Summary of Uncertainty Quantification Discussion (Leading-Order + "standard" Ο**νββ** only)

Daniel Phillips Witek Nazarewicz Matt Plumlee Frederi Viens Stefan Wild

The problem

- We want to compute a matrix element $\mathbf{y}(\theta)^T O(\eta) \mathbf{x}(\theta)$
- (Here O is the matrix representation of the long-range light Majorana exchange plus contact operators.)
- Three sources of uncertainty:
 - Uncertainty in input Hamiltonian (θ)
 - Uncertainty in parameter of DBD operator (η)
 - Uncertainty in many-body method used to compute matrix element

Some things are less uncertain?

- Hamiltonians are already calibrated to a "basket of nuclei": some knowledge of region in which θ lies
- η can be determined ('calibrated') within some uncertainty using synthetic data on $nn \rightarrow ppe^-e^-$
- And results then computed using a variety of many-body methods, which we will label 1, 2, 3, 4, 5
- But which many-body method result should we trust?

Observables of Use?

In the DBD candidates ⁴⁸Ca, ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe:

- Single β -decay rates in nearby nuclei, e.g., intermediate nucleus in decay, z^TBx
- β strength distribution from initial nucleus $z^TBx(E)$
- β + distribution from final nucleus $y^TB^*w(E)$
- $2\nu\beta\beta$ matrix elements y^TBBx
- Muon capture $z^TB'x$
- Magnetic moments and MI's in three nuclei involved in decay y^TCy , x^TCx
- E2 to lowest 2+ state in initial and final nuclei $y^T Dy$, $x^T Dx$
- Energies of lowest few excited states Eigenvalues associated with H for which x and y are eigenvectors
- Charge radii y^TD'y, x^TD'x

But which are most reliable predictors of performance for neutrinoless double-beta decay?

Proposal

- Draw a small (< 100) number of samples from θ distribution
- Compute as many observables on that list as you can in many-body method N
- Compute Neutrinoless DBD matrix element in same MB method at each value of θ
- Examine correlation
- Also examine what happens when η is moved (possibly enhancing error on synthetic data to simulate growth of error in matrix element with A)

Correlators for $0\nu\beta\beta$

- Assessment of "correlation" between observables , <C>, <D>, etc. and observable <O>
- Do this for each many-body method

	I	2	3	4	5
В					
B *					
С					
D					

Correlations with data in D + performancewrt data-set $D \rightarrow modified$ evidence formula

$$pr(O | D) = \sum_{M} w_{M} pr(O | M, D)$$

- Where the weights w_M are determined not just by the ability of the many-body method M to describe data D, but also by the extent to which each piece of data in D is correlated with O in that model
- We can also examine correlations across different DBD candidate nuclei, and see if uncertainties are reduced through those correlations