Lan-
dau parameters calculated from a “realistic” one-boson ex-
change potential in DBHF show only a very weak density
dependencg64]. Because the kinetic spin ter@{sltg-Tltg,

when evaluated in INM, also contributes to the density de-
pendence of the Landau parameters, the density dependencerG. g. variation of the GT resonance energy and the strength in
o_f that term must either be sma_II or nearly c_anceled .by othe(he resonance when the ratie=C5[0]/CS[ pm] Of parameters de-
time-odd terms. In any event, in the following, we investi- fining the density dependence 6£[p] in Eq. (10) is varied. Sym-
gate what happens whe2i depends on thésoscalar den-  bols and scales are as in Fig. 6.
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FIG. 9. Variation of the GT resonance energy and the strength g’
in the resonance whe@?® is varied. Symbols and scales are as
in Fig. 6. FIG. 10. Variation of the GT resonance energy and the strength
in the resonance whe@; (and thusg;) is varied.Cj is readjusted
T r_ i
3. Study of €9 for each value ofC; so thatgy=1.2. Symbols and scales are as in

Fig. 6.
The termesslts- Asy, is sensitive to spatial variations of ’

the isovector spin density. Unlike it$soscalay time-even curves for 2°Pb and ''°Sn demonstrate, however, the
counterpartC5”poA po, it should not be called a “surface amount of strength in the resonance does not necessarily
term” because the spatial distribution gf is determined by change whemy; is varied.

a few single-particle states that do not necessarily vary the
most at the nuclear surface. In discussing the effects of this
term, we continue to fixC] at its Skyrme-force value via
gauge invariance and choo&% to be density-independent
and fixed from Eq.(16) with g¢[ poml=1.2. We then vary
Cfs over the range of£30 MeV fi®, covering the values

D. Regression analysis of the GT resonances

In the previous subsection we explored the dependence of
the GT resonance energies and strengths on particular time-
odd coupling constants of the Skyrme functional while keep-

) . Lo ing the other coupling constants fixed. These results show
obtained from tAhSe original Skyrme forces. As seen in Fig. 94,4 the GT properties depend on all the coupling constants
an increase o€~ by 30 Mer.mS has nearly the same effect gjmyjtaneously, and the effect of varying one coupling con-
on the GT resonance energies as a decreas) &y 0.2,  stant may be either enhanced or cancelled by a variation of

again demonstrating that the valueggfdoes not completely ~another one. In such a situation, linear regression is needed
characterize the residual interaction in finite nuclei. A newto quantify the influence of the coupling constants.

feature ofC4S, apparent from the curves f3t%Sn and?°®Pb We analyze the situation by supposing that the GT ener-
in Fig. 9, is the ability to move the resonance around ingies and strengths are linear functions of four coupling con-
energy without changing its strength. stants, i.e.,
GT s s As T
=gyt + + +
4. Study of G Ereg= €01+ €1Ci[0]+e,Ci[ ppm] +e3C1°+e4C ’(173
Finally, we investigate the influence on the GT strength

distribution of the termCisy - Ty, which determinesy; Brg= 0o+ b1C5[01+b,CS[ poml +baCy°+b,C.
[see Eq.(15d)]. As this term is linked by gauge invariance (170

(11) to the time-everd? term, a fully self-consistent variation . ) o
of CT would require refitting the whole time-even sector of IN our linear regression method, the coefficiegitandb; are
the Skyrme functional.[Note that our approach removes the d1e7tgrm|ner(]j by_ a Ieast-s?uarz fit |Of lexpdressllq();fa antlj
constraintsB2) that link C/ to the time-even coupling con- (179 to the given sample oN calculated Q results,

A y . . EST(n) andBSI(n), n=1,... N. The calculate8Z) (n)
stantsC{ and C;”. The constraint was retained, however, CT' h bcal ’ h, ' d b ih | fact Cffzi'l 26
when SkO was constructedl We leave that task for the fu- vagﬁs a\r/ﬁ Iee? qﬁ;‘; el u)llati enusga:/ ?ctc;]r 0 h. icall
ture, using a gauge-invariance breaking-energy functional € sampie 0 Q caic ons covers the physically
here withCT# C? to obtain constraints o] for future fits, ieresting range of values for the coupling constants. We
Figure 10 slhowé the change in the GT re;onance vghéan present here results from a sample defined by the hypercube

T

varied in the range-1<g;<1. Increasingy; increases the
energy of the GT resonance for a givgh. Changingg; by

0.2 has nearly the same effect on the GT resonance energy as
changinggg by 0.2.(This means thag,=1.2, g;=0.2, as

used here, is consistent with the lower end of the values As .
1.4<g,<1.6, g,=0.0 given in Refs.[45-48) As the C1°=-40(20)40, five values, (1809

0,=0.6(0.21.8, seven values, (183

Ci[0)/Ci[pnml=—1(1)2, fourvalues, (18b
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TABLE II. Coefficientse; obtained by the regression analysis,
Eq. (1739, of the QRPA GT resonance energies in the reduced
sample(see text The standard deviationsg from this sample are
compared to therg(full) from the full sample ofN=700 points.

1125 1245 208

€ 5.58100 10.16000 8.19600
e 0.00305 0.00488 0.00674
e 0.02696 0.03981 0.06099
es 0.01690 0.03474 0.05897
e, —0.01189 —0.01767 —0.02198
Og 0.0479 0.199 0.114
og(full) 0.585 0.865 0.520
deviations

SECT(n)=Egi{n) —Exg, (193

8BT(n)=Bgidn) —Brg (19b

FIG. 11. Distribution of differences between calculated GT reso-between the calculated and fitted energies and strengths in
nance energies and those from the regression analysis, with al'?Sn, 12“Sn, and?%%Pb. The widths of these distributions
points from the sampléleft panel$ and with a reduced sample illustrate the degree to which the linear regression expres-

(right panels.
Ci=—40(10)0, (180

i.e., for the sample oN=700. We usey), instead ofC3[0]

five values,

sions(17) are able to describe the results of the QRPA cal-
culations. One can see that the fit GT resonance energies are
generally within about-1 MeV of the calculated ones, and
the fit strengths within about 6.

As can be seen from Figs. 6, 8, 9, and 10, the dependence

for the regression analysis to avoid combinations of the couef both the resonance energy and the strength in the reso-
pling constants that leavg) too far from 1.2, the value ad- nance on the coupling constants is not linear for the entire

vocated in Sec. IV C.

region of coupling constants. Although our sample is re-

The left panels in Figs. 11 and 12 contain histograms oftricted to the area around the reasonable values, at times we
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leave the region where the regression can safely be per-
formed. Furthermore, for certain combinations of the cou-
pling constants(especially at a weak couplihgthere are
competing states that carry strength similar to that of the GT
“resonance.”(These states often merge into the resonance at
a larger coupling.Finally, the resonance can be fragmented
into many(sometimes up to )5tates. Therefore, we remove
certain areas of parameter space where the determination of
either the energy or the strength of the GT resonance is am-
biguous. Such areas are almost always singled out by par-
ticularly large deviations from the fitted values.

After reducing the sample in this way, we obtain the his-
tograms in the right panels of Figs. 11 and 12. These illus-
trate the quality of the regression fits obtained for samples of
N=542, 664, and 618 in*?Sn, 124sn, and?%®Pb, respec-
tively. Tables Il and lll list the corresponding values of the
regression coefficients, as well as the standard deviations for
the GT energies and strengths within each of the samples.

Figures 11 and 12 and the standard deviations obtained in
the reduced and full sampl€&ables Il and 1) show that the
description obtained by removing a small number of points
beyond the region of linearity is quite good. The GT reso-
nance energies are now reproduced within abhoR00 keV

FIG. 12. Same as in Fig. 11 except for the strength in the GTor less. The description of the resonant GT strengths is also

resonance.

improved, especially in*'?Sn, although here the linear re-
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TABLE Ill. Same as in Table Il except for the strengths of the Ci[0]=Ci[pnm]= 120 MeV fn.p’
GT resonances.
As_
llZSn 1248n 208Pb Cls_ O’
by 21.86000 11.75000 80.62000 CI=—9.172 MeV fn? (20
b, 0.00963 0.03107 0.03079
b, 0.06143 0.25120 0.18620 (see Table 1Y give gj=1.2 andg;=0.19, which are in ac-
bs 0.09146 0.30510 0.33850 cord with the data we discuss. But these values by no means
b, ~0.01730 —0.10280 —0.09688 constitute a fit and are not unique.
78 0.608 2.10 2.74 V. A CONSISTENCY CHECK: SUPERDEFORMED
og(full) 5.20 3.44 3.82 ROTATIONAL BANDS

Another phenomenon in which the time-odd part of the
Skyrme energy density functional plays a role is the high-
gression cannot work too well because the strengths saturasgin rotation of very elongated nuclei. In this section we
at strong coupling. Nevertheless, the coefficients listed irdemonstrate that reasonable values for the spin-isospin cou-
Tables Il and Il allow a fairly reliable estimate of the QRPA pling constants found when analyzing the GT strength are
values for any combination of the coupling constants. Theconsistent with the description of superdeformed rotational
values of the coefficients in Tables Il and Ill show thatbands. _
CS[pnml and C23 strongly influence properties of the GT When a nucleus rotates rapidly, there appear strong cur-

resonance, and that both the energies and the resondfit gr_1d spin one-body (_Jlensitie_s alo_ng with the usual particle
strengths increase when these coupling constants increa .nsmes that characterize stationdiyne-even states. The

T . s Ime-odd densities are at the origin of strong time-odd mean
.Cl has_a weaker ef_fectlnthe opposite direction, wIfg0] fields. There are already many self-consistent studies of
is less important still.

> . , high-spin states available; see, e.g., reviews in R&&65—
Without presenting detailed results, we report here on tw%ﬂ_ The role and significance of the time-odd mean-field
other attempts at regression analysis. We tried to analyze thg;ms however, has not been carefully studied. Basic fea-
results for all the three nucléf?Sn, *2%Sn, and**Pb, simul-  yyres of high-spin states can often be well described by mod-
taneously by adding termss(N—2Z) andbs(N—Z) to the  ¢|s that use phenomenological mean fields of the Woods-
regression formulagl?). Linear scaling might be obtained Saxon or Nilsson type, where no time-odd terms are

by analyzing the QRPA results for very many nuclei, whereexplicitly present in the one-body potenti&lhe time-odd
the effects due to shell structure could average out. In oudensities are, however, present there through the time-odd
small sample, shell structure is obviously important. We alsaranking term). For the Gogny interactiofb9], or within the
tried the regression analysis WitﬁI:—g,l?Z MeVfn?  standard RMF model§l2], they cannot be independently
fixed at its SkO value(see Table IV, and without the terms modified; the Gogny interaction is defined as a two-body
e, andby, in the regression formulad7), so that the func- force (where the time-odd terms show up as exchange
tional's gauge invariance was preserved. The results were néfrms, while _61" time-odd terms appearing in s_tandard RMF
significantly different from those wheB] was allowed to Models are fixed by Lorentz invariance. Within the Skyrme
vary freely. framework, the tme—qdd terms in superdefo.rmed rotational
For the SkO coupling constantésee Table IV, we obtain states were analyzed in an exploratory way in RESS20).

. Unlike the GT response, rotational bands are influenced
GT_ 1 12 20 ’
Ereg=8.3, 14.2, and 14.2 MeV irt*Sn, *2Sn, and***Pb, by both isoscalar and isovector time-odd channels of the ef-

and B%: 100 in ***Pb. These values are close to the corregctive interaction. In fact, the large effects of time-odd cou-
sponding experimental data: 8.9, 13.7, 15.5 MeV, from Refp|ing constants found in Ref3] are mainly due to the isos-
[46], and ~3(N—2Z)/1.2€. It is not possible, however, to calar channel; the isovector channel induces corrections that
find values of the four coupling constants that reproduceare smaller, though non-negligible. The SkSQkyrme pa-
these four experimental data points exactly. The reason isametrization, which we use for GT calculations, is unstable
that the matrix of corresponding regression coefficients isvhen the original parameters from E®2) are used in the
almost singular, resulting in absurdly large values of the couisoscalar spin channel becauge< — 1 (a fact that is related
pling constants. Clearly a determination of the coupling conto the unusually high value af; in Table |). This leads to
stants from experiment would require more data. Althoughunphysical ferromagnetic solutions where all spins align
charge-exchange measurements have been made on mamyen the nucleus is cranked. Of course, the valugyafoes
nuclei, we require spherical even-even nuclei that are not softot influence the GT calculations for even-even nuclei pre-
against vibrations. To fit the relevant coupling constants tesented in our study which focuses on the isovector time-odd
data, we would need, at the minimum, the ability to treatcoupling constants. Consequently, in the following we em-
deformed nuclei. Meanwhile, we can make a simple choic@loy a simple spin energy functional using the Skyrme force
of time-odd coupling constants from the analysis in Fig. 6.value forCy, settingCészo and neglecting density depen-
The values dence. We adopt the valugg=0.4 given in Ref[52] (note
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B2y FIG. 13. Dynamical moment
of inertia 7® in the superde-
formed band of'*Dy calculated
with the SkO energy density
functional and modified time-odd

S0/, N 0

(X4 5
’00.. Crloj/cy, <o coupling constants. In the upper
$00040 XX left panel (corresponding to Fig.
80 ,—‘,=1.2 6) all coupling constants are cho-
78 i = sen to be density independeft]

is kept at the Skyrme-force value,
and C{=0. In the upper right
panel(corresponding to Fig.)&he
density dependence &; is var-
ied keepingg,=1.2. In the lower
left panel (corresponding to Fig.

. = A B . . .
"000000034\\ 9) C2° is varied, while in the
82 - lower right panel(corresponding
gg g'=12] e=12] to Fig. 10 C/ is varied. See text
03 04 05 06 07 08 03 04 05 06 07 08 for the choice of isoscalar time-
h w(MeV) fi w(MeV) odd couplings.

that a different definition of the normalization factor is usedsis also shows this parameter to be smaller than previous
there to fix C3. work indicates.

We perform the calculations in exactly the same way asin There are not enough experimental data for spherical
Ref.[3] by using the codeiFopp (v1.75p described in Ref. €ven-even nuclei to fix the time-odd isovector coupling con-
[68]. We examine'®>Dy, which is a doubly magic superde- Stants; the ability to do calculations in deformed nuclei
formed system. Pairing has a minor influence and we negleghould help there. We could, however, choose values that

it. We focus on the dynamic moment of inertig: reproduce the data we do analyze, without spoiling our de-
scription of high-spin superdeformation. Doing a lot better
d2E| "t 4p2 may require improving our time-even energy functionals. GT
T = 2| TaE (21)  resonance energies and strengths depend significantly on
di Y spin-orbit splitting as well as the residual spin-isospin inter-

action. Until we are better able to reproduce single-particle
energies, therefore, a fit of the time-odd interaction will be

dl - 1(wy)—(w,) tentative. _ _ _ _ _
== (22 We have not considered isoscalar time-odd interactions.
The couplings there will be harder to fix because there are

(in calculation$. Figure 13 shows results of calculations fewer data on the response, which is not as collective as in
when one of the four time-odd isovector coupling constantdh€ charge-exchange channel. In addition, the isovector time-
is varied, while the other ones are kept at the values merfdd terms will play a role in calculations of isoscalar observ-
tioned above. Variations of the coupling constagg0] ables. Though a lot clearly remains to be done, our work can
CS[panl, andCI have little effect on the dynamic moments already be put to good use. We will, for example, employ the

S e As . new values for the isovector time-odd coupling constants in
of merﬂa in 19Dy. WhenCy* is Va”ed.’ the moment; cha_mge future calculations of beta decay and in the observables that
noticeably, but the general trend with frequency is still the

; . X i tell us about the extent of real time-reversal violation in nu-
same. Thus, altering the isovector time-odd couplings doeélei

not appear to change the quality with which we describe

superdeformed rotational bands. Of course, a consistent de- ACKNOWLEDGMENTS
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APPENDIX A: LOCAL DENSITIES AND CURRENTS

The complete density matrip(rot,r’o’t’) in spin-

isospin space as defined in EG) can be decomposed into

the sum of scalaptts(r,r’) and vector densitiesns(r,r’),

where the subscripts denote the isospin quantum numbers C

p(rUT!r,OJT, :% pOO(rir,)50'o"5T’r’+&)O(rlr,)' Oyq! 577”

+1
t3
+5mf’ 2 Pt (rar’)T ’
t3=7l 3 TT

(A1)

+1
t
+t 2 1 Slts(ryr’)'a(r(r'T:;.r .
2=

The quantitiesr,,» and thr, are matrix elements of the Pauli
matrices in spin and isospin space. In terms of these, the

local densityp, spin densitys, kinetic densityr, kinetic spin
densityT, currentj, and spin-orbit tensod are

Pit,(1) = pe,(1.1),
Stt3(r):Stt3(r,r)y
Ttt3(r):V'V,ptts(r,r’)|r=rr y

Tn3(r)=V-V’sn3(r,r’)|r:r/ ,
. [ ) /
J“a(r): a E(V_V )ptt3(rvr Ne=r

i
Jtt3’ij(r)=_E(V_V,)istt3,j(rvr,)|r:r'- (A2)

The densitiep, 7, andJ are time even, whilg, T, andj are
time odd. See Ref20] for a more detailed discussion.

APPENDIX B: ENERGY DENSITY FUNCTIONAL FROM
THE TWO-BODY SKYRME FORCE

The standard two-body Skyrme force is given[By33]
Uskymd T1,12) =to(1+XoP ) 8(r1— 1)+ 3ta(1+x,P,)
X[K'28(ri—rp)+8(r1—ro)k?]

Fty(1+x,P )k - 8(ry—r,)k

ry+ro
2

(B1)

+%t3(1+X3|5(r)5(r1_r2)Pa(
+iWo( o+ ) - k' X 8(r—r,)k,

where P,=1(1+ o,- 0,) is the spin-exchange operatdx,
=—(i/2)(V,—V,) acts to the right, andR’=(i/2)(V1

PHYSICAL REVIEW 65 054322

tion value from this force yields the energy functional given
in Eq. (12) with the coupling constants

Ch=3to+ astap§,
f=—2to(3+Xo) — 2ts(3 +X3)pg,
Co=—1ito(5 —Xo) — zata(3 —X3)p§ ,

Ci=—4to—astapng,

Co=16t1t 3t2(5 +X2),
Ci=—gti(3+x) +5ta(3 +%p),
Co=mal — 5ta(3—X1) + 5ta(3+%2)],
C1= il — st1+ 15to),
Co"=—mt1t 16t2(3 +Xy),
CYP=Hti(5+X1) T 35ta(3+X,),
Co°=St1(3 —X1) + a3 +X0),
CP%= gty + gaty,

CcV)J: _%WOa
CYJ: _%Wo,

Cy°=0,

Cy®=0, (B2)
nine of which are independent. Although in this approach
n;=1, many parametrizations of the Skyrme interaction set
n;=0. That violates the interpretation of the Skyrme func-
tional as an expectation value of a real two-body interaction
and removes the rationale for calculating the time-odd cou-
pling constants from EqB2). For Skyrme interactions with
a generalized spin-orbit interactip42], e.qg., for Ski3, Skl4,
SkO, or SkO, the spin-orbit coupling constants are given by
Co'=—bs—3bj, CI’=-3b. (B3)
The resulting terms in the energy functional again cannot be
represented as the HF expectation value of a two-body spin-
orbit potential(see, e.g., Refl41]), again violating the as-
sumptions behind the calculation of the time-odd coupling
constants in Eq(B2).

As Egs.(B2) represent the standard approach to the time-
odd coupling constants, it is worthwhile to take a look at the
actual values. Table IV compares them for several Skyrme
forces. None of these parametrizations was obtained from
observables sensitive to the time-odd terms in the energy

—V3) acts to the left. Calculating the Hartree-Fock expectafunctional. Differences among the forces merely reflect vari-
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TABLE IV. Time-odd coupling constants calculated from EB2) for the Skyrme interactions as indicated.

Force  Cl0] cslo] Clpoml C3Lpom] Co Ci Co° Cy® a
(MeVim®)  (MeVim®)  (MeVim®)  (MeVim®) (MeVim®)  (MeVim®)  (MeVfim®  (MeVim®)
Skll 695.860 239.200 120.190 99.573 0.0 0.0 192.660 62.766 1/4
Ski3 84.486 220.360 253.180 113.940 0.0 0.0 92.235 22,777 1/4
Skl4 44.038 231.980 209.030 104.120 0.0 0.0 124.590 37.943 1/4
SkO 373.770 262.960 41.421 84.253 0.0 0.0 70.365 26.590 1/4
SkO 277.910 262.430 47.082 84.154 —104.090 —9.172 42.791 16.553 1/4
SkX 57.812 180.660 —35.639 81.246 —7.861 —23.669 —4.434 9.514 1/2
SGll 271.110 330.620 61.048 91.676 0.0 0.0 15.291 15.283 1/6
SkP 152.340 366.460 —31.328 78.562 7.713 —41.127 —-4.211 9.757 1/6
SkM* 271.110 330.620 31.674 91.187 0.0 0.0 17.109 17.109 1/6
SLy4 —207.820 311.110 153.210 99.737 0.0 0.0 47.048 14.282 1/6
SLy5 —171.360 310.430 151.080 99.133 —14.659 —65.058 45.787 14.000 1/6
SLy6 —201.460 309.940 157.050 100.280 0.0 0.0 48.822 14.655 1/6
SLy7 —215.830 310.100 158.260 100.640 —30.079 —55.951 49.680 14.843 1/6

ous strategies for adjusting the time-even coupling constant3.heir contribution to the properties of polarized INM were

Values of the density-dependent isoscalar coupling constanexplored, e.g., in Ref.71].

C3, either atpy=0 or atpo=pnn,, are scattered in a wide

range. This is probably one of the main sources of differ- 2. Degrees of freedom
ences in the predictions of the forces for time-odd correc-

tions to rotational bands. For the Stforces,Col 0] is nega are the isoscalar scalar densjty, the isovector scalar den

tive, Wh'ch IS “”‘45“6!'? most (_)ften this part _o_f the ISOS(.:alarsity p1, the isoscalar vector density, and the isovector
spin-spin interaction is repulsive at all densities. The differ-

ence will probably cause visible differences in rotational
properties whenever the spin density is large at the surfac
All the forces agree on the isovector coupling constaht

neutron and proton, spin-up, and spin-down densities in
?ollowing way:

especially at the saturation density, i.eC3[pnml Po=Pnt+Pn tPpr T Ppy
~100 MeV fn?. This simply follows from the fact that, as-
suming Eq(B2), C{ is proportional to the time-eve@} that P1=Pn1+ Pn|—Ppi—Ppl

is fixed from binding energies and radii.
So=Pn1 ~Pn,t Pp1 ~Ppy

APPENDIX C: INFINITE NUCLEAR MATTER

S1=Pn1—Pn,— Pp T Pp) - c1
1. Introduction 1= Pnt ™ Pnl™ Pp1 T Pp| (CY

The four basic degrees of freedom of homogeneous INM

vector densitys;. They can be expressed through the usual

the

Homogeneous infinite nuclear mattdNM) is widely  Similarly, densities of protons and neutrons with spin up and

used to study and characterize nuclear interactions. Sondown can be expressed as

INM properties, such as the saturation density, energy per

particle, and asymmetry coefficient, are coherent, and others, Pni= H(potpitsotsy)=2(1+I1_+1,+1_,)po,
such as the incompressibility,, and the sum-rule enhance-
ment factor, are related to excitations and can be used as
pseudo-observables to compare with predictions of nuclear
forces. INM properties are also often used to adjust the pa-

pn=3(potpi—So—s1)=1(1+1,.—1,~1,.)po,

rameters of effective interactions for self-consistent calcula- Pp1= i(po—p1tso—s1)=3(1=1,+1,~1,,)po,
tions. These properties at large asymmetry are key ingredi-

ents for the description of neutron stafSee, e.g., Refs. ppl=%(po—pl—soJrsl):%(l—lT—|U+Im)p0,
[23,69 for a discussion on the mean-field leyel. (C2

Most papers deal with spin-saturated INM, in which the
time-odd channels of the interaction discussed here do notherel .= p,/pg is the relative isospin excess,=sq/pg IS
contribute. Nothing is known about spin-polarized INM, the relative spin excess, ahg,=s;/p, is the relative spin-
which actually may play some role in neutron stars. A stabil-isospin excess, with-1<|;<+1.
ity criterion for this exotic system, derived in R¢¥.0], was In symmetric unpolarized INM;=0, while in asymmet-
even used to adjust the parameters of thexSfgrces in  ric INM p;#0. Polarized INM hasy+# 0, and spin-isospin
Refs.[23,24]. We do not consider tensor forces in this work. polarized nuclear matter has+ 0.

054322-14



GAMOW-TELLER STRENGTH AND THE SPIN-ISOSPIN . .. PHYSICAL REVIEW 65 054322

3. Fermi surfaces and kinetic densities and the kinetic density in coordinate space is

For INM arbitrary asymmetry, the Fermi energy of each v
particle species is different. Finite spin densitiedreak the
isotropy of INM, creating the possibility that the Fermi sur-
face will deform[72]. We are mainly interested in INM with where = (372/2)?". Various kinetic densities in the spin-
small polarization, so we use the approximation that aIIISOSpIn space are given by
Fermi surfaces are spherical.

5/3
Tqo— 107 quO' zoﬁpqoﬂ (CG)

In the mean-field approximatio}iqa(k), the density of To=Tnt T Tn T Tpr T 7p| = 5,8p5/3 g—,(,)%
particles in momentum space with the isospin projection 55 ()
and spin projectionr is TI=Tnpt Tn = Tp1— Tp = ¢BngFi,
1 for k<Keqo. To= T = Toy+ T~ Tp = £8P0 F 573,
Pao(k)= 0 for k>kg ©3
/3= (o7
Ao T,= Tnt— Tn — Tprt 7= 5,3[)5 3 (573) ) (C7

In asymmetric polarized INM, the relation between the ©) () (o) (o) _
Fermi momenta and the isoscalar scalar density reads ~ WhereFn’, Fr’, Fy, andF ™ are functions of the rela-
tive excesses

2 1

po=——ki=—— X X K, (C4) FO=L[(1+1 41,41 )™+ 1+ =1, —1,)™
372 " 6m? a=pno=1.l
+(1-1 A+, =1 )"+ (A==l ,+1,)™].

with K q,= (67%)*3pte. Here, ke is the “average” Fermi 8
momentum of the whole system. The kinetic density in mo-
mentum space for each particle species is given by This is a straightforward generalization of the corresponding

g definition for asymmetric unpolarized nuclear matter given

Tqo(K) = kzﬁqo(k), (CH) in Ref.[23]. Similarly one defines

Fgg):All[(l+IT+|0'+|0'T)m+(1+lT_IU_IO'T)m_(l_IT+IU_|0'T)m_(1_IT_Ia'+|0'f)m]1

FE\’(]T):%[(1+|T+Irr+|(r7')m_(1+|T_Irr_llrf)m+(1_|r+|(r rrr)m (1_| l)' rrr)m]
FO7 =20+ A1 )™= (L = 1=l )™= (L= =1 )™ (1= 1= 1+ 1, )™, (C9
|
For calculations of INM properties, we also need derivatives aZF(O)

of these functions. The first derivatives are given by

=m(m—1)FQ,,
’

S S

- - =mE© .
A, A, a,,  mm 20
e =m(m-1)F{) (C11)
i
0 o o,
JF _ IF) _ IFe )—mF(T)
a, dls A, my for anyi,j=r,0,07. Functions of the ordem=0 andm
=1 are rather simple:
0 T, o,
oF ) _ oF () _ IF ¢ )—mF(”) i |
s N gr al; mr Fg) ):1, FS):O,
(0) (7) (o) (0)— (h—7.
IF :&Fm :&F —mFﬁ?T)l (10 Fi’=1, Fi’=I;, (C12
a,, a, al. ’
for anyi=r,0,07. Some special values{)(I .1, ,,) ap-
while the second derivatives are pearing in limiting cases of INM are
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FET?)(O,O,O)= 1, Fg)(0,0,0)=0, 5. Pressure, incompressibility, and asymmetry coefficients
At the saturation point, all first derivatives of the energy
F(1,00=F%(0,1,0=F%(0,0,)=2""1, per nucleon have to vanish and all second derivatives have to
be positive. The first derivative with respectgg is related
F(1,00=F(0,1,0=F{”(0,0)=2""1, to the pressure, the second derivative with respegiytis
related to the incompressibility, and the second derivatives
FO1,1,)=FM(1,1,1)=4m"1, (C13  with respect to the, is related to the asymmetry coefficients.
_ For symmetric matter, the first derivatives with respect to the
while F{)=0 if 1;=0 and one of the othdr’s is equal to 1, |, vanish because the energy per nucleon is an even function

with the last equal to zero. These functions are useful whegf all I;s. The pressure is given by
writing down the equation of state and its derivatives.
(9E 2 f?H/po
4 “Equati , . . P=——C =po— (C17)
. “Equation of state” of asymmetric polarized nuclear matter oV A dpo

N INM  Apy (1) = Asy (1) =i, (1) = Ju (r)=0. We
choose pure neutron and proton states, which leags iqQ
=0, p1:=py10, and similarly for all other densities. We take _ 5/3(0 2 512 si2 .\ 2
the z axis as the quantization axis for the spin, i.§,, =5 2mPPo FE3+ (Co+ CHIZ+CRI+CIIT) P
=s;y=0, s;:=s;,, and for the kinetic spin density. As
discussed in Ref.72], this breaks the isotropy of INM, lead-
ing to an axially deformed Fermi surface, an effect which we
neglect. Adding the kinetic term, the total energy per nucleon
(i.e., the “equation of state”for the energy functional7)
and (8) is given by

which gives

J
303 (Cb+CHZ+ C3IZ+C12,) + B(CHFE)

+CIFSA +COFWA,+CIFU, )p®3 (C18

The incompressibility is defined as
H 3K

i 28:00) 4 (P4 P24 CSI2 4+ OS2 18P *HI
o = 5omBPo st (Co+ Crl 7+ Col o+ CilG ) po K=p—+9pg P 2p0- (C19
0 Po

+§(C5Fgc,’3)+ CilFO+Co F+Cll . FUD) Bpa.  which, for the Skyrme energy functiondl14) at the satura-
tion point (pg=ppm, | ,.=1,=1,,=0) gives
(C19
. . ’ 2/3(0) 29Co ‘72Cp
For unpolarized INM one hals,=1,,,=0 which recovers the K==~ z|5-=5Cqpo | Bpo Fyst 2Po(9_+Po
expression given in Ref23]. Po
An interesting special case is polarized neutron matter,

which is discussed in Ref70] for the Skyrme interactions. The asymmetry coefficients are
A stability criterion derived there from the two-body force

Ppo.
(C20

point of view as outlined in Appendix B was used to con- 1 9*Hlpg
strain the parameters of the Stjorces[23,24]. In this lim- aT=§ 912
iting case, one hagn;=pg, pn;=pp;=pp, =0, Which is ToEL=,,=0

equivalent tol .=1,=1,,=1 and leads to

1 ﬁz T T 2/3
2 =3 %+(CO+3cl)pO Bpy +Clipg, (C2))

H h
—24’3ﬁ +(CO+C1+CT+C )po|p3”
Po 1 82H/p0
+(Ch+CE+C3+CS) po. (C15 a,=5 py — i ~1,-1,.-0
ExpressiongB2) for an antisymmetrized Skyrme force im- 72
ply that C§+Ct+C5+C5=0, and =35m+ (Cot 3Cg)p0},3p(2)/3+ Cipy, (C22
H 3[ n? 1
—=2%38-| —+ Zt,(1+X2)po|p2°.  (C16 1 9*Hl pg
Po 52m' 2" AT
The stability of polarized neutron matter for all densities e o0
requires x,~—1 [70], so the SLx interactions takex, 2 . T o3 s
=—1 [23,24. However, from the energy-density-functional =315m T (Cot3C1)po|Bpo~+ Cipo.  (C23

point of view, the coupling constants are independent, and
the second term in EqC15) also contributes to the stability Here,a, is the well-known volume asymmetry coefficient of
condition. the liquid-drop model, and,, anda,,, are its generalizations
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to the spin and spin-isospin channels of the interaction. ABssuming that only states at the Fermi surface contribute,
the .sfaturation point, all asymmetry coefficients have to bge  |k,|=|k,|=kg, T, T, g, andg’ depend on the anglée
positive. betweerk, andk, only, and can be expanded into Legendre
polynomials, e.g.,
APPENDIX D: LANDAU PARAMETERS

FROM THE SKYRME ENERGY FUNCTIONAL ~ 1 -
f(kl,kz>=N—0|ZOf|P|<e>. (D4)

A simple and instructive description of the residual inter-
action in homogeneous INM is given by the Landau interaCrpe normalization factoN is the level density at the Fermi
tion developed in the context of Fermi-liquid thedi§0]. ¢ face
Landau parameters corresponding to the Skyrme forces are
discussed in Refd21,27,36—38,7B Starting from the full 1 722
density matrix in(relativd momentum space(kora’ 7'), N_OZ om*k
the various densities are defined as F

m
~150— MeV fmS. (D5)
m*

A variety of definitions of the normalization factdt, are

zK)= Tk , D1 used in the literature and great care has to be taken when
Pook) ; ET plkoToT) (13 comparing values from different groups; see, e.g., ]
for a detailed discussion. We use the convention defined in
~ ~ ot [38]. The Landau parameters corresponding to the general
p1,(K)=2 E p(koror)T2,, (D1b)  energy functional6) are
p 9Co ? 0 2 7. 23
k=3 3 plkoro' ey, (DL fo= ol 200 47 00P0 T Gpz, PO 2C0PP
B S 5 t fo=No(2C4+2C1Bp55),
Sit,(K)= pkoro'm")o,p7>,.  (D1d)
S e o go=No(2C5+2C] Bp3d),
~ ~ ~ _ T 2/3
The kinetic densities are given byttszpngkz, T, 90=No(2C1+2C18pgp),
=~s[t3k2. The Landau-Migdal interaction is defined as fi= —2N0C5,8p(2)63,
~ r_ T 2/3
F(kyoy17m10171:Ko00T00575) f1=—2NoCiBp5°,
525 9:.= _ZNOCgﬁpglos’
5p(K1o1 7101 71) 5p(Kooa 205 7H) g;=—2NoCIBp32. (D6)

Higher-order Landau parameters vanish for the second-order
energy functiona(12), but not for finite-range interactions as
the Gogny force discussed in Appendix E. The Landau pa-
rameters provide a stability criterion for symmetric unpolar-
The isoscalar-scalar, isovector-scalar, isoscalar-vector, anged INM: It becomes unstable for a given interaction when
i;ovect'c)or-vector channels of the residual interaction argitherf,, f/, gy, org, is less than— (21 +1).

given by

=T(kq, ko) +T"(Ky,Ko) 71 1o+ Q(Ky ko) 61 - 67

+9 (Ky k) (81 ) (Fy- ). (D2)

APPENDIX E: LANDAU PARAMETERS FROM THE

ko k)= 5%E (033 GOGNY FORCE
1:8h2) 7 T~ ~ I
Spoa K1) Spoo(K
Pod k1) Opod kz) The residual interaction in INM from the Gogny force
Tk ko) = — = , (D3b)
) Ky)d k R . ..
Puiglla) 0Pg(ka) VoonT1.12)= 3 (Wi +BiP,+HP~MP,P)
9(ky ko) = o (D30 we (1=r2?uf 4 (1+%,P,)
1, 82)— =~ i o
8500l k1) Fspol kz) o
JfFatr2
~ 5%€ X Po 2 o(ri—ry)
9'(kq,ko)=—= = . (D30d)
9511, (Ka) 51e,(Ka) FiWo(ry+ 6,) - K" X 8(ry— 1)k (ED)

054322-17



M. BENDER, J. DOBACZEWSKI, J. ENGEL, AND W. NAZAREWICZ PHYSICAL REVIEW G5 054322

(see Appendix B for the definition &, k', P,, andP,) has  With z= u’kZ/2. The normalization facto, is again given
been discussed in Refgr4,75. Evaluating the expressions by Eq.(D5).

given in Ref.[75] for (k,k’,q) = (kg ,kg,0), oneobtains the

usual Landau parameters

APPENDIX F:
f,= E [(4W;+ 2B, — 2H, — M-)‘Iﬁ(i) RESIDUAL INTERACTION IN FINITE NUCLEI
I I I |
i=1,2

0 Equation(14) gives the most general form of the residual
+(—W,—2B;+2H;+4M;)d;"] interaction in finite nuclei. Only a few terms contribute to the
+ Sosto(a+1)(a+ 2)pg, 1% isovector excitations of the even-even nuclei we are in-
terested in. First of all, only the isovector densities contrib-
ute. Next, the conditionAJ=1 andA == 0 between ground
state and excited states imply that the only terms in the en-
ergy functional that can contribute are quadratic in local ten-

f|’=i:212[—(2Hi+ M@ —(w;—2B,) ¥ ()]

+ 8j0zto(1+2x%0)pg , sor or vector parity-even densities/currents. As can be seen
from Table 2 in[20], all possible contributions are time odd.
g':igz [(2B,— Mi)\l,l(i)+(_wi+2Hi)ch(i)] One finally obtains
+8107to(1—2X0)pg » 5% A
Uredl1,12) = )(0'1'0'2)(71'72)

0814(r1) 8S1(T 2

| =— M PO+ WD)+ 50iteps,  (E2
9 i;,z( o (P T diodtops (£2 =[2Ci[pool 8(r1—r2)

where +1(CT—4C3%)(K'26(ry— 1) + 8(r1—1)K?)

p =132 3y 5 N A
2T Killoo +(3C{+4CTHK - 8(r,—ry)k]oy- 03710 7
_,sinh(2)

Of) = 7 2uiNoe ™ ———, —2iCY 7 (ot 0y) k' X 8(r 1)k,

wherek andk’ are defined in Appendix B. Since the cou-
pling constants depend only on the scalar isoscalar density
Poo, there are no rearrangement terms in the spin-isospin

) __[cosiz) sinh(z)
oY) =§7%%uiNge Z( .|

P =272, N,e 7 sinh(z)| = + 3| _ 3coshiz) channel of the residual interaction. Unsymmetrized proton-
z 7 z2 neutron matrix elements of this interaction are to be inserted
(E3)  into the QRPA equations as outlined in REFf1].
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