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The Problem

VIEWPOINT

The Hunt for No Neutrinos
Four experiments have demonstrated new levels of sensitivity to neutrinoless double-beta
decay, a process whose existence would prove that neutrinos are their own antiparticles.

by Jonathan Engel∗ and Petr Vogel†

T he search for physics beyond the standard
model—our current best description of funda-
mental particles and the interactions between
them—is a top priority at high-energy particle

accelerators. But researchers are also searching for new
physics in the “low-energy” environment of the nucleus
through a process known as neutrinoless double-beta
(0νββ) decay. This hypothetical decay would show that
neutrinos are their own antiparticles and that a fundamental
law—the conservation of lepton number—is violated in
nature. It would also explain why neutrinos are so light.
Four experimental collaborations [1–4] are reporting new
lower limits on the decay’s half-life, all of which exceed
1025 years. Several of these experiments should reach the
1026 level soon, thus catching up with a fifth experiment [5].
These new results invite a discussion of why detecting 0νββ
decay is of interest and what physicists might learn as the
experiments become more sensitive.

A striking feature of neutrinos is their extremely small
mass. The particles, which exist in three possible mass states,
are about 106 times lighter than the next lightest fermion, the
electron. This vast discrepancy suggests that the origin of
neutrino mass is different from that of all other fermions, in-
volving physics that goes beyond the standard model. Most
such extensions of the model say that the neutrinos are Ma-
jorana particles—meaning they are their own antiparticles.
These theories explain the light neutrino masses as being
inversely proportional to a large mass scale set by other par-
ticles that have yet to be seen.

Now if neutrinos are Majorana particles, then they violate
the conservation of lepton number—the quantum number
that is assigned to all leptons and is 1 for electrons and
neutrinos and −1 for their respective antiparticles. In the
process of two-neutrino beta decay (Fig. 1, left), which is al-
lowed in certain isotopes, two neutrons transform into two
protons plus two electrons and two antineutrinos. Lepton
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Figure 1: ‘‘Two-neutrino’’ double-beta decay (left) is allowed in
certain isotopes and involves the transformation of two neutrons
into two protons, two electrons, and two antineutrinos. If neutrinos
are Majorana particles then a neutrinoless form of this double-beta
decay should be allowed. Different models for the decay describe
it in terms of the creation and destruction of a Majorana neutrino
(center) or of an unknown heavier particle (right). (APS/Alan
Stonebraker)

number is therefore conserved because the electrons and an-
tineutrinos have opposite lepton number. But if neutrinos
are Majorana particles, double-beta decay can occur without
the emission of antineutrinos, meaning the lepton number
changes by 2.

Various mechanisms for this neutrinoless process are pos-
sible. They involve the creation and destruction of either a
virtual Majorana neutrino (Fig. 1, center) or of some new
heavy particle (Fig. 1, right). If nature chooses the first
scenario (virtual Majorana neutrinos), the decay rate is pro-
portional to the square of a mass called mββ, which is a
weighted average of the masses of the three neutrino mass
states. If nature prefers the second option (heavy particles),
the relation between the decay rate and neutrino masses is
more complicated. But detecting the decay, no matter which
mechanism causes it, would tell us that neutrinos are Ma-
jorana particles and that there are new particles allowing
the nonconservation of lepton number. The discovery that
lepton number isn’t conserved might also point physicists
toward an explanation for the observed asymmetry between
matter and antimatter.

The four experiments all determine the decay half-life (the
inverse of the decay rate) in roughly the same way: by moni-
toring a large number of atoms of a given double-beta decay

physics.aps.org c© 2018 American Physical Society 26 March 2018 Physics 11, 30

Rate depends on squares of unknown nuclear matrix elements. We
need to compute them and assign a believable uncertainty so that
experimentalists can

1. plan their experiments
2. draw conclusions from their results



EFT
Example: Light-ν Exchange at Leading Order
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short-range exchange at energies
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Constant in front now estimated.
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EFT
N2LO

Corrections of order 10% to standard diagram:
8
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FIG. 3. Loop diagrams contributing to an effective npnpe−e− vertex.

FIG. 4. Diagrams in the low-energy nuclear EFT contributing to the matching at N2LO. The gray circle
denotes an insertion of the LO strong potential of Eq. (11). The gray box denotes an insertion of the LO
∆L = 2 potential Vν,0. The remaining notation is as in Fig. 1.

In the literature, the dipole parameterization of the vector and axial form factors is often used

gV (q2) =

(
1 +

q2

Λ2
V

)−2

, gA(q2) =

(
1 +

q2

Λ2
A

)−2

, (16)

with vector and axial masses ΛV = 850 MeV and ΛA = 1040 MeV. The magnetic and induced
pseudoscalar form factors are then assumed to be given by

gM (q2) = (1 + κ1)gV (q2), gP (q2) = −2mNgA(q2)

q2 +m2
π

, (17)

where κ1 = 3.7 is the nucleon isovector anomalous magnetic moment. Expanding Eqs. (16) and
(17) for small |q|, one recovers the LO and, for gA(q2), the N2LO χPT expressions of the nucleon
form factors. In the case of gV , gP and gM , the N2LO χPT results, given for example in Ref. [50],
deviate from Eqs. (16) and (17). However, any parameterization that satisfactorily describes the
observed nucleon form factors can be used in the neutrino potential (14).

The potential Vν,2 is induced by one-loop diagrams with a virtual neutrino and pions contribut-
ing to nn → ppee, built out of the leading interactions of Eqs. (8). They can be separated into

Size of effects confirmed in QMC calculations. Some coefficients still undetermined.



EFT
More. . .

EFT treatment of decay mediated by heavy-particle exchange

Examination of effects of sterile neutrinos

Synthesis of all possible operators and phase-space factors
through “master formula”

...



Lattice QCD and Determination of Coefficient in χEFT
Heavy-Particle Exchange

Effective field theory lists pion-nucleon-level operators and de-
termines their importance.

Lattice QCD can compute dependence of blobs on new particle
masses and couplings.

n p

n p

π

π

e

e

n p

n p

π

e
e

n p

n p

e
e

n p

n p

e-

e-

~gA

π-

π+

e-

d u

e-

d u

_

_

π-

π+

This is the matrix element we 
need to calculate using LQCD 
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Lattice QCD
Light-ν Exchange

Need

Development of good two-nucleon operators (needed for
heavy-particle exchange as well). Lots of activity here.

Good treatment of massless fermions on lattice. QED effects
can be studied to test methods.

Lattice χEFT for matching finite-volume LQCD results.

Lots of progress, but some of this is still a ways off.
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Lattice QCD
Related Development

Precise Estimate of gA



Interlude: Light-ν Exchange in a Nucleus

[T0ν
1/2]
−1 = G(Z,N) |M0ν |2 m̄2

ν

M0ν = MGT
0ν −

g2
V
g2
A
MF

0ν +M
contact
0ν + . . .

with (at leading order in χEFT)

MGT
0ν = 〈F |

∑
i, j
H(rij) σ i · σ j τ

+
i τ

+
j |I 〉 + . . .

MF
0ν =〈F |

∑
i, j
H(rij) τ+i τ

+
j |I 〉 + . . .

H(r) ≈ 2R
πr

∫ ∞

0
dq sin qr
q − (Ei + Ef)/2

roughly ∝ 1/r

Corrections are from “tensor” term. Higher-order terms in χEFT also add stuff.



Explorations in Light Nuclei
gA Quenching, Etc.

Quantum Monte Carlo
LettersNaTUre PHySicS

approximates both 100Sn and its 100In daughter as a single shell-
model configuration, reveals the influence of correlations among the 
nucleons. The full symbols include 2BCs, using consistent couplings 
as in the employed EFT interactions. Finally, the partially filled 
symbols in Fig. 1 represent results from other models from ref. 20,  
where the standard Gamow–Teller operator has been multiplied by 
a quenching factor of q ≈ 0.75.

Based on the results shown in Fig. 1, we predict the range 
. ≲ ∣ ∣ ≲ .M5 2(5) 7 0(7)GT

2  for the Gamow–Teller strength. This range 
overlaps with the evaluation in ref. 25, based on systematic experi-
mental trends in tin isotopes, and the lower end of the measurement 
in ref. 20. The quenching factor we obtain from 2BCs depends some-
what on the employed Hamiltonian and is in the range q2BC = 0.73–
0.85. This range is consistent with the value q = 0.75(2) from ref. 25.  
In the present work we used the spread of results obtained with 
the selected set of EFT interactions and 2BCs as an estimate of 
the systematic uncertainty. A more thorough quantification of the 
uncertainties associated with the many-body methods and EFT 
truncations is beyond the scope of this work, and will be addressed 
in future studies. We note that neglected higher-order correlations 
in our coupled-cluster approach will further reduce the Gamow–
Teller strength (see Supplementary Information for details).

Moreover, we observe that the spread for the 100Sn Gamow–Teller 
strength obtained for the family of EFT interactions used here is sig-
nificantly reduced (by a factor two) when 2BCs are included. This 
is consistent with ideas from EFT that the residual cutoff depen-
dence is due to neglected higher-order terms in the Hamiltonian 
and 2BCs. In addition, we find that the relative contributions to the 
quenching of the Gamow–Teller strength coming from correlations 

and 2BCs vary as a function of the resolution scale of the underlying 
EFT interactions.

Starting from the extreme single-particle model, and adding first 
correlations and then the effects of 2BC, we find that the quench-
ing from correlations typically increases with increasing resolution 
scale of the interaction, and that most of the quenching stems from 
correlations. However, adding first the effects of the 2BCs and then 
the correlations shows that the quenching from 2BCs increases with 
decreasing resolution scale and that most of the quenching stems 
from 2BCs for all but the ‘hardest’ potentials considered in this work 
(see Supplementary Fig. 6 for details).

For a comprehensive study, we now turn to β-decays of light- and 
medium-mass nuclei. Using a selection of the EFT interactions and 
2BCs adopted for 100Sn, we achieved an overall good description of 
β-decays in light nuclei. Figure 2 shows theory-to-experiment ratios 
for large Gamow–Teller transitions in light nuclei. Here, we high-
light the results obtained for the high-precision NN-N4LO + 3Nlnl 
interaction and corresponding 2BCs developed in this work. As 
detailed in the Methods, the 2BCs and three-nucleon forces 3Nlnl 
are parametrized consistently and are constrained to reproduce the 
empirical value of the triton β-decay half-life. Our calculations were 
carried out with the no-core shell model (NCSM)6, a virtually exact 
treatment of correlations in the nuclear wavefunctions (see Methods 
for details). The role of 2BCs is relatively small in light nuclei with 
mass numbers A ≤ 7. Full nuclear wavefunctions already provide a 
rather satisfactory description of the transitions with the standard 
Gamow–Teller operator. Furthermore, the inclusion of 2BCs may 
enhance (for example, 8He → 8Li), quench (for example, →Be Li7 3

2

7 1
2
),  

or have virtually no impact on the computed transition (for exam-
ple, →Be Li7 3

2

7 3
2
; see also Supplementary Fig. 13). The small role 
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Fig. 1 | Gamow–Teller strength in 100Sn. Comparison of the Gamow–Teller 
strength |MGT|2 for the β-decay of 100Sn calculated in this work compared 
to data20, systematics25 and other models (extreme single-particle model 
(ESPM), shell-model Monte-Carlo (SMMC), large-space shell-model 
(LSSM), quasiparticle random-phase approximation (QRPA) and finite 
Fermi systems (FFS)) from ref. 20. Open symbols represent results obtained 
with the standard Gamow–Teller operator (στ), filled symbols also include 
two-body currents (2BCs) and partially filled symbols show values 
following from the multiplication of the computed Gamow–Teller strength 
by the square of a phenomenological quenching factor. Each of our 100Sn 
calculations carries a conservatively estimated uncertainty of about 10% 
(not shown to avoid overcrowding the figure).
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Fig. 2 | Gamow–Teller strengths in light nuclei. Theory-to-experiment 
ratio for the Gamow–Teller matrix elements of six strong transitions in 
light nuclei for the NN-N4LO + 3Nlnl interaction developed in this work. 
The subscripts in the legend denote the total angular momenta of the 
parent and daughter states. All initial states are ground states. In the case 
of 3H → 3He, 6He → 6Li and →Be Li7 7

3
2

, the daughter nucleus is in its ground 

state, while the →Be Li7 7
1
2

, 8He → 8Li1 and 10C → 10B1 are decays to the first 

excited state of the daughter nucleus, and the 14O → 14N1 is a decay to the 
second excited state of 14N. Open symbols correspond to results obtained 
with the standard Gamow–Teller στ operator, and full symbols include 
2BCs. The results are converged to within 3% with respect to the model-
space size. This uncertainty is slightly larger than the marker size and is not 
shown for transparency.
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OK, 100Sn is not so light. . .

In-Medium SRG (not us)
Letters NaTUre PHySicS

of 2BCs in A ≤ 7 nuclei is similar to what was found in the Green’s 
function Monte Carlo calculations of ref. 26. We find a rather sub-
stantial enhancement of the 8He Gamow–Teller matrix element due 
to the 2BC. Let us mention, though, that this transition matrix ele-
ment is the smallest of those presented in Fig. 2. We note that, for the 
other Hamiltonians employed in this work, the 2BCs and 3N were 
not fit to reproduce the triton half-life; nevertheless, the inclusion of 
2BCs for most of these cases also improves the agreement with data 
for the light nuclei considered in Fig. 2 (see Supplementary Fig. 9 
for results obtained with NNLOsat and NN-N3LO + 3Nlnl). The case 
of 10C is special because the computed Gamow–Teller transition is 
very sensitive to the structure of the Jπ = 1+ state in the 10B daughter 
nucleus. Depending on the employed interaction, this state can mix 
with a higher-lying 1+ state, greatly impacting the precise value of 
this transition. We finally note that benchmark calculations between 

the many-body methods used in this work agree to within 5% for 
the large transition in 14O. For smaller transitions discrepancies can 
be larger (see Supplementary Information for details).

Historically, the most extensive evidence for the quenching 
of Gamow–Teller β-decay strength comes from medium-mass 
nuclei14,16,27, and we now show that our calculations with these 
consistent Hamiltonians and currents largely solve the puzzle here 
as well. We use the valence-space in-medium similarity renor-
malization group (VS-IMSRG) method8 (see Methods for details) 
and compute Gamow–Teller decays for nuclei in the mass range 
between oxygen and calcium (referred to as sd-shell nuclei) and 
between calcium and vanadium (lower pf-shell nuclei), focusing on 
strong transitions. Here, we highlight the NN-N4LO + 3Nlnl interac-
tion and corresponding 2BCs.

Figure 3 shows the empirical values of the Gamow–Teller tran-
sition matrix elements versus the corresponding unquenched 
theoretical matrix elements obtained from the phenomenological 
shell model with the standard Gamow–Teller στ operator and the 
first-principles VS-IMSRG calculations. Perfect agreement between 
theory and experiment is denoted by the diagonal dashed line. The 
results from the phenomenological shell model clearly exemplify 
the state of theoretical calculations for decades13–16,27; as an example, 
in the sd-shell shell, a quenching factor of q ≈ 0.8 is needed to bring 
the theory into agreement with experiment14. The VS-IMSRG cal-
culations without 2BCs (not shown) exhibit a modest improvement, 
with a corresponding quenching factor of 0.89(4) for sd-shell nuclei 
and 0.85(3) for pf-shell nuclei, pointing to the importance of con-
sistent valence-space wavefunctions and operators (Supplementary 
Fig. 10). As in 100Sn, the inclusion of 2BCs yields an additional 
quenching of the theoretical matrix elements, and the linear fit of 
our results lies close to the dashed line, meaning our theoretical pre-
dictions agree, on average, with experimental values across a large 
number of medium-mass nuclei.

Another approach often used in the investigation of Gamow–
Teller quenching is the Ikeda sum-rule: the difference between the 
total integrated β− and β+ strengths obtained with the στ∓ operator 
yields the model-independent sum-rule 3(N – Z). We have com-
puted the Ikeda sum-rule for 14O, 48Ca and 90Zr using the coupled-
cluster method (see Methods for details). For the family of EFT 
Hamiltonians used for 100Sn we obtain a quenching factor aris-
ing from 2BCs that is consistent with our results shown in Fig. 3  
and the shell-model analyses from refs. 14–16,27. (Supplementary 
Fig. 7). We note that the comparison with experimental sum-rule 
tests using charge-exchange reactions28,29 is complicated by the 
use of a hadronic probe, which only corresponds to the leading 
weak one-body operator, and by the challenge of extracting all 
strength to high energies. Here, our developments enable future 
direct comparisons.

It is the combined proper treatment of strong nuclear correla-
tions with powerful quantum many-body solvers and the consis-
tency between 2BCs and three-nucleon forces that largely explains 
the quenching puzzle. Smaller corrections are still expected to 
arise from neglected higher-order contributions to currents and 
Hamiltonians in the EFT approach we pursued, and from neglected 
correlations in the nuclear wavefunctions. For beyond-standard-
model searches of new physics such as neutrino-less double-β-
decay, our work suggests that a complete and consistent calculation 
without a phenomenological quenching of the axial-vector coupling 
gA is called for. This Letter opens the door to ab initio calculations of 
weak interactions across the nuclear chart and in stars.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-019-0450-7.
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Fig. 3 | Gamow–Teller strengths in medium-mass nuclei. Comparison 
of experimental30 and theoretical Gamow–Teller matrix elements for 
medium-mass nuclei. a,b, Plots of Gamow–Teller matrix elements: sd-
shell (a) and lower pf-shell (b). Theoretical results were obtained using 
phenomenological shell-model interactions16,31 with an unquenched 
standard Gamow–Teller στ operator (open orange squares), and using the 
VS-IMSRG approach with the NN-N4LO + 3Nlnl interaction and consistently 
evolved Gamow–Teller operator plus 2BCs (filled green diamonds). The 
linear fits show the resulting quenching factor q given in the panels, and 
shaded bands indicate one standard deviation from the average quenching 
factor. Experimental uncertainties, taken from ref. 30, are shown as vertical 
error bars.
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100Sn in Coupled Clusters

|MGT|2

P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris, P. Navrátil,, T. Papenbrock, 
S. Quaglioni, A. Schwenk, S. R. Stroberg, and K. A. Wendt, to be published Nature Physics (2019)

Resolving the quenching puzzle of ! decays: 100Sn
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FIG. 2. (a-b) Ratio of total amplitudes at different orders to the N4LO
result as a function of incoming and outgoing momentum, respec-
tively. (c-d) Relative difference between the amplitudes using the
LO operator and the operator containing beyond-LO corrections as a
function of incoming and outgoing momentum, respectively.

respectively.
Application to finite nuclei. While suitable for generating

the synthetic datum, a scattering state of neutrons is not ideal
for observing 0νββ decay in experiment. For that, we need to
move to finite nuclei for which the single-β decay is energeti-
cally forbidden. Due to the long lifetime any competing decay
would drown out the 0νββ-decay signal. A few candidate nu-
clei that fulfill this requirement have been identified, some of
which can even be used to build an active detector.

Previous calculations of the NME in finite nuclei only con-
sidered the long-range part of the operator. With the LEC of
the short-range part of the operator adjusted to the synthetic
datum, we can now calculate its effect and provide a first prop-
erly renormalized result. Here, we revisit our benchmark cal-
culations for light nuclei [33], as well as the candidate pair

Ca48 and Ti48 [21]. The interaction used in these studies is
the so-called EM1.8/2.0 [37], which consists of the EM inter-
action SRG-evolved to a scale λ = 1.8 fm−1 augmented by an
unevolved N2LO three-nucleon interaction. To estimate the
dependence of the NME on SRG scale and chiral order, we
additionally consider Hamiltonians based on the EM interac-
tion with a local-nonlocal 3N force [38], called “LNL” here,
one that combines the EMN N3LO with an N2LO 3N interac-
tion [39] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs for each of the NN interac-
tions are shown in table I.

The NME for finite nuclei is defined as

M0ν =
4πR
g2

A

〈 (Z + 2)A | ˆ̃VF + ˆ̃VGT + ˆ̃VT − 2g̃V̂S | ZA 〉 , (17)

with the empirical nuclear radius R = R0A1/3 and R0 = 1.2 fm.
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FIG. 3. The NMEs M0ν of isospin-conserving (∆T = 0) transition
He6 → Be6 , and isospin-nonconserving (∆T = 2) transitions He8 →
Be8 and Ca48 → Ti48 , calculated with different chiral nuclear forces

and with both long- and short-range transition operators.

The operator ˆ̃VT contains the tensor part of the decay operator.
With this definition, M0ν is dimensionless.

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [40]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for ∆T = 0 transition in He6 .
Transitions with ∆T = 2 have a node in the transition den-
sity that leads to a cancellation between short and long dis-
tances. This cancellation affects the long-range part more
strongly than the contact, leading to small overall NMEs and
relatively larger contributions of the contact term. Thus, the
contact increases the ∆T = 2 transition in He8 by 92 % to
172 %. Overall, SRG-transforming the ∆N2LOGO as well as
switching to the LNL Hamiltonian barely changes the NME.
Despite using the same NN interaction at a similar SRG scale
as the LNL, the EM1.8/2.0 produces systematically smaller
NMEs than the other interactions. The EMN + N3LO’ Hamil-
tonian yields a smaller NME in He6 than the LNL while the
He8 NME is larger. Both are driven by the long-range part,

the short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the lightest 0νββ-decay candidate nucleus Ca48 , the
short-range operator increases the NME by 37 % to 50 %.
With this contribution, the value of M0ν is 0.875(40) for Ca48

from the in-medium generator coordinate method (IM-GCM)
[21] calculation, the uncertainty of which is from the LEC g̃
of the short-range transition operator.
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respectively.
Application to finite nuclei. While suitable for generating

the synthetic datum, a scattering state of neutrons is not ideal
for observing 0νββ decay in experiment. For that, we need to
move to finite nuclei for which the single-β decay is energeti-
cally forbidden. Due to the long lifetime any competing decay
would drown out the 0νββ-decay signal. A few candidate nu-
clei that fulfill this requirement have been identified, some of
which can even be used to build an active detector.

Previous calculations of the NME in finite nuclei only con-
sidered the long-range part of the operator. With the LEC of
the short-range part of the operator adjusted to the synthetic
datum, we can now calculate its effect and provide a first prop-
erly renormalized result. Here, we revisit our benchmark cal-
culations for light nuclei [33], as well as the candidate pair

Ca48 and Ti48 [21]. The interaction used in these studies is
the so-called EM1.8/2.0 [37], which consists of the EM inter-
action SRG-evolved to a scale λ = 1.8 fm−1 augmented by an
unevolved N2LO three-nucleon interaction. To estimate the
dependence of the NME on SRG scale and chiral order, we
additionally consider Hamiltonians based on the EM interac-
tion with a local-nonlocal 3N force [38], called “LNL” here,
one that combines the EMN N3LO with an N2LO 3N interac-
tion [39] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs for each of the NN interac-
tions are shown in table I.

The NME for finite nuclei is defined as

M0ν =
4πR
g2

A

〈 (Z + 2)A | ˆ̃VF + ˆ̃VGT + ˆ̃VT − 2g̃V̂S | ZA 〉 , (17)

with the empirical nuclear radius R = R0A1/3 and R0 = 1.2 fm.
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and with both long- and short-range transition operators.

The operator ˆ̃VT contains the tensor part of the decay operator.
With this definition, M0ν is dimensionless.

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [40]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for ∆T = 0 transition in He6 .
Transitions with ∆T = 2 have a node in the transition den-
sity that leads to a cancellation between short and long dis-
tances. This cancellation affects the long-range part more
strongly than the contact, leading to small overall NMEs and
relatively larger contributions of the contact term. Thus, the
contact increases the ∆T = 2 transition in He8 by 92 % to
172 %. Overall, SRG-transforming the ∆N2LOGO as well as
switching to the LNL Hamiltonian barely changes the NME.
Despite using the same NN interaction at a similar SRG scale
as the LNL, the EM1.8/2.0 produces systematically smaller
NMEs than the other interactions. The EMN + N3LO’ Hamil-
tonian yields a smaller NME in He6 than the LNL while the
He8 NME is larger. Both are driven by the long-range part,

the short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the lightest 0νββ-decay candidate nucleus Ca48 , the
short-range operator increases the NME by 37 % to 50 %.
With this contribution, the value of M0ν is 0.875(40) for Ca48

from the in-medium generator coordinate method (IM-GCM)
[21] calculation, the uncertainty of which is from the LEC g̃
of the short-range transition operator.
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approximates both 100Sn and its 100In daughter as a single shell-
model configuration, reveals the influence of correlations among the 
nucleons. The full symbols include 2BCs, using consistent couplings 
as in the employed EFT interactions. Finally, the partially filled 
symbols in Fig. 1 represent results from other models from ref. 20,  
where the standard Gamow–Teller operator has been multiplied by 
a quenching factor of q ≈ 0.75.

Based on the results shown in Fig. 1, we predict the range 
. ≲ ∣ ∣ ≲ .M5 2(5) 7 0(7)GT

2  for the Gamow–Teller strength. This range 
overlaps with the evaluation in ref. 25, based on systematic experi-
mental trends in tin isotopes, and the lower end of the measurement 
in ref. 20. The quenching factor we obtain from 2BCs depends some-
what on the employed Hamiltonian and is in the range q2BC = 0.73–
0.85. This range is consistent with the value q = 0.75(2) from ref. 25.  
In the present work we used the spread of results obtained with 
the selected set of EFT interactions and 2BCs as an estimate of 
the systematic uncertainty. A more thorough quantification of the 
uncertainties associated with the many-body methods and EFT 
truncations is beyond the scope of this work, and will be addressed 
in future studies. We note that neglected higher-order correlations 
in our coupled-cluster approach will further reduce the Gamow–
Teller strength (see Supplementary Information for details).

Moreover, we observe that the spread for the 100Sn Gamow–Teller 
strength obtained for the family of EFT interactions used here is sig-
nificantly reduced (by a factor two) when 2BCs are included. This 
is consistent with ideas from EFT that the residual cutoff depen-
dence is due to neglected higher-order terms in the Hamiltonian 
and 2BCs. In addition, we find that the relative contributions to the 
quenching of the Gamow–Teller strength coming from correlations 

and 2BCs vary as a function of the resolution scale of the underlying 
EFT interactions.

Starting from the extreme single-particle model, and adding first 
correlations and then the effects of 2BC, we find that the quench-
ing from correlations typically increases with increasing resolution 
scale of the interaction, and that most of the quenching stems from 
correlations. However, adding first the effects of the 2BCs and then 
the correlations shows that the quenching from 2BCs increases with 
decreasing resolution scale and that most of the quenching stems 
from 2BCs for all but the ‘hardest’ potentials considered in this work 
(see Supplementary Fig. 6 for details).

For a comprehensive study, we now turn to β-decays of light- and 
medium-mass nuclei. Using a selection of the EFT interactions and 
2BCs adopted for 100Sn, we achieved an overall good description of 
β-decays in light nuclei. Figure 2 shows theory-to-experiment ratios 
for large Gamow–Teller transitions in light nuclei. Here, we high-
light the results obtained for the high-precision NN-N4LO + 3Nlnl 
interaction and corresponding 2BCs developed in this work. As 
detailed in the Methods, the 2BCs and three-nucleon forces 3Nlnl 
are parametrized consistently and are constrained to reproduce the 
empirical value of the triton β-decay half-life. Our calculations were 
carried out with the no-core shell model (NCSM)6, a virtually exact 
treatment of correlations in the nuclear wavefunctions (see Methods 
for details). The role of 2BCs is relatively small in light nuclei with 
mass numbers A ≤ 7. Full nuclear wavefunctions already provide a 
rather satisfactory description of the transitions with the standard 
Gamow–Teller operator. Furthermore, the inclusion of 2BCs may 
enhance (for example, 8He → 8Li), quench (for example, →Be Li7 3

2

7 1
2
),  

or have virtually no impact on the computed transition (for exam-
ple, →Be Li7 3

2

7 3
2
; see also Supplementary Fig. 13). The small role 
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Fig. 1 | Gamow–Teller strength in 100Sn. Comparison of the Gamow–Teller 
strength |MGT|2 for the β-decay of 100Sn calculated in this work compared 
to data20, systematics25 and other models (extreme single-particle model 
(ESPM), shell-model Monte-Carlo (SMMC), large-space shell-model 
(LSSM), quasiparticle random-phase approximation (QRPA) and finite 
Fermi systems (FFS)) from ref. 20. Open symbols represent results obtained 
with the standard Gamow–Teller operator (στ), filled symbols also include 
two-body currents (2BCs) and partially filled symbols show values 
following from the multiplication of the computed Gamow–Teller strength 
by the square of a phenomenological quenching factor. Each of our 100Sn 
calculations carries a conservatively estimated uncertainty of about 10% 
(not shown to avoid overcrowding the figure).

6He0
6Li1

8He0
8Li1

10C0
10B1

14O0
14N1

GT only

GT + 2BC

0.8 0.9 1.0

∣MGT∣ ratio to experiment

1.1

3H 1

2

3He 1

2

7Li 1

2

7Be 3

2

7Be 3

2

7Li 3

2

→

→

→

→

→

→

→

Fig. 2 | Gamow–Teller strengths in light nuclei. Theory-to-experiment 
ratio for the Gamow–Teller matrix elements of six strong transitions in 
light nuclei for the NN-N4LO + 3Nlnl interaction developed in this work. 
The subscripts in the legend denote the total angular momenta of the 
parent and daughter states. All initial states are ground states. In the case 
of 3H → 3He, 6He → 6Li and →Be Li7 7

3
2

, the daughter nucleus is in its ground 

state, while the →Be Li7 7
1
2

, 8He → 8Li1 and 10C → 10B1 are decays to the first 

excited state of the daughter nucleus, and the 14O → 14N1 is a decay to the 
second excited state of 14N. Open symbols correspond to results obtained 
with the standard Gamow–Teller στ operator, and full symbols include 
2BCs. The results are converged to within 3% with respect to the model-
space size. This uncertainty is slightly larger than the marker size and is not 
shown for transparency.
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of 2BCs in A ≤ 7 nuclei is similar to what was found in the Green’s 
function Monte Carlo calculations of ref. 26. We find a rather sub-
stantial enhancement of the 8He Gamow–Teller matrix element due 
to the 2BC. Let us mention, though, that this transition matrix ele-
ment is the smallest of those presented in Fig. 2. We note that, for the 
other Hamiltonians employed in this work, the 2BCs and 3N were 
not fit to reproduce the triton half-life; nevertheless, the inclusion of 
2BCs for most of these cases also improves the agreement with data 
for the light nuclei considered in Fig. 2 (see Supplementary Fig. 9 
for results obtained with NNLOsat and NN-N3LO + 3Nlnl). The case 
of 10C is special because the computed Gamow–Teller transition is 
very sensitive to the structure of the Jπ = 1+ state in the 10B daughter 
nucleus. Depending on the employed interaction, this state can mix 
with a higher-lying 1+ state, greatly impacting the precise value of 
this transition. We finally note that benchmark calculations between 

the many-body methods used in this work agree to within 5% for 
the large transition in 14O. For smaller transitions discrepancies can 
be larger (see Supplementary Information for details).

Historically, the most extensive evidence for the quenching 
of Gamow–Teller β-decay strength comes from medium-mass 
nuclei14,16,27, and we now show that our calculations with these 
consistent Hamiltonians and currents largely solve the puzzle here 
as well. We use the valence-space in-medium similarity renor-
malization group (VS-IMSRG) method8 (see Methods for details) 
and compute Gamow–Teller decays for nuclei in the mass range 
between oxygen and calcium (referred to as sd-shell nuclei) and 
between calcium and vanadium (lower pf-shell nuclei), focusing on 
strong transitions. Here, we highlight the NN-N4LO + 3Nlnl interac-
tion and corresponding 2BCs.

Figure 3 shows the empirical values of the Gamow–Teller tran-
sition matrix elements versus the corresponding unquenched 
theoretical matrix elements obtained from the phenomenological 
shell model with the standard Gamow–Teller στ operator and the 
first-principles VS-IMSRG calculations. Perfect agreement between 
theory and experiment is denoted by the diagonal dashed line. The 
results from the phenomenological shell model clearly exemplify 
the state of theoretical calculations for decades13–16,27; as an example, 
in the sd-shell shell, a quenching factor of q ≈ 0.8 is needed to bring 
the theory into agreement with experiment14. The VS-IMSRG cal-
culations without 2BCs (not shown) exhibit a modest improvement, 
with a corresponding quenching factor of 0.89(4) for sd-shell nuclei 
and 0.85(3) for pf-shell nuclei, pointing to the importance of con-
sistent valence-space wavefunctions and operators (Supplementary 
Fig. 10). As in 100Sn, the inclusion of 2BCs yields an additional 
quenching of the theoretical matrix elements, and the linear fit of 
our results lies close to the dashed line, meaning our theoretical pre-
dictions agree, on average, with experimental values across a large 
number of medium-mass nuclei.

Another approach often used in the investigation of Gamow–
Teller quenching is the Ikeda sum-rule: the difference between the 
total integrated β− and β+ strengths obtained with the στ∓ operator 
yields the model-independent sum-rule 3(N – Z). We have com-
puted the Ikeda sum-rule for 14O, 48Ca and 90Zr using the coupled-
cluster method (see Methods for details). For the family of EFT 
Hamiltonians used for 100Sn we obtain a quenching factor aris-
ing from 2BCs that is consistent with our results shown in Fig. 3  
and the shell-model analyses from refs. 14–16,27. (Supplementary 
Fig. 7). We note that the comparison with experimental sum-rule 
tests using charge-exchange reactions28,29 is complicated by the 
use of a hadronic probe, which only corresponds to the leading 
weak one-body operator, and by the challenge of extracting all 
strength to high energies. Here, our developments enable future 
direct comparisons.

It is the combined proper treatment of strong nuclear correla-
tions with powerful quantum many-body solvers and the consis-
tency between 2BCs and three-nucleon forces that largely explains 
the quenching puzzle. Smaller corrections are still expected to 
arise from neglected higher-order contributions to currents and 
Hamiltonians in the EFT approach we pursued, and from neglected 
correlations in the nuclear wavefunctions. For beyond-standard-
model searches of new physics such as neutrino-less double-β-
decay, our work suggests that a complete and consistent calculation 
without a phenomenological quenching of the axial-vector coupling 
gA is called for. This Letter opens the door to ab initio calculations of 
weak interactions across the nuclear chart and in stars.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-019-0450-7.
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FIG. 2. (a-b) Ratio of total amplitudes at different orders to the N4LO
result as a function of incoming and outgoing momentum, respec-
tively. (c-d) Relative difference between the amplitudes using the
LO operator and the operator containing beyond-LO corrections as a
function of incoming and outgoing momentum, respectively.

respectively.
Application to finite nuclei. While suitable for generating

the synthetic datum, a scattering state of neutrons is not ideal
for observing 0νββ decay in experiment. For that, we need to
move to finite nuclei for which the single-β decay is energeti-
cally forbidden. Due to the long lifetime any competing decay
would drown out the 0νββ-decay signal. A few candidate nu-
clei that fulfill this requirement have been identified, some of
which can even be used to build an active detector.

Previous calculations of the NME in finite nuclei only con-
sidered the long-range part of the operator. With the LEC of
the short-range part of the operator adjusted to the synthetic
datum, we can now calculate its effect and provide a first prop-
erly renormalized result. Here, we revisit our benchmark cal-
culations for light nuclei [33], as well as the candidate pair

Ca48 and Ti48 [21]. The interaction used in these studies is
the so-called EM1.8/2.0 [37], which consists of the EM inter-
action SRG-evolved to a scale λ = 1.8 fm−1 augmented by an
unevolved N2LO three-nucleon interaction. To estimate the
dependence of the NME on SRG scale and chiral order, we
additionally consider Hamiltonians based on the EM interac-
tion with a local-nonlocal 3N force [38], called “LNL” here,
one that combines the EMN N3LO with an N2LO 3N interac-
tion [39] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs for each of the NN interac-
tions are shown in table I.

The NME for finite nuclei is defined as

M0ν =
4πR
g2

A

〈 (Z + 2)A | ˆ̃VF + ˆ̃VGT + ˆ̃VT − 2g̃V̂S | ZA 〉 , (17)

with the empirical nuclear radius R = R0A1/3 and R0 = 1.2 fm.
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Be8 and Ca48 → Ti48 , calculated with different chiral nuclear forces

and with both long- and short-range transition operators.

The operator ˆ̃VT contains the tensor part of the decay operator.
With this definition, M0ν is dimensionless.

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [40]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for ∆T = 0 transition in He6 .
Transitions with ∆T = 2 have a node in the transition den-
sity that leads to a cancellation between short and long dis-
tances. This cancellation affects the long-range part more
strongly than the contact, leading to small overall NMEs and
relatively larger contributions of the contact term. Thus, the
contact increases the ∆T = 2 transition in He8 by 92 % to
172 %. Overall, SRG-transforming the ∆N2LOGO as well as
switching to the LNL Hamiltonian barely changes the NME.
Despite using the same NN interaction at a similar SRG scale
as the LNL, the EM1.8/2.0 produces systematically smaller
NMEs than the other interactions. The EMN + N3LO’ Hamil-
tonian yields a smaller NME in He6 than the LNL while the
He8 NME is larger. Both are driven by the long-range part,

the short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the lightest 0νββ-decay candidate nucleus Ca48 , the
short-range operator increases the NME by 37 % to 50 %.
With this contribution, the value of M0ν is 0.875(40) for Ca48

from the in-medium generator coordinate method (IM-GCM)
[21] calculation, the uncertainty of which is from the LEC g̃
of the short-range transition operator.
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FIG. 2. (a-b) Ratio of total amplitudes at different orders to the N4LO
result as a function of incoming and outgoing momentum, respec-
tively. (c-d) Relative difference between the amplitudes using the
LO operator and the operator containing beyond-LO corrections as a
function of incoming and outgoing momentum, respectively.

respectively.
Application to finite nuclei. While suitable for generating

the synthetic datum, a scattering state of neutrons is not ideal
for observing 0νββ decay in experiment. For that, we need to
move to finite nuclei for which the single-β decay is energeti-
cally forbidden. Due to the long lifetime any competing decay
would drown out the 0νββ-decay signal. A few candidate nu-
clei that fulfill this requirement have been identified, some of
which can even be used to build an active detector.

Previous calculations of the NME in finite nuclei only con-
sidered the long-range part of the operator. With the LEC of
the short-range part of the operator adjusted to the synthetic
datum, we can now calculate its effect and provide a first prop-
erly renormalized result. Here, we revisit our benchmark cal-
culations for light nuclei [33], as well as the candidate pair

Ca48 and Ti48 [21]. The interaction used in these studies is
the so-called EM1.8/2.0 [37], which consists of the EM inter-
action SRG-evolved to a scale λ = 1.8 fm−1 augmented by an
unevolved N2LO three-nucleon interaction. To estimate the
dependence of the NME on SRG scale and chiral order, we
additionally consider Hamiltonians based on the EM interac-
tion with a local-nonlocal 3N force [38], called “LNL” here,
one that combines the EMN N3LO with an N2LO 3N interac-
tion [39] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs for each of the NN interac-
tions are shown in table I.

The NME for finite nuclei is defined as

M0ν =
4πR
g2

A

〈 (Z + 2)A | ˆ̃VF + ˆ̃VGT + ˆ̃VT − 2g̃V̂S | ZA 〉 , (17)

with the empirical nuclear radius R = R0A1/3 and R0 = 1.2 fm.

0 1 2 3 4 5 6 7 8
M0ν

EM(1.8/2.0)

6He →6Be

EMN(2.0)
LNL(2.0)
ΔN2LOGO(2.0)
ΔN2LOGO(∞)

EM(1.8/2.0)
EMN(2.0)
LNL(2.0)
ΔN2LOGO(2.0)
ΔN2LOGO(∞)

8He →8Be

EM(1.8/2.0)(eMax =6)
EM(1.8/2.0)(eMax =8)
EM(1.8/2.0)(eMax =10)
EM(1.8/2.0)(ext a.)

48Ca →48Ti
IT-NCSM
IM-GCM

L
LΔS

FIG. 3. The NMEs M0ν of isospin-conserving (∆T = 0) transition
He6 → Be6 , and isospin-nonconserving (∆T = 2) transitions He8 →
Be8 and Ca48 → Ti48 , calculated with different chiral nuclear forces

and with both long- and short-range transition operators.

The operator ˆ̃VT contains the tensor part of the decay operator.
With this definition, M0ν is dimensionless.

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [40]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for ∆T = 0 transition in He6 .
Transitions with ∆T = 2 have a node in the transition den-
sity that leads to a cancellation between short and long dis-
tances. This cancellation affects the long-range part more
strongly than the contact, leading to small overall NMEs and
relatively larger contributions of the contact term. Thus, the
contact increases the ∆T = 2 transition in He8 by 92 % to
172 %. Overall, SRG-transforming the ∆N2LOGO as well as
switching to the LNL Hamiltonian barely changes the NME.
Despite using the same NN interaction at a similar SRG scale
as the LNL, the EM1.8/2.0 produces systematically smaller
NMEs than the other interactions. The EMN + N3LO’ Hamil-
tonian yields a smaller NME in He6 than the LNL while the
He8 NME is larger. Both are driven by the long-range part,

the short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the lightest 0νββ-decay candidate nucleus Ca48 , the
short-range operator increases the NME by 37 % to 50 %.
With this contribution, the value of M0ν is 0.875(40) for Ca48

from the in-medium generator coordinate method (IM-GCM)
[21] calculation, the uncertainty of which is from the LEC g̃
of the short-range transition operator.
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approximates both 100Sn and its 100In daughter as a single shell-
model configuration, reveals the influence of correlations among the 
nucleons. The full symbols include 2BCs, using consistent couplings 
as in the employed EFT interactions. Finally, the partially filled 
symbols in Fig. 1 represent results from other models from ref. 20,  
where the standard Gamow–Teller operator has been multiplied by 
a quenching factor of q ≈ 0.75.

Based on the results shown in Fig. 1, we predict the range 
. ≲ ∣ ∣ ≲ .M5 2(5) 7 0(7)GT

2  for the Gamow–Teller strength. This range 
overlaps with the evaluation in ref. 25, based on systematic experi-
mental trends in tin isotopes, and the lower end of the measurement 
in ref. 20. The quenching factor we obtain from 2BCs depends some-
what on the employed Hamiltonian and is in the range q2BC = 0.73–
0.85. This range is consistent with the value q = 0.75(2) from ref. 25.  
In the present work we used the spread of results obtained with 
the selected set of EFT interactions and 2BCs as an estimate of 
the systematic uncertainty. A more thorough quantification of the 
uncertainties associated with the many-body methods and EFT 
truncations is beyond the scope of this work, and will be addressed 
in future studies. We note that neglected higher-order correlations 
in our coupled-cluster approach will further reduce the Gamow–
Teller strength (see Supplementary Information for details).

Moreover, we observe that the spread for the 100Sn Gamow–Teller 
strength obtained for the family of EFT interactions used here is sig-
nificantly reduced (by a factor two) when 2BCs are included. This 
is consistent with ideas from EFT that the residual cutoff depen-
dence is due to neglected higher-order terms in the Hamiltonian 
and 2BCs. In addition, we find that the relative contributions to the 
quenching of the Gamow–Teller strength coming from correlations 

and 2BCs vary as a function of the resolution scale of the underlying 
EFT interactions.

Starting from the extreme single-particle model, and adding first 
correlations and then the effects of 2BC, we find that the quench-
ing from correlations typically increases with increasing resolution 
scale of the interaction, and that most of the quenching stems from 
correlations. However, adding first the effects of the 2BCs and then 
the correlations shows that the quenching from 2BCs increases with 
decreasing resolution scale and that most of the quenching stems 
from 2BCs for all but the ‘hardest’ potentials considered in this work 
(see Supplementary Fig. 6 for details).

For a comprehensive study, we now turn to β-decays of light- and 
medium-mass nuclei. Using a selection of the EFT interactions and 
2BCs adopted for 100Sn, we achieved an overall good description of 
β-decays in light nuclei. Figure 2 shows theory-to-experiment ratios 
for large Gamow–Teller transitions in light nuclei. Here, we high-
light the results obtained for the high-precision NN-N4LO + 3Nlnl 
interaction and corresponding 2BCs developed in this work. As 
detailed in the Methods, the 2BCs and three-nucleon forces 3Nlnl 
are parametrized consistently and are constrained to reproduce the 
empirical value of the triton β-decay half-life. Our calculations were 
carried out with the no-core shell model (NCSM)6, a virtually exact 
treatment of correlations in the nuclear wavefunctions (see Methods 
for details). The role of 2BCs is relatively small in light nuclei with 
mass numbers A ≤ 7. Full nuclear wavefunctions already provide a 
rather satisfactory description of the transitions with the standard 
Gamow–Teller operator. Furthermore, the inclusion of 2BCs may 
enhance (for example, 8He → 8Li), quench (for example, →Be Li7 3

2

7 1
2
),  

or have virtually no impact on the computed transition (for exam-
ple, →Be Li7 3

2

7 3
2
; see also Supplementary Fig. 13). The small role 
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Fig. 1 | Gamow–Teller strength in 100Sn. Comparison of the Gamow–Teller 
strength |MGT|2 for the β-decay of 100Sn calculated in this work compared 
to data20, systematics25 and other models (extreme single-particle model 
(ESPM), shell-model Monte-Carlo (SMMC), large-space shell-model 
(LSSM), quasiparticle random-phase approximation (QRPA) and finite 
Fermi systems (FFS)) from ref. 20. Open symbols represent results obtained 
with the standard Gamow–Teller operator (στ), filled symbols also include 
two-body currents (2BCs) and partially filled symbols show values 
following from the multiplication of the computed Gamow–Teller strength 
by the square of a phenomenological quenching factor. Each of our 100Sn 
calculations carries a conservatively estimated uncertainty of about 10% 
(not shown to avoid overcrowding the figure).
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Fig. 2 | Gamow–Teller strengths in light nuclei. Theory-to-experiment 
ratio for the Gamow–Teller matrix elements of six strong transitions in 
light nuclei for the NN-N4LO + 3Nlnl interaction developed in this work. 
The subscripts in the legend denote the total angular momenta of the 
parent and daughter states. All initial states are ground states. In the case 
of 3H → 3He, 6He → 6Li and →Be Li7 7

3
2

, the daughter nucleus is in its ground 

state, while the →Be Li7 7
1
2

, 8He → 8Li1 and 10C → 10B1 are decays to the first 

excited state of the daughter nucleus, and the 14O → 14N1 is a decay to the 
second excited state of 14N. Open symbols correspond to results obtained 
with the standard Gamow–Teller στ operator, and full symbols include 
2BCs. The results are converged to within 3% with respect to the model-
space size. This uncertainty is slightly larger than the marker size and is not 
shown for transparency.
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of 2BCs in A ≤ 7 nuclei is similar to what was found in the Green’s 
function Monte Carlo calculations of ref. 26. We find a rather sub-
stantial enhancement of the 8He Gamow–Teller matrix element due 
to the 2BC. Let us mention, though, that this transition matrix ele-
ment is the smallest of those presented in Fig. 2. We note that, for the 
other Hamiltonians employed in this work, the 2BCs and 3N were 
not fit to reproduce the triton half-life; nevertheless, the inclusion of 
2BCs for most of these cases also improves the agreement with data 
for the light nuclei considered in Fig. 2 (see Supplementary Fig. 9 
for results obtained with NNLOsat and NN-N3LO + 3Nlnl). The case 
of 10C is special because the computed Gamow–Teller transition is 
very sensitive to the structure of the Jπ = 1+ state in the 10B daughter 
nucleus. Depending on the employed interaction, this state can mix 
with a higher-lying 1+ state, greatly impacting the precise value of 
this transition. We finally note that benchmark calculations between 

the many-body methods used in this work agree to within 5% for 
the large transition in 14O. For smaller transitions discrepancies can 
be larger (see Supplementary Information for details).

Historically, the most extensive evidence for the quenching 
of Gamow–Teller β-decay strength comes from medium-mass 
nuclei14,16,27, and we now show that our calculations with these 
consistent Hamiltonians and currents largely solve the puzzle here 
as well. We use the valence-space in-medium similarity renor-
malization group (VS-IMSRG) method8 (see Methods for details) 
and compute Gamow–Teller decays for nuclei in the mass range 
between oxygen and calcium (referred to as sd-shell nuclei) and 
between calcium and vanadium (lower pf-shell nuclei), focusing on 
strong transitions. Here, we highlight the NN-N4LO + 3Nlnl interac-
tion and corresponding 2BCs.

Figure 3 shows the empirical values of the Gamow–Teller tran-
sition matrix elements versus the corresponding unquenched 
theoretical matrix elements obtained from the phenomenological 
shell model with the standard Gamow–Teller στ operator and the 
first-principles VS-IMSRG calculations. Perfect agreement between 
theory and experiment is denoted by the diagonal dashed line. The 
results from the phenomenological shell model clearly exemplify 
the state of theoretical calculations for decades13–16,27; as an example, 
in the sd-shell shell, a quenching factor of q ≈ 0.8 is needed to bring 
the theory into agreement with experiment14. The VS-IMSRG cal-
culations without 2BCs (not shown) exhibit a modest improvement, 
with a corresponding quenching factor of 0.89(4) for sd-shell nuclei 
and 0.85(3) for pf-shell nuclei, pointing to the importance of con-
sistent valence-space wavefunctions and operators (Supplementary 
Fig. 10). As in 100Sn, the inclusion of 2BCs yields an additional 
quenching of the theoretical matrix elements, and the linear fit of 
our results lies close to the dashed line, meaning our theoretical pre-
dictions agree, on average, with experimental values across a large 
number of medium-mass nuclei.

Another approach often used in the investigation of Gamow–
Teller quenching is the Ikeda sum-rule: the difference between the 
total integrated β− and β+ strengths obtained with the στ∓ operator 
yields the model-independent sum-rule 3(N – Z). We have com-
puted the Ikeda sum-rule for 14O, 48Ca and 90Zr using the coupled-
cluster method (see Methods for details). For the family of EFT 
Hamiltonians used for 100Sn we obtain a quenching factor aris-
ing from 2BCs that is consistent with our results shown in Fig. 3  
and the shell-model analyses from refs. 14–16,27. (Supplementary 
Fig. 7). We note that the comparison with experimental sum-rule 
tests using charge-exchange reactions28,29 is complicated by the 
use of a hadronic probe, which only corresponds to the leading 
weak one-body operator, and by the challenge of extracting all 
strength to high energies. Here, our developments enable future 
direct comparisons.

It is the combined proper treatment of strong nuclear correla-
tions with powerful quantum many-body solvers and the consis-
tency between 2BCs and three-nucleon forces that largely explains 
the quenching puzzle. Smaller corrections are still expected to 
arise from neglected higher-order contributions to currents and 
Hamiltonians in the EFT approach we pursued, and from neglected 
correlations in the nuclear wavefunctions. For beyond-standard-
model searches of new physics such as neutrino-less double-β-
decay, our work suggests that a complete and consistent calculation 
without a phenomenological quenching of the axial-vector coupling 
gA is called for. This Letter opens the door to ab initio calculations of 
weak interactions across the nuclear chart and in stars.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-019-0450-7.
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FIG. 2. (a-b) Ratio of total amplitudes at different orders to the N4LO
result as a function of incoming and outgoing momentum, respec-
tively. (c-d) Relative difference between the amplitudes using the
LO operator and the operator containing beyond-LO corrections as a
function of incoming and outgoing momentum, respectively.

respectively.
Application to finite nuclei. While suitable for generating

the synthetic datum, a scattering state of neutrons is not ideal
for observing 0νββ decay in experiment. For that, we need to
move to finite nuclei for which the single-β decay is energeti-
cally forbidden. Due to the long lifetime any competing decay
would drown out the 0νββ-decay signal. A few candidate nu-
clei that fulfill this requirement have been identified, some of
which can even be used to build an active detector.

Previous calculations of the NME in finite nuclei only con-
sidered the long-range part of the operator. With the LEC of
the short-range part of the operator adjusted to the synthetic
datum, we can now calculate its effect and provide a first prop-
erly renormalized result. Here, we revisit our benchmark cal-
culations for light nuclei [33], as well as the candidate pair

Ca48 and Ti48 [21]. The interaction used in these studies is
the so-called EM1.8/2.0 [37], which consists of the EM inter-
action SRG-evolved to a scale λ = 1.8 fm−1 augmented by an
unevolved N2LO three-nucleon interaction. To estimate the
dependence of the NME on SRG scale and chiral order, we
additionally consider Hamiltonians based on the EM interac-
tion with a local-nonlocal 3N force [38], called “LNL” here,
one that combines the EMN N3LO with an N2LO 3N interac-
tion [39] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs for each of the NN interac-
tions are shown in table I.

The NME for finite nuclei is defined as

M0ν =
4πR
g2

A

〈 (Z + 2)A | ˆ̃VF + ˆ̃VGT + ˆ̃VT − 2g̃V̂S | ZA 〉 , (17)

with the empirical nuclear radius R = R0A1/3 and R0 = 1.2 fm.
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FIG. 3. The NMEs M0ν of isospin-conserving (∆T = 0) transition
He6 → Be6 , and isospin-nonconserving (∆T = 2) transitions He8 →
Be8 and Ca48 → Ti48 , calculated with different chiral nuclear forces

and with both long- and short-range transition operators.

The operator ˆ̃VT contains the tensor part of the decay operator.
With this definition, M0ν is dimensionless.

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [40]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for ∆T = 0 transition in He6 .
Transitions with ∆T = 2 have a node in the transition den-
sity that leads to a cancellation between short and long dis-
tances. This cancellation affects the long-range part more
strongly than the contact, leading to small overall NMEs and
relatively larger contributions of the contact term. Thus, the
contact increases the ∆T = 2 transition in He8 by 92 % to
172 %. Overall, SRG-transforming the ∆N2LOGO as well as
switching to the LNL Hamiltonian barely changes the NME.
Despite using the same NN interaction at a similar SRG scale
as the LNL, the EM1.8/2.0 produces systematically smaller
NMEs than the other interactions. The EMN + N3LO’ Hamil-
tonian yields a smaller NME in He6 than the LNL while the
He8 NME is larger. Both are driven by the long-range part,

the short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the lightest 0νββ-decay candidate nucleus Ca48 , the
short-range operator increases the NME by 37 % to 50 %.
With this contribution, the value of M0ν is 0.875(40) for Ca48

from the in-medium generator coordinate method (IM-GCM)
[21] calculation, the uncertainty of which is from the LEC g̃
of the short-range transition operator.
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FIG. 2. (a-b) Ratio of total amplitudes at different orders to the N4LO
result as a function of incoming and outgoing momentum, respec-
tively. (c-d) Relative difference between the amplitudes using the
LO operator and the operator containing beyond-LO corrections as a
function of incoming and outgoing momentum, respectively.

respectively.
Application to finite nuclei. While suitable for generating

the synthetic datum, a scattering state of neutrons is not ideal
for observing 0νββ decay in experiment. For that, we need to
move to finite nuclei for which the single-β decay is energeti-
cally forbidden. Due to the long lifetime any competing decay
would drown out the 0νββ-decay signal. A few candidate nu-
clei that fulfill this requirement have been identified, some of
which can even be used to build an active detector.

Previous calculations of the NME in finite nuclei only con-
sidered the long-range part of the operator. With the LEC of
the short-range part of the operator adjusted to the synthetic
datum, we can now calculate its effect and provide a first prop-
erly renormalized result. Here, we revisit our benchmark cal-
culations for light nuclei [33], as well as the candidate pair

Ca48 and Ti48 [21]. The interaction used in these studies is
the so-called EM1.8/2.0 [37], which consists of the EM inter-
action SRG-evolved to a scale λ = 1.8 fm−1 augmented by an
unevolved N2LO three-nucleon interaction. To estimate the
dependence of the NME on SRG scale and chiral order, we
additionally consider Hamiltonians based on the EM interac-
tion with a local-nonlocal 3N force [38], called “LNL” here,
one that combines the EMN N3LO with an N2LO 3N interac-
tion [39] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs for each of the NN interac-
tions are shown in table I.

The NME for finite nuclei is defined as

M0ν =
4πR
g2

A

〈 (Z + 2)A | ˆ̃VF + ˆ̃VGT + ˆ̃VT − 2g̃V̂S | ZA 〉 , (17)

with the empirical nuclear radius R = R0A1/3 and R0 = 1.2 fm.
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FIG. 3. The NMEs M0ν of isospin-conserving (∆T = 0) transition
He6 → Be6 , and isospin-nonconserving (∆T = 2) transitions He8 →
Be8 and Ca48 → Ti48 , calculated with different chiral nuclear forces

and with both long- and short-range transition operators.

The operator ˆ̃VT contains the tensor part of the decay operator.
With this definition, M0ν is dimensionless.

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [40]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for ∆T = 0 transition in He6 .
Transitions with ∆T = 2 have a node in the transition den-
sity that leads to a cancellation between short and long dis-
tances. This cancellation affects the long-range part more
strongly than the contact, leading to small overall NMEs and
relatively larger contributions of the contact term. Thus, the
contact increases the ∆T = 2 transition in He8 by 92 % to
172 %. Overall, SRG-transforming the ∆N2LOGO as well as
switching to the LNL Hamiltonian barely changes the NME.
Despite using the same NN interaction at a similar SRG scale
as the LNL, the EM1.8/2.0 produces systematically smaller
NMEs than the other interactions. The EMN + N3LO’ Hamil-
tonian yields a smaller NME in He6 than the LNL while the
He8 NME is larger. Both are driven by the long-range part,

the short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the lightest 0νββ-decay candidate nucleus Ca48 , the
short-range operator increases the NME by 37 % to 50 %.
With this contribution, the value of M0ν is 0.875(40) for Ca48

from the in-medium generator coordinate method (IM-GCM)
[21] calculation, the uncertainty of which is from the LEC g̃
of the short-range transition operator.



Explorations in Light Nuclei
Softening of Operators with Similarity Renormalization Group

Produces operators for use in truncated single-particle spaces.



Explorations in Light Nuclei
Benchmarking of Methods

Quantum Monte Carlo and No Core Shell Model used to test the ab
initio methods used in heavy nuclei and the phenomenological
Shell Model.

correlations that would be many-particle–many-hole exci-
tations in the spherical scheme [53]. It comes at the expense
of breaking rotational invariance, which eventually could
be restored with symmetry restoration techniques [54–56].
In chiral EFT, the 0νββ operator is organized into a

systematically improvable expansion similarly to the
nuclear forces [57]. The lowest-order contributions to the
0νββ operator are a long-range Majorana neutrino potential
that can be divided into three components, Gamow-Teller
(GT), Fermi (F), and tensor (T), that contain different
combinations of spin operators, with Ô0ν ¼ ÔGT

0ν þ
ÔF

0ν þ ÔT
0ν. The corresponding two-body matrix elements,

as is conventional, are taken from Ref. [58], which adds
form factors to the leading and next-to-leading operators.
We use the closure approximation (which is sufficiently
accurate [26]), with closure energies Ecl ¼ 5 MeV for all
benchmarks in light nuclei and 7.72 MeV for the
decay 48Ca → 48Ti.
The NME for the 2νββ is similar to the 0νββ case except

the two-body operator is replaced by a double application
of the one-body Gamow-Teller operator, στ− [59], with an
explicit summation over the intermediate 1þ states between
them,

jM2νj2 ¼
����
X

μ

h0þF jστ−j1þμ ih1þμ jστ−j0þI i
ΔEμ þ ðEI − EFÞ=2

����
2

: ð4Þ

The denominator consists of the excitation energy of the
intermediate states with respect to the initial ground state,
ΔEμ ¼ Eμ − EI, and the energy difference between the
initial and final states, EI − EF (see Supplemental Material
[60] and Refs. [73,74] for more details). The direct
computation of the matrix element (4) would require
several tens of states in the intermediate nucleus and
several hundred Lanczos iterations, making it unfeasible
in our large model space.
We note that the Green’s function at the center of this

matrix element can be computed efficiently using the
Lanczos (continued fraction) method starting from a 1þ
pivot state [75–79]. We generate Lanczos coefficients
(ai, bi and a�i ; b

�
i ) from a nonsymmetric Lanczos algorithm

using the 1þ subspace of H̄N and rewrite Eq. (4) as a
continued fraction [75]. This computation typically
requires about 10–20 Lanczos iterations. With the sim-
ilarity-transformed operator, O ¼ στ−, and the pivot states

hνFj ¼ hΦ0jLO, jνIi ¼ OjΦ0i, hνIj ¼ hΦ0jð1þ Λ̂ÞO†, and

jνFi ¼ O†RjΦ0i, the NME becomes

jM2νj2 ¼ hνFjνIi
a0 þ EI−EF

2
− b2

0

a1þ���

hνIjνFi
a�0 þ EI−EF

2
− ðb�

0
Þ2

a�
1
þ���

: ð5Þ

Benchmarks.—To gauge the quality of our coupled-
cluster computations we benchmark with the more exact
no-core shell model (NCSM) [80–82] by computing 0νββ

matrix elements in light nuclei. Although the 0νββ decay of
these isotopes are energetically forbidden or would be
swamped by successive single-β decays in an experiment,
the benchmarks still have theoretical value. Figure 2 shows
the 0νββ matrix elements of the GT, F, and T operators for
the transitions 6He → 6Be, 8He → 8Be, 10He → 10Be,
14C → 14O, and 22O → 22Ne. The coupled-cluster results
are shown in pairs, with both the initial and final state as the

FIG. 2. Comparison of the 0νββ NME in several light nuclei
computed with the coupled cluster method and the no-core shell
model. The first two columns correspond to different choices for
the coupled-cluster reference state, and results from the CCSD
and CCSDT-1 approximations are shown in each. The error bars
indicate the uncertainties coming from variations with model-
space size. Each case utilizes the 1.8=2.0 (EM) interaction except
for 22O → 22Ne which disregards the three-nucleon forces to more
rapidly converge the NCSM results.
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Phenomenological Shell-Model in Heavy Nuclei
Used to

Explore effectiveness of Generator Coordinate Method, a
mixing of collective mean-field states at the heart of one ab
initio method.
Explore heavy-particle exchange in extensions of the Standard
Model, opening-angle dependence of decay rates, etc.
Explore the effects on light-ν exchange of the chiral two-body
currents that help quench single-β decay (conclusion: they
appear mild but an unknown contact term plays a role).

Inclusion of Two-Body Currents

Diagrams for these contributions:
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Ab Initio Many-Body Methods for Heavy Nuclei

Partition of Full Hilbert Space

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

P Q

P

Q

Simpler calculation done here.

P = subspace you want
Q = the rest

Task: Find unitary transformation to
make H block-diagonal in P and Q,
with Heff in P reproducing most
important eigenvalues.

Must must apply same unitary
transformation to transition
operator.

As difficult as solving original problem.
But many-body effective operators (beyond
2- or 3-body) can be treated approximately.
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Ab Initio Light-ν-Exchange Matrix Elements for 48Ca
In-Medium Generator Coordinate Method and Coupled Clusters

Comparison of
all methods
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FIG. 2. (a-b) Ratio of total amplitudes at different orders to the N4LO
result as a function of incoming and outgoing momentum, respec-
tively. (c-d) Relative difference between the amplitudes using the
LO operator and the operator containing beyond-LO corrections as a
function of incoming and outgoing momentum, respectively.

respectively.
Application to finite nuclei. While suitable for generating

the synthetic datum, a scattering state of neutrons is not ideal
for observing 0νββ decay in experiment. For that, we need to
move to finite nuclei for which the single-β decay is energeti-
cally forbidden. Due to the long lifetime any competing decay
would drown out the 0νββ-decay signal. A few candidate nu-
clei that fulfill this requirement have been identified, some of
which can even be used to build an active detector.

Previous calculations of the NME in finite nuclei only con-
sidered the long-range part of the operator. With the LEC of
the short-range part of the operator adjusted to the synthetic
datum, we can now calculate its effect and provide a first prop-
erly renormalized result. Here, we revisit our benchmark cal-
culations for light nuclei [33], as well as the candidate pair

Ca48 and Ti48 [21]. The interaction used in these studies is
the so-called EM1.8/2.0 [37], which consists of the EM inter-
action SRG-evolved to a scale λ = 1.8 fm−1 augmented by an
unevolved N2LO three-nucleon interaction. To estimate the
dependence of the NME on SRG scale and chiral order, we
additionally consider Hamiltonians based on the EM interac-
tion with a local-nonlocal 3N force [38], called “LNL” here,
one that combines the EMN N3LO with an N2LO 3N interac-
tion [39] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs for each of the NN interac-
tions are shown in table I.

The NME for finite nuclei is defined as

M0ν =
4πR
g2

A

〈 (Z + 2)A | ˆ̃VF + ˆ̃VGT + ˆ̃VT − 2g̃V̂S | ZA 〉 , (17)

with the empirical nuclear radius R = R0A1/3 and R0 = 1.2 fm.
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FIG. 3. The NMEs M0ν of isospin-conserving (∆T = 0) transition
He6 → Be6 , and isospin-nonconserving (∆T = 2) transitions He8 →
Be8 and Ca48 → Ti48 , calculated with different chiral nuclear forces

and with both long- and short-range transition operators.

The operator ˆ̃VT contains the tensor part of the decay operator.
With this definition, M0ν is dimensionless.

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [40]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for ∆T = 0 transition in He6 .
Transitions with ∆T = 2 have a node in the transition den-
sity that leads to a cancellation between short and long dis-
tances. This cancellation affects the long-range part more
strongly than the contact, leading to small overall NMEs and
relatively larger contributions of the contact term. Thus, the
contact increases the ∆T = 2 transition in He8 by 92 % to
172 %. Overall, SRG-transforming the ∆N2LOGO as well as
switching to the LNL Hamiltonian barely changes the NME.
Despite using the same NN interaction at a similar SRG scale
as the LNL, the EM1.8/2.0 produces systematically smaller
NMEs than the other interactions. The EMN + N3LO’ Hamil-
tonian yields a smaller NME in He6 than the LNL while the
He8 NME is larger. Both are driven by the long-range part,

the short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the lightest 0νββ-decay candidate nucleus Ca48 , the
short-range operator increases the NME by 37 % to 50 %.
With this contribution, the value of M0ν is 0.875(40) for Ca48

from the in-medium generator coordinate method (IM-GCM)
[21] calculation, the uncertainty of which is from the LEC g̃
of the short-range transition operator.

Effect of contact
in IM-GCM

Matrix elements are small, but contact increases them.
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move to finite nuclei for which the single-β decay is energeti-
cally forbidden. Due to the long lifetime any competing decay
would drown out the 0νββ-decay signal. A few candidate nu-
clei that fulfill this requirement have been identified, some of
which can even be used to build an active detector.

Previous calculations of the NME in finite nuclei only con-
sidered the long-range part of the operator. With the LEC of
the short-range part of the operator adjusted to the synthetic
datum, we can now calculate its effect and provide a first prop-
erly renormalized result. Here, we revisit our benchmark cal-
culations for light nuclei [33], as well as the candidate pair

Ca48 and Ti48 [21]. The interaction used in these studies is
the so-called EM1.8/2.0 [37], which consists of the EM inter-
action SRG-evolved to a scale λ = 1.8 fm−1 augmented by an
unevolved N2LO three-nucleon interaction. To estimate the
dependence of the NME on SRG scale and chiral order, we
additionally consider Hamiltonians based on the EM interac-
tion with a local-nonlocal 3N force [38], called “LNL” here,
one that combines the EMN N3LO with an N2LO 3N interac-
tion [39] (designated there as N3LO’), and the ∆N2LOGO(394)
NN+3N Hamiltonian. The LECs for each of the NN interac-
tions are shown in table I.
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The operator ˆ̃VT contains the tensor part of the decay operator.
With this definition, M0ν is dimensionless.

First, we investigate the NME in the pairs of light nuclei
He6 – Be6 and He8 – Be8 as examples of ∆T = 0 and ∆T = 2

transitions with the importance-truncated no-core shell model
(IT-NCSM) [40]. The results are summarized in fig. 3. We
note that the contact operator increases the NME by a fac-
tor ranging from 11 % to 17 % for ∆T = 0 transition in He6 .
Transitions with ∆T = 2 have a node in the transition den-
sity that leads to a cancellation between short and long dis-
tances. This cancellation affects the long-range part more
strongly than the contact, leading to small overall NMEs and
relatively larger contributions of the contact term. Thus, the
contact increases the ∆T = 2 transition in He8 by 92 % to
172 %. Overall, SRG-transforming the ∆N2LOGO as well as
switching to the LNL Hamiltonian barely changes the NME.
Despite using the same NN interaction at a similar SRG scale
as the LNL, the EM1.8/2.0 produces systematically smaller
NMEs than the other interactions. The EMN + N3LO’ Hamil-
tonian yields a smaller NME in He6 than the LNL while the
He8 NME is larger. Both are driven by the long-range part,

the short-range contribution is of similar size compared to the
LNL Hamiltonian. This shows that there is still some uncer-
tainty stemming from the Hamiltonian, in particular the 3N
interaction, which needs to be quantified further.

For the lightest 0νββ-decay candidate nucleus Ca48 , the
short-range operator increases the NME by 37 % to 50 %.
With this contribution, the value of M0ν is 0.875(40) for Ca48

from the in-medium generator coordinate method (IM-GCM)
[21] calculation, the uncertainty of which is from the LEC g̃
of the short-range transition operator.

Effect of contact
in IM-GCM

Matrix elements are small, but contact increases them.



Heavier Elements

76Ge in progress in IM-GCM. Preliminary small-model space
results on arXiv; agree pretty well with those of valence-space
IMSRG.

130Te, 136Xe “in contemplation.”

Perhaps 100Mo should be next?
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Uncertainty Quantification

We met a few times over Zoom towards the end of the
collaboration and came up with a procedure that is on the
conference website. A few people calculated a few related
observables, but we never built up the steam to make a real
dent in the problem.

That’s next!
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