

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Experimental Prospects for Ονββ

Julieta Gruszko UNC Chapel Hill/TUNL NSF-DBD Project Scoping Workshop January 31, 2022

Outline

- The state of experimental searches for $0\nu\beta\beta$
- Near-term prospects:
 - Final results from MJD and CUORE
 - KamLAND-Zen 800, SNO+, and LEGEND-200
- Ton-scale prospects and beyond:
 - DOE-NP and the "big 3": CUPID, LEGEND-1000, and nEXO
 - Other large-scale efforts: NEXT, KamLAND2-Zen, SNO+/Theia

The State of Ovßß Searches

The State of Ονββ Searches

- Since 2014-2015, the P5 report and the DOE Long-Range Plan for Nuclear Science has listed development of a ton-scale 0vββ search as a top priority
- Many pathfinder/demonstrator experiments ran in the 2010's
 - 10's to 100's of kg of isotope
 - Half-life sensitivities up to 10²⁶ years
 - Some still taking data or nearing release of final results
- Collaborations were preparing for a "technology down-select," which was switched to a "portfolio review" in 2020-2021.

Summer 2021 Portfolio Review

- CUPID, LEGEND, and nEXO were invited to participate in a DOE-NP portfolio review in Summer 2021
- Site decision will proceed separately
- All 3 collaborations presented baseline design, budget, and schedule information; all have publicly-available pre-Conceptual Design Reports on the arXiv
- Outcome of the portfolio review:
 - The DOE considers LEGEND and nEXO "large ton-scale projects," CUPID is smaller in terms
 of both isotope mass and cost
 - The DOE is seeking international partners to support multiple ton-scale experiments
 - Collaborations have been encouraged to seek CD-1 approval in the next 6 months; early R&D funds available
 - Timeline depends on funding, but a technically-driven schedule would lead to early data in 2026 or 2027

A Rich Experimental Landscape

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status	
CANDLES	⁴⁸ Ca	305 kg CaF2 crystals - liq. scint	0.3 kg	Operating	
CARVEL	⁴⁸ Ca	⁴⁸ CaWO ₄ crystal scint.	16 kg	R&D	
GERDA I	⁷⁶ Ge	Ge diodes in LAr	15 kg	Complete	Completed enr. detector
GERDA II	⁷⁶ Ge	Point contact Ge in active LAr	44 kg	Complete	data-taking in 2020
MAJORANA DEMONSTRATOR	⁷⁶ Ge	Point contact Ge in Lead	30 kg	Operating	
LEGEND 200	⁷⁶ Ge	Point contact Ge in active LAr	200 kg	Construction	
LEGEND 1000	⁷⁶ Ge	Point contact Ge in active LAr	1 tonne	R&D	
NEMO3	¹⁰⁰ Mo/ ⁸² Se	Foils with tracking	6.9 kg/0.9 kg	Complete	CLIPID-Mo also
SuperNEMO Demonstrator	⁸² Se	Foils with tracking	7 kg	Construction	
SELENA	⁸² Se	Se CCDs	<1 kg	R&D	published results
NvDEx	⁸² Se	SeF6 high pressure gas TPC	50 kg	R&D	
AMoRE	¹⁰⁰ Mo	CaMoO4 bolometers (+ scint.)	5 kg	Construction	
CUPID	¹⁰⁰ Mo	Scintillating Bolometers	250 kg	R&D	
COBRA	116Cd/130Te	CdZnTe detectors	10 kg	Operating	
CUORE-0	¹³⁰ Te	TeO ₂ Bolometer	11 kg	Complete	Water phase results and
CUORE	¹³⁰ Te	TeO ₂ Bolometer	206 kg	Operating	
SNO+	¹³⁰ Te	0.3% natTe in liquid scint.	800 kg	Construction	LS characterization
SNO+ Phase II	¹³⁰ Te	3% natTe in liquid scint.	8 tonnes	R&D	nublished Te loading
KamLAND-Zen 400	¹³⁶ Xe	2.7% in liquid scint.	370 kg	Complete	published, le lodding
KamLAND-Zen 800	136Xe	2.7% in liquid scint.	750 kg	Operating	underway
KamLAND2-ZEN	¹³⁶ Xe	2.7% in liquid scint.	~tonne	R&D	
EXO-200	¹³⁶ Xe	Xe liquid TPC	160 kg	Complete	
nEXO	¹³⁶ Xe	Xe liquid TPC	5 tonnes	R&D	
NEXT-WHITE	¹³⁶ Xe	High pressure GXe TPC	~5 kg	Operating	Post-upgrade results
NEXT-100	¹³⁶ Xe	High pressure GXe TPC	100 kg	Construction	
PandaX	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D	expected soon
DARWIN	¹³⁶ Xe	Xe liquid TPC	3.5 tonnes	R&D	
AXEL	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D	
DCBA	¹⁵⁰ Nd	Nd foils & tracking chambers	30 kg	R&D	
R&D	Constru	Operating	Complete		6

Interpretation of Half-Life Sensitivity

TH CAROLINA

• Half-life limits are interpreted in the light Majorana neutrino exchange model

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} g_A^4 \left(M_{0\nu} + \frac{g_{\nu}^{NN} m_{\pi}^2}{g_A^2} M_{0\nu}^{cont} \right)^2 m_{\beta\beta}^2$$

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

NSAC recommendation: quote a range of m_{BB} using the largest and smallest available NME from the 4 main calculation methods; $g_A=1.27$; no contribution from the contact term

Isotope	$\mathbf{Exposure} \ [\mathbf{kg-yr}]$	$T^{0 u}_{1/2}[{f 10}^{25}~{f yr}]$	$m_{etaeta}[{f meV}]$
$^{76}\mathrm{Ge}$	127.2	18	79 - 180
$^{76}\mathrm{Ge}$	26	2.7	200 - 433
$^{136}\mathrm{Xe}$	594	10.7	61-165
136 Xe	234.1	3.5	93 - 286
$^{130}\mathrm{Te}$	1038.4	2.2	90 - 305
	Isotope ⁷⁶ Ge ⁷⁶ Ge ¹³⁶ Xe ¹³⁶ Xe ¹³⁶ Te	Isotope Exposure [kg-yr] ⁷⁶ Ge 127.2 ⁷⁶ Ge 26 ¹³⁶ Xe 594 ¹³⁶ Xe 234.1 ¹³⁰ Te 1038.4	IsotopeExposure [kg-yr] $T_{1/2}^{0\nu}[10^{25} \text{ yr}]$ 76 Ge127.218 76 Ge262.7 136 Xe59410.7 136 Xe234.13.5 130 Te1038.42.2

Defining the Goal of Ton-Scale Searches

- THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
- Goals are defined in terms of discovery and exclusion sensitivities
- Discovery sensitivity: the smallest value of $m_{\beta\beta}$ for which an experiment has 50% probability of observing a signal at the 3 σ (99.7%) confidence level
- Exclusion sensitivity: the median 90% confidence level upper limit that an experiment will set on $m_{\beta\beta}$ assuming that $0\nu\beta\beta$ is not observable
- Goal of ton-scale experiments: discovery sensitivity covering the IO region for all matrix elements
 - Using PDG neutrino oscillation results, $(m_{etaeta}^{min})_{
 m IO} = 18.4 \pm 1.3 \, {
 m meV}$
 - Using latest NuFIT results, $(m^{min}_{\beta\beta})_{
 m IO}~=~18.6\pm1.2\,{
 m meV}$
 - Corresponds to 10²⁷-10²⁸ year half-life, depending on isotope

Discovery, Background, and Exposure

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Experimental Techniques

Most Experiments

Granular Detectors

- Bolometers and semiconductors
- E.g. CUPID, LEGEND

Advantages:

Advantages:

Staging

Energy resolution

- Self-shielding
- Scalability

Monolithic Detectors

- Scintillators and TPCs
- E.g. KamLAND-Zen, SNO+, THEIA, nEXO, NEXT

Ονββ Signal and Backgrounds

ββ decay:

1-10 mm

(external):

with electrons

• α, v, and n scatter off of nuclei

- dE/dx, etc.
- Tag the daughter atom

- I won't have time to go through all of the ongoing experiments, there are too many! I'll cover the largest efforts.
- The materials in these slides are courtesy of the various experimental collaborations

Near-Term Prospects

The Majorana Demonstrator

Searching for neutrinoless double-beta decay of ⁷⁶Ge in HPGe detectors and additional physics beyond the standard model

Source & Detector: Array of p-type, point contact (PPC) detectors 29.7 kg of 88% enriched ⁷⁶Ge crystals

Best Energy resolution: 2.5 keV FWHM @ 2039 keV

Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials like UGEFCu

Full enriched data set results expected in Spring 2022: 65 kg yr exposure

Operating underground at the 4850' level of the Sanford Underground Research Facility since 2015

CUORE

- 988 natural-abundance TeO₂ crystals operated as bolometers
- 742 kg of detectors, 206 kg of ¹³⁰Te
- Taking data since 2017
- 90% of backgrounds from degraded α particles
- 2021 Results: $T_{1/2}$ > 2.2 × 10²⁵ yr, $m_{\beta\beta}$ > 90 305 meV
- Will continue to take data until CUPID begins

KamLAND-Zen 800

- KamLAND-Zen 400: 2011-2014
 - Phase I: 320 kg 90% enriched ¹³⁶Xe
 - Phase II: 380 kg
 - $T_{1/2} > 1.07 \times 10^{26}$ yr, $m_{\beta\beta} < 61-165$ meV
- KamLAND-Zen 800:
 - Data-taking began in January 2019
 - Scintillator purification campaign
 - Larger, cleaner inner balloon
 - 750 kg enriched ¹³⁶Xe
- First combined results expected in the next 1-2 months; should reach into IO band

SNO+

- Ultra-pure water Cherenkov phase completed
 - Solar neutrino and BSM physics results released
- Unloaded liquid scintillator phase completed, scintillator characterized
- Tellurium loading underway @ 0.3%
 - Expected loading: 800 kg of ¹³⁰Te
- Expected 5 year sensitivity:

 $T_{1/2}$ > 9×10²⁵ yrs , m_{$\beta\beta$} < 55 – 133 meV

LEGEND-200

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- 200 kg of HPGe ICPC detectors enriched to 91% ⁷⁶Ge, operated in active LAr shield
- Upgrade of GERDA infrastructure
- >2.5x background reduction relative to GERDA expected
- Construction and commissioning underway, full detector deployment expected this year
- Final expected sensitivity: $T_{1/2} > 1 \times 10^{27}$ yrs

Ton-Scale Prospects

The CUPID Concept

- Upgrade of CUORE cryostat with scintillating bolometer technique demonstrated in CUPID-Mo and other experiments
- Baseline crystal: Li₂MoO₄ with >95% enrichment in ¹⁰⁰Mo
- Scintillation light allows for $\boldsymbol{\alpha}$ rejection
- ¹⁰⁰Mo 0vββ Q-value is higher in energy than most other backgrounds
- Other options for crystal/isotope: ZnSe (candidate ⁸²Se), CdWO₄ (candidate ¹¹⁶Cd), and TeO₂ (candidate ¹³⁰Te)
- Projected discovery sensitivity: $T_{1/2}$ > 1.1 x 10^{27} yr, $m_{\beta\beta}$ > 12 20 meV

Parameter	Baseline
Crystal	Li_2MoO_4
Crystal size	$\oslash 50 \text{ mm} imes \text{ h50 mm}$
Crystal mass (g)	308
Number of crystals	1534
Number of light detectors	1652
Detector mass (kg)	472
100 Mo mass (kg)	253
Energy resolution FWHM (keV)	5
Background index (counts/(keV·kg·yr))	10^{-4}
Containment efficiency	79%
Selection efficiency	90%
Livetime	10 years
Half-life limit sensitivity (90%) C.L.	$1.5 imes 10^{27} { m y}$
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} \text{ y}$
$m_{\beta\beta}$ limit sensitivity (90%) C.L.	$10-17~{ m meV}$
m_{etaeta} discovery sensitivity (3 σ)	$12-20~{ m meV}$

CUPID Improvements and Future Upgrades

Parameter	CUPID Baseline	CUPID-reach	CUPID-1T
Crystal	${\rm Li_2^{100}MoO_4}$	${\rm Li_2}^{100}{\rm MoO_4}$	${\rm Li_2^{100}MoO_4}$
Detector mass (kg)	472	472	1871
100 Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index $(counts/(keV \cdot kg \cdot yr))$	10^{-4}	$2 imes 10^{-5}$	$5 imes 10^{-6}$
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 imes 10^{27} { m y}$	$2.3 imes 10^{27} { m y}$	$9.2 imes 10^{27} { m y}$
Half-life discovery sensitivity (3σ)	$1.1 imes 10^{27} { m y}$	$2 imes 10^{27} { m y}$	$8 imes 10^{27} { m y}$
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	1017 meV	8.214 meV	$4.1–\!-\!6.8~{\rm MeV}$
$m_{\beta\beta}$ discovery sensitivity (3 σ)	$1220~\mathrm{meV}$	$8.815~\mathrm{meV}$	$4.47.3~\mathrm{meV}$

CUPID pre-CDR: exactly what we could start building today: 10⁻⁴ counts/keV/kg/yr

CUPID reach: assume improvement at reach before construction: 2.10⁻⁵ counts/keV/kg/yr CUPID 1Ton: new, 4 times larger (in volume) cryostat, 1 ton 100Mo : 5·10⁻⁶ counts/keV/kg/yr

The LEGEND-1000 Concept

- New cryostat either at LNGS or SNOLAB; 4 independent payloads with depleted UAr in inner volumes
- 1000 kg of enriched Ge detectors: fabricate 870 kg of new detectors; use 130 kg from LEGEND-200; recycle 50 kg of small detectors
- Multi-dimensional analysis nearly eliminates $\gamma,$ surface α and β backgrounds
- LEGEND goal: BI < 1x10⁻⁵ cnts/keV kg yr

LEGEND-1000 Discovery Sensitivity

- Additional mass can be loaded in L-1000 cryostat
- Projected BI is upper limit

Parameter	Value				
Performance Parameters					
$0\nu\beta\beta$ decay isotope	$^{76}\mathrm{Ge}$				
Q_{etaeta}	$2039 \ \mathrm{keV}$				
Total mass	1000 kg				
Energy resolution at $Q_{\beta\beta}$	2.5 keV FWHM				
Overall signal acceptance ^a	0.69				
Live time goal	10 yr				
Total exposure goal	10 tyr				
Background goal	$<1\times10^{-5}{\rm cts}/({\rm keVkgyr})$				
	$< 0.025\mathrm{cts}/(\mathrm{FWHMtyr})$				
$T_{1/2}^{0 u}$	$1.3\times 10^{28}{\rm yr}$ (99.7% CL discovery)				
	$1.6 \times 10^{28} \mathrm{yr}$ (90% CL sensitivity)				
m_{etaeta}	$9.4{-}21.4\mathrm{meV}$ (99.7% CL discovery)				
	$8.519.4\mathrm{meV}$ (90% CL sensitivity)				
Physics Parameters					
$M_{0 u}$	2.66-6.04 28, 37				
$G_{0 u}$	$2.363 imes 10^{-15} / { m yr}$ [22]				
g_A	1.2724				

The nEXO Concept

nEXO Conceptual Design

- Large single-phase LXe TPC: 4811 kg of enriched Xe
- Take advantage of self-shielding, (nonbinary) fiducialization, and event topology information to reduce backgrounds

Slides provided by the EXO-200 and nEXO Collaborations, from D. Moore

nEXO Sensitivity Projection

Discovery potential: $T_{1/2} > 0.74 \times 10^{28}$ yr , $m_{BB} < 6 - 27$ meV

nEXO Collaboration, Phys. Rev. C 97, 065503 (2018)

Matrix Elements and the "Big 3"

- All 3 experiments cover the IO for some matrix elements, and miss for others
- Larger background = more difference between discovery and exclusion

TABLE I. Nuclear matrix elements M for $0\nu\beta\beta$ decay mediated by light neutrinos, calculated with the NSM, QRPA, EDF, and IBM methods. The ranges correspond to the minimum and maximum values obtained with the same manybody method.

	Ref.	$^{76}\mathrm{Ge}$	100 Mo	$^{136}\mathrm{Xe}$
NSM	[35]	2.89, 3.07	_	2.28, 2.45
	[<mark>36</mark>]	3.37, 3.57	_	1.63, 1.76
	[37]	2.66	_	2.39
	All	2.66 - 3.57	_	1.63 - 2.45
	[38]	5.09	-	1.55
	[39]	5.26	3.90	2.91
QRPA	[40]	4.85	5.87	2.72
	[41]	3.12, 3.40	_	1.11, 1.18
	[42]	_	_	3.38
	All	3.12 - 5.26	3.90 - 5.87	1.11 - 3.38
EDF	[43]	4.60	5.08	4.20
	[44]	5.55	6.59	4.77
	[45]	6.04	6.48	4.24
	All	4.60 - 6.04	5.08 - 6.59	4.20 - 4.77
IBM	$[46]^{a}$	5.14	3.84	3.25
	[47]	6.34	5.08	3.40
	All	5.14 - 6.34	3.84 - 5.08	3.25 - 3.40

From Agostini et al., PRC 104, L042501 (2021)

26

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

NEXT

20

-20

۲ (mm)

Slides courtesy of the NEXT Collaboration, from R. Guenette

High-pressure gas Xenon time projection chamber:

- High pressure reduces volume for a given mass
- Energy resolution is intrinsically better in gas
- Extensive event topology information, fiducialization, and particle ID
- Ba tagging may be easier in gas

NEXT-100 expected to start operation in 2022

KamLAND2-Zen

- New PMTs, brighter scintillator, and Winston cones
- New lower-noise electronics and trigger
- 5x increase in light collection: improves energy resolution by at least a factor of two
- Higher loading and scintillating balloon film
- Expected to cover the IO region

Future prospects on KamLAND

 $\frac{4\% \rightarrow 2\%}{\times 1.8}$ • High light emission LS × 1.4
• High Q.E. 20"PMT or HPD (QE ~22% →>30%, 17"→20") × 1.9

Energy resolution at 2.6MeV

Dead layer free scintillation film balloon

New electronics and trigger

Target sensitivity ~20meV by 5years Cover inverted hierarchy region !

Masayuki Koga

Theia Multi-Purpose Detector Concept

- Self-shielding, fiducialization
- Interior materials can be made extremely pure
- Pursuing R&D for additional event topology and particle ID
- Multi-purpose detector
- Measurement with and without isotope is possible

Slides courtesy of the SNO and Theia Collaborations, from C. Grant and R. Svoboda

SNO+ and Theia

- Higher Te loadings planned for SNO+
- Theia is considering ^{enr}Xe or ^{nat}Te loading options:

$$\begin{split} \mathbf{Te}: \ T_{1/2}^{0\nu\beta\beta} &> 1.1\times 10^{28} \ \mathrm{y}, \ m_{\beta\beta} < 6.3 \ \mathrm{meV} \\ \mathbf{Xe}: \ T_{1/2}^{0\nu\beta\beta} &> 2.0\times 10^{28} \ \mathrm{y}, \ m_{\beta\beta} < 5.6 \ \mathrm{meV} \end{split}$$

Eur. Phys. J. C (2020) 80:416

Conclusion

Discovery Sensitivity for the "Big 3"

- Near-term results will start to probe the IO region, and the coming generation of 0vββ experiments will fully explore it
- 2 to 3 ton-scale experiments are expected to begin construction in the coming years
- R&D is underway to reach smaller $m_{\beta\beta}$; Snowmass process will focus on these beyond-the-ton-scale efforts
- Discovery could come at any time!
- In the next decade, we may need to be able to meaningfully compare 0vββ signals between ¹⁰⁰Mo-, ¹³⁶Xe-, and ⁷⁶Gebased experiments

Questions?