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THREE COMPLEMENTARY APPROACHES
• Variational Monte Method can accurately model the short- and long-range components of 

neutrino-less double beta decay transitions, but it is limited to light nuclei;

• The generalized contact formalism captures short-range nuclear dynamics of all nuclei, but 
does not provide information on their long-range structure;

• The shell-model is suitable to accurately model long-range properties of many nuclei fat 
fail to properly describe short-range nuclear dynamics;

We combine them to compute 0𝜈𝛽𝛽 the matrix elements of nuclei 48Ca, 76Ge, 130Te, and 136Xe.
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across the nuclear chart, provided that these normaliza-
tion factors are known. In this work, we use state-of-
the-art variational Monte Carlo (VMC) and SM 0⌫��
transition densities to determine the ratios of normal-
ization factors—which do not depend on the nuclear
interaction—and correct the short-range part of the SM
transition densities, assuming they describe well the long-
range behavior. This way we include the short-range dy-
namics captured by the VMC into the SM. Although sim-
ilar in spirit to correcting shell-model transition densities
with Jastrow correlations [43–46], our approach is more
systematic, as it allows us to exactly match VMC results
in A  12 systems, and can accommodate a variety of
nuclear interactions.

After validating our method in light nuclei where VMC
calculations are available, we make NME predictions for
nuclei used in 0⌫�� experiments, including 48Ca, 76Ge,
130Te, and 136Xe. Our results include estimates of the
theoretical uncertainty associated with our method. In
addition to the usual long-range NME, we compute the
leading-order short-range NME, for which our approach
may be particularly reliable. We follow recent analy-
ses and estimate the coupling associated with this term
by the charge-independence-breaking (CIB) term of the
Argonne v18 (AV18) potential used in the VMC calcula-
tions. While for this work we use the phenomenological
AV18 plus the three-nucleon Urbana X (UX) force, our
method is general and can readily be applied to interac-
tions derived within chiral e↵ective field theory.

The manuscript is organized as follows. First, we intro-
duce the 0⌫�� transition potentials in Sec. II. Section III
describes the many-body methods, while Sec. IV presents
our NME results. Finally, Sec. V summarizes our main
conclusions and future perspectives.

II. 0⌫�� TRANSITION POTENTIALS

Under the closure approximation [47–49], the 0⌫��
NME between the initial and final nuclear states | ii

and | f i reads

M0⌫ = h f |O
0⌫
| ii . (1)

We focus on the light Majorana neutrino exchange. For
this mechanism the long-range transition operator can
be cast as a sum of Fermi (F), Gamow-Teller (GT) and
tensor (T) contributions O0⌫

L = O0⌫
F +O0⌫

GT +O0⌫
T , where

O0⌫
F = (4⇡RA)

X

a 6=b

V 0⌫
F (rab)⌧

+
a ⌧+b ,

O0⌫
GT = (4⇡RA)

X

a 6=b

V 0⌫
GT (rab)�ab ⌧

+
a ⌧+b ,

O0⌫
T = (4⇡RA)

X

a 6=b

V 0⌫
T (rab)Sab ⌧

+
a ⌧+b . (2)

Here �a and ⌧a represent nucleon spin and isospin opera-
tors, respectively, �ab = �a ·�b, and the tensor operator

is Sab = 3(�a · r̂ab)(�b · r̂ab) � �ab with rab the inter-
nucleon distance. The nuclear radius RA = 1.2A1/3 fm
is inserted by convention to make the NME dimension-
less. The coordinate-space neutrino potentials above are
obtained from the standard Fourier transform:

V 0⌫
↵ (rab) =

1

g2A

Z
d3q

(2⇡)3
eiq·rabV 0⌫

↵ (q2) , (3)

where q is the momentum transfer, ↵ indicates F, GT,
and T, and we take gA = 1.27 for the axial-vector cou-
pling.
Defining V 0⌫

↵ (q2) = 1
q2 v↵(q2) the relevant functions

can be given in terms of the nucleon isovector vec-
tor, axial, induced pseudoscalar and magnetic form fac-
tors [25, 36]:

vF (q
2) = �g2V (q

2) ,

vGT (q
2) = g2A(q

2) +
2

3

q2

2mN
gA(q

2)gP (q
2)

+
1

3

q4

4m2
N

g2P (q
2) +

2

3

q2

4m2
N

g2M (q2) ,

vT (q
2) = �

2

3

q2

2mN
gA(q

2)gP (q
2)�

1

3

q4

4m2
N

g2P (q
2)

+
1

3

q2

4m2
N

g2M (q2) , (4)

where mN = 938.9 MeV is the nucleon mass. Consistent
with the 0⌫�� literature, for the single-nucleon form fac-
tors we adopt the simple dipole parameterization:

gV (q
2) =

gV
(1 + q2/⇤2

V )
2
,

gM (q2) = (1 + 1)gV (q
2) ,

gA(q
2) =

gA
(1 + q2/⇤2

A)
2
,

gP (q
2) = �

2mN

q2 +m2
⇡

gA(q
2) , (5)

with vector coupling gV = 1, anomalous nucleon isovec-
tor magnetic moment 1 = 3.7, and pion mass m⇡ =
138 MeV. The cuto↵ values are ⇤V = 0.85 GeV and
⇤A = 1.04 GeV. More sophisticated functional forms
for these form factors exist [50], including some based
on a systematic z-expansion [51]. However, for the rel-
atively small momentum transfer at play in 0⌫�� pro-
cesses, |q| ⇠ 200 MeV, no significant di↵erences are ex-
pected with respect to the simple dipole ansatz.
Figure 1 displays the radial dependence of the tran-

sition potentials, and shows that the T component is
clearly much smaller than both the F and GT ones. This
behavior is reflected in the magnitude of the correspond-
ing NMEs, as highlighted in a number of previous calcu-
lations [15, 52, 53]. Including the form factors regularizes
the potentials at short interparticle distances, while the
typical 1/rab behavior at large rab is preserved.
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FIG. 1: Fermi (solid blue curve), Gamow-Teller (dashed
orange curve), tensor (dot-dashed green curve), and
short-range (dot red curve) transition potentials.

The authors of Ref. [37] have demonstrated that an
e↵ective field theory approach of the light-neutrino ex-
change 0⌫�� decay requires a leading-order counter-term
to absorb the divergences induced by the long-range neu-
trino potential and ensure renormalizability. This new
short-range (SR) operator is associated with a Fermi spin
structure and a SR neutrino potential:

O0⌫
S = (4⇡RA)

X

a 6=b

V 0⌫
S (rab)⌧

+
a ⌧+b , (6)

V 0⌫
S (rab) = 2

gNN
⌫

g2A
�(3)R (rab) , (7)

where �(3)R (rab) is a regularized three-dimensional Dirac
delta function. In contrast to Ref. [38], the above defini-
tion includes a factor 1/g2A so that the full light-Majorana
transition operator is O0⌫ = O0⌫

F + O0⌫
GT + O0⌫

T + O0⌫
S .

Consistent with the opposite sign in the definition of the
F, GT and T contributions, the sign of the SR potential
is also di↵erent to Ref. [38].

The value of the new coupling gNN
⌫ arises from non-

perturbative QCD dynamics and could in principle be
found by matching to lattice-QCD calculations of light-
neutrino exchange amplitudes [54, 55]. It can also be ob-
tained by reproducing the synthetic 2n ! 2p + 2e data
provided by Refs. [56, 57]. Alternatively, Ref. [38] notes
that renormalizing the nucleon-nucleon (NN) scattering
amplitude with Coulomb photon exchange also requires
a short-range interaction with coupling (C1+C2)/2, and
connects 0⌫�� and CIB SR couplings: gNN

⌫ = C1. Fur-
ther, assuming the same value for the two couplings en-
tering the CIB of NN potentials, so that gNN

⌫ ' (C1 +
C2)/2, describes well synthetic 2n ! 2p + 2e data [57].
We follow this approach, which allows us to evaluate
short range 0⌫��-decay NMEs for a variety of nuclei.

We compute the short-range behavior of nuclear states
from the high-quality AV18 NN potential. Hence, when

evaluating NMEs we make the consistent replacement

gNN
⌫ �(3)R (rab) ! �

6

e2
vcdS1(rab) . (8)

The full expression for the short-range component of the
CIB term of AV18, vcdS1(rab), for the spin S = 0, isospin
T = 1 channel can be found in Eq. (32) of Ref. [58] and
it is displayed in Fig. 1. To better gauge the importance
of V 0⌫

S , we also consider the expression derived from the
CIB contribution of the local, �-full chiral e↵ective field
theory NN potential of Ref. [59]. Specifically, for the

NV-Ia⇤ model (C1 + C2)/2 = �1.03 fm2 and �(3)R (rab) =

e�r2ab/R
2
S/(⇡3/2R3

S) with RS = 0.8 fm.
Throughout this work, two-body transition densities

play a crucial role

4⇡r2⇢F (r) = h f |

X

a<b

�(r � rab)⌧
+
a ⌧+b | ii ,

4⇡r2⇢GT (r) = h f |

X

a<b

�(r � rab)�ab ⌧
+
a ⌧+b | ii ,

4⇡r2⇢T (r) = h f |

X

a<b

�(r � rab)Sab ⌧
+
a ⌧+b | ii , (9)

and ⇢S(r) = ⇢F (r). All NMEs can be obtained integrat-
ing the above densities:

M0⌫
↵ =

Z 1

0
dr C0⌫

↵ (r) , (10)

where we define C0⌫
↵ (r) ⌘ (8⇡RA)4⇡r2⇢↵(r)V 0⌫

↵ (r) with
the additional factor 2 to compensate the restricted sum
a < b in Eq. (9).

III. MANY-BODY METHODS

A. Variational Monte Carlo

The VMC method solves the Schrödinger equation by
approximating the true ground state of the system with a
suitably parametrized variational wave function  T . The
Rayleigh-Ritz variational principle

h T |H| T i

h T | T i
= ET � E0 (11)

is exploited to find the optimal set of variational param-
eters. The VMC takes as input the Hamiltonian

H =
X

i

�
~2
2m

r
2
i +

X

i<j

vij +
X

i<j<k

Vijk , (12)

which consists of non-relativistic single-nucleon kinetic
energy terms, and two- and three-nucleon interactions.
As for the latter, in this work, we utilize the AV18 NN in-
teraction [58] in combination with the UX three-nucleon
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BRIEF DESCRIPTION OF THE GCF-SM METHOD
When two particles are close to each other, any nuclear wave function obeys the asymptotic form 
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close to each other. Explicitly, any nuclear wave func-
tion  (r1, r2, ..., rA) is expected to obey the asymptotic
form [40]

 ����!
rij!0

X

↵

'↵(rij)A
↵(Rij , {rk}k 6=i,j). (17)

Here rij = rj � ri and Rij = (ri + rj)/2 are the rel-
ative and center of mass coordinates of the pair, and ↵
denotes its quantum numbers, i.e., parity ⇡↵, spin s↵, to-
tal angular momentum j↵, and projection j↵z, and total
isospin t↵ and projection t↵z. Isospin quantum numbers
are relevant to keep the nuclear wave function  anti-
symmetric under permutations of any two nucleons. This
convention is equivalent to the one in most previous GCF
studies considering wave functions anti-symmetric under
separate permutations of protons and neutrons. The so-
lution of the zero-energy two-body Schrödinger equation
'↵(rij) describes the pair dynamics when the two nu-
cleons are close together. It is a universal function, i.e.
identical for all nuclei and all quantum states, but de-
pends on the model and the nuclear interaction. It can
be written as

'↵ (r) ⌘ ⌘t↵,t↵z

X

`↵2⇡↵

�↵(r) [Y`↵ (r̂)⌦ �s↵ ]
j↵m↵ , (18)

where ⌘t,tz is the isospin function, Ylm spherical harmon-
ics, �sm the two-body spin function, and the sum runs
over orbital angular momenta `↵ of correct parity ⇡↵ that
can couple with s↵ yielding j↵. The radial dependence
is modeled by �↵(r), which is independent of j↵z and, to
good accuracy, also of t↵z due to isospin symmetry.

Based on this asymptotic form, the nuclear contacts
for a nucleus with A nucleons are defined as

C↵� =
A(A� 1)

2
hA↵

|A�
i. (19)

The factor A(A� 1)/2 appears in place of the number of
proton-proton, neutron-proton or neutron-neutron pairs
present in previous publications because here the wave
function is anti-symmetric under permutation of any two
nucleons.

The diagonal contacts C↵↵ are proportional to the
number of correlated pairs in the nucleus with quantum
numbers ↵. However, in this work we apply the GCF to
describe the short-range behavior of the two-body densi-
ties relevant for 0⌫�� transitions. Hence, we define new
contact parameters that involve di↵erent initial (i) and
final (f) nuclear states as

C↵�(f, i) =
A(A� 1)

2
hA↵(f)|A�(i)i. (20)

Using the above definition, we can write the dominant
contributions to the transition densities defined in Eq. (9)
at short distances. For F and GT transitions, we expect
pairs in an s-wave state, mainly with s = 0, j = 0, t =
1. Denoting the corresponding contact parameter for a

transition of two neutrons to two protons (nn ! pp) with
such quantum numbers as C0

pp,nn(f, i), the F transition
density can be expressed as

⇢F (r) ���!
r!0

1

4⇡
|�0(r)|2C0

pp,nn(f, i), (21)

where �0(r) is the radial function for the ` = 0, s =
0, j = 0, t = 1 channel. Since ⇢S = ⇢F , the above
asymptotic form is valid for transition density associated
with the short-range operator of Eq. (7). As for the GT
transition, the �ab operator leads to a factor of (�3) in
this s = 0 channel and we similarly obtain

⇢GT (r) ���!
r!0

�
3

4⇡
|�0(r)|2C0

pp,nn(f, i), (22)

which implies the following relation between the F and
GT densities for short distances

⇢GT (r . 1 fm) = �3⇢F (r . 1 fm). (23)

Based on our previous experience with two-body den-
sities [41, 42], these expressions should provide a good
description of the transition densities for r . 1 fm.
To calculate the 0⌫�� matrix elements, we wish to

combine the GCF expressions, valid at short distances,
and the long-range behavior of the nuclear SM many-
body wave functions. The main unknowns in this ap-
proach are the values of the relevant contacts, which
in general depend upon the nucleus and on the partic-
ular nuclear interaction. Nevertheless, previous studies
have shown that for the case of the contacts defined in
Eq. (19), contact ratios C↵↵(X)/C↵↵(Y ), for any two nu-
clei X and Y , are model independent [42, 82, 84]. In this
sense, contact ratios can be interpreted as long-range,
low-resolution quantities that do not depend on the de-
tails of the nuclear interaction.
Such a model independence is expected to hold also

for ratios of the contacts defined in Eq. (20). Therefore,
the ratio of the contacts C0,SM

pp,nn(f1, i1)/C
0,SM
pp,nn(f2, i2)—

indices 1 and 2 denote di↵erent 0⌫�� decays—is inferred
from SM transition densities at short distances. Then,
the contact C0,VN

pp,nn(f2, i2) is obtained by fitting the short-
range behavior to the transition density “2” computed
with VMC for a given realistic nuclear interaction VN .
Finally, the contact for transition “1” is obtained exploit-
ing the model independence of the ratios:

C0,VN
pp,nn(f1, i1) =

C0,SM
pp,nn(f1, i1)

C0,SM
pp,nn(f2, i2)

C0,VN
pp,nn(f2, i2). (24)

This procedure allows us to obtain contact values of
heavy nuclei for any nuclear interaction, using only a sin-
gle ab-initio calculation for light nuclei and SM ones for
both heavy and light nuclei. In Sec. IV we provide ample
evidence on the accuracy of the model independence of
contact ratios.
The contact value C0,VN

pp,nn(f1, i1) and the correspond-
ing short-range radial function fully determine the short-
range part (r . 1 fm) of the transition densities for a
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close to each other. Explicitly, any nuclear wave func-
tion  (r1, r2, ..., rA) is expected to obey the asymptotic
form [40]

 ����!
rij!0

X

↵

'↵(rij)A
↵(Rij , {rk}k 6=i,j). (17)

Here rij = rj � ri and Rij = (ri + rj)/2 are the rel-
ative and center of mass coordinates of the pair, and ↵
denotes its quantum numbers, i.e., parity ⇡↵, spin s↵, to-
tal angular momentum j↵, and projection j↵z, and total
isospin t↵ and projection t↵z. Isospin quantum numbers
are relevant to keep the nuclear wave function  anti-
symmetric under permutations of any two nucleons. This
convention is equivalent to the one in most previous GCF
studies considering wave functions anti-symmetric under
separate permutations of protons and neutrons. The so-
lution of the zero-energy two-body Schrödinger equation
'↵(rij) describes the pair dynamics when the two nu-
cleons are close together. It is a universal function, i.e.
identical for all nuclei and all quantum states, but de-
pends on the model and the nuclear interaction. It can
be written as

'↵ (r) ⌘ ⌘t↵,t↵z

X

`↵2⇡↵

�↵(r) [Y`↵ (r̂)⌦ �s↵ ]
j↵m↵ , (18)

where ⌘t,tz is the isospin function, Ylm spherical harmon-
ics, �sm the two-body spin function, and the sum runs
over orbital angular momenta `↵ of correct parity ⇡↵ that
can couple with s↵ yielding j↵. The radial dependence
is modeled by �↵(r), which is independent of j↵z and, to
good accuracy, also of t↵z due to isospin symmetry.

Based on this asymptotic form, the nuclear contacts
for a nucleus with A nucleons are defined as

C↵� =
A(A� 1)

2
hA↵

|A�
i. (19)

The factor A(A� 1)/2 appears in place of the number of
proton-proton, neutron-proton or neutron-neutron pairs
present in previous publications because here the wave
function is anti-symmetric under permutation of any two
nucleons.

The diagonal contacts C↵↵ are proportional to the
number of correlated pairs in the nucleus with quantum
numbers ↵. However, in this work we apply the GCF to
describe the short-range behavior of the two-body densi-
ties relevant for 0⌫�� transitions. Hence, we define new
contact parameters that involve di↵erent initial (i) and
final (f) nuclear states as

C↵�(f, i) =
A(A� 1)

2
hA↵(f)|A�(i)i. (20)

Using the above definition, we can write the dominant
contributions to the transition densities defined in Eq. (9)
at short distances. For F and GT transitions, we expect
pairs in an s-wave state, mainly with s = 0, j = 0, t =
1. Denoting the corresponding contact parameter for a

transition of two neutrons to two protons (nn ! pp) with
such quantum numbers as C0

pp,nn(f, i), the F transition
density can be expressed as

⇢F (r) ���!
r!0

1

4⇡
|�0(r)|2C0

pp,nn(f, i), (21)

where �0(r) is the radial function for the ` = 0, s =
0, j = 0, t = 1 channel. Since ⇢S = ⇢F , the above
asymptotic form is valid for transition density associated
with the short-range operator of Eq. (7). As for the GT
transition, the �ab operator leads to a factor of (�3) in
this s = 0 channel and we similarly obtain

⇢GT (r) ���!
r!0

�
3

4⇡
|�0(r)|2C0

pp,nn(f, i), (22)

which implies the following relation between the F and
GT densities for short distances

⇢GT (r . 1 fm) = �3⇢F (r . 1 fm). (23)

Based on our previous experience with two-body den-
sities [41, 42], these expressions should provide a good
description of the transition densities for r . 1 fm.
To calculate the 0⌫�� matrix elements, we wish to

combine the GCF expressions, valid at short distances,
and the long-range behavior of the nuclear SM many-
body wave functions. The main unknowns in this ap-
proach are the values of the relevant contacts, which
in general depend upon the nucleus and on the partic-
ular nuclear interaction. Nevertheless, previous studies
have shown that for the case of the contacts defined in
Eq. (19), contact ratios C↵↵(X)/C↵↵(Y ), for any two nu-
clei X and Y , are model independent [42, 82, 84]. In this
sense, contact ratios can be interpreted as long-range,
low-resolution quantities that do not depend on the de-
tails of the nuclear interaction.
Such a model independence is expected to hold also

for ratios of the contacts defined in Eq. (20). Therefore,
the ratio of the contacts C0,SM

pp,nn(f1, i1)/C
0,SM
pp,nn(f2, i2)—

indices 1 and 2 denote di↵erent 0⌫�� decays—is inferred
from SM transition densities at short distances. Then,
the contact C0,VN

pp,nn(f2, i2) is obtained by fitting the short-
range behavior to the transition density “2” computed
with VMC for a given realistic nuclear interaction VN .
Finally, the contact for transition “1” is obtained exploit-
ing the model independence of the ratios:

C0,VN
pp,nn(f1, i1) =

C0,SM
pp,nn(f1, i1)

C0,SM
pp,nn(f2, i2)

C0,VN
pp,nn(f2, i2). (24)

This procedure allows us to obtain contact values of
heavy nuclei for any nuclear interaction, using only a sin-
gle ab-initio calculation for light nuclei and SM ones for
both heavy and light nuclei. In Sec. IV we provide ample
evidence on the accuracy of the model independence of
contact ratios.
The contact value C0,VN

pp,nn(f1, i1) and the correspond-
ing short-range radial function fully determine the short-
range part (r . 1 fm) of the transition densities for a

The nuclear contacts for transitions that involve different initial and final states are defined as 
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close to each other. Explicitly, any nuclear wave func-
tion  (r1, r2, ..., rA) is expected to obey the asymptotic
form [40]

 ����!
rij!0

X

↵

'↵(rij)A
↵(Rij , {rk}k 6=i,j). (17)

Here rij = rj � ri and Rij = (ri + rj)/2 are the rel-
ative and center of mass coordinates of the pair, and ↵
denotes its quantum numbers, i.e., parity ⇡↵, spin s↵, to-
tal angular momentum j↵, and projection j↵z, and total
isospin t↵ and projection t↵z. Isospin quantum numbers
are relevant to keep the nuclear wave function  anti-
symmetric under permutations of any two nucleons. This
convention is equivalent to the one in most previous GCF
studies considering wave functions anti-symmetric under
separate permutations of protons and neutrons. The so-
lution of the zero-energy two-body Schrödinger equation
'↵(rij) describes the pair dynamics when the two nu-
cleons are close together. It is a universal function, i.e.
identical for all nuclei and all quantum states, but de-
pends on the model and the nuclear interaction. It can
be written as

'↵ (r) ⌘ ⌘t↵,t↵z

X

`↵2⇡↵

�↵(r) [Y`↵ (r̂)⌦ �s↵ ]
j↵m↵ , (18)

where ⌘t,tz is the isospin function, Ylm spherical harmon-
ics, �sm the two-body spin function, and the sum runs
over orbital angular momenta `↵ of correct parity ⇡↵ that
can couple with s↵ yielding j↵. The radial dependence
is modeled by �↵(r), which is independent of j↵z and, to
good accuracy, also of t↵z due to isospin symmetry.

Based on this asymptotic form, the nuclear contacts
for a nucleus with A nucleons are defined as

C↵� =
A(A� 1)

2
hA↵

|A�
i. (19)

The factor A(A� 1)/2 appears in place of the number of
proton-proton, neutron-proton or neutron-neutron pairs
present in previous publications because here the wave
function is anti-symmetric under permutation of any two
nucleons.

The diagonal contacts C↵↵ are proportional to the
number of correlated pairs in the nucleus with quantum
numbers ↵. However, in this work we apply the GCF to
describe the short-range behavior of the two-body densi-
ties relevant for 0⌫�� transitions. Hence, we define new
contact parameters that involve di↵erent initial (i) and
final (f) nuclear states as

C↵�(f, i) =
A(A� 1)

2
hA↵(f)|A�(i)i. (20)

Using the above definition, we can write the dominant
contributions to the transition densities defined in Eq. (9)
at short distances. For F and GT transitions, we expect
pairs in an s-wave state, mainly with s = 0, j = 0, t =
1. Denoting the corresponding contact parameter for a

transition of two neutrons to two protons (nn ! pp) with
such quantum numbers as C0

pp,nn(f, i), the F transition
density can be expressed as

⇢F (r) ���!
r!0

1

4⇡
|�0(r)|2C0

pp,nn(f, i), (21)

where �0(r) is the radial function for the ` = 0, s =
0, j = 0, t = 1 channel. Since ⇢S = ⇢F , the above
asymptotic form is valid for transition density associated
with the short-range operator of Eq. (7). As for the GT
transition, the �ab operator leads to a factor of (�3) in
this s = 0 channel and we similarly obtain

⇢GT (r) ���!
r!0

�
3

4⇡
|�0(r)|2C0

pp,nn(f, i), (22)

which implies the following relation between the F and
GT densities for short distances

⇢GT (r . 1 fm) = �3⇢F (r . 1 fm). (23)

Based on our previous experience with two-body den-
sities [41, 42], these expressions should provide a good
description of the transition densities for r . 1 fm.
To calculate the 0⌫�� matrix elements, we wish to

combine the GCF expressions, valid at short distances,
and the long-range behavior of the nuclear SM many-
body wave functions. The main unknowns in this ap-
proach are the values of the relevant contacts, which
in general depend upon the nucleus and on the partic-
ular nuclear interaction. Nevertheless, previous studies
have shown that for the case of the contacts defined in
Eq. (19), contact ratios C↵↵(X)/C↵↵(Y ), for any two nu-
clei X and Y , are model independent [42, 82, 84]. In this
sense, contact ratios can be interpreted as long-range,
low-resolution quantities that do not depend on the de-
tails of the nuclear interaction.
Such a model independence is expected to hold also

for ratios of the contacts defined in Eq. (20). Therefore,
the ratio of the contacts C0,SM

pp,nn(f1, i1)/C
0,SM
pp,nn(f2, i2)—

indices 1 and 2 denote di↵erent 0⌫�� decays—is inferred
from SM transition densities at short distances. Then,
the contact C0,VN

pp,nn(f2, i2) is obtained by fitting the short-
range behavior to the transition density “2” computed
with VMC for a given realistic nuclear interaction VN .
Finally, the contact for transition “1” is obtained exploit-
ing the model independence of the ratios:

C0,VN
pp,nn(f1, i1) =

C0,SM
pp,nn(f1, i1)

C0,SM
pp,nn(f2, i2)

C0,VN
pp,nn(f2, i2). (24)

This procedure allows us to obtain contact values of
heavy nuclei for any nuclear interaction, using only a sin-
gle ab-initio calculation for light nuclei and SM ones for
both heavy and light nuclei. In Sec. IV we provide ample
evidence on the accuracy of the model independence of
contact ratios.
The contact value C0,VN

pp,nn(f1, i1) and the correspond-
ing short-range radial function fully determine the short-
range part (r . 1 fm) of the transition densities for a

The dominant contributions to the Fermi and Gamow-Teller transition densities are given by
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close to each other. Explicitly, any nuclear wave func-
tion  (r1, r2, ..., rA) is expected to obey the asymptotic
form [40]

 ����!
rij!0

X

↵

'↵(rij)A
↵(Rij , {rk}k 6=i,j). (17)

Here rij = rj � ri and Rij = (ri + rj)/2 are the rel-
ative and center of mass coordinates of the pair, and ↵
denotes its quantum numbers, i.e., parity ⇡↵, spin s↵, to-
tal angular momentum j↵, and projection j↵z, and total
isospin t↵ and projection t↵z. Isospin quantum numbers
are relevant to keep the nuclear wave function  anti-
symmetric under permutations of any two nucleons. This
convention is equivalent to the one in most previous GCF
studies considering wave functions anti-symmetric under
separate permutations of protons and neutrons. The so-
lution of the zero-energy two-body Schrödinger equation
'↵(rij) describes the pair dynamics when the two nu-
cleons are close together. It is a universal function, i.e.
identical for all nuclei and all quantum states, but de-
pends on the model and the nuclear interaction. It can
be written as

'↵ (r) ⌘ ⌘t↵,t↵z

X

`↵2⇡↵

�↵(r) [Y`↵ (r̂)⌦ �s↵ ]
j↵m↵ , (18)

where ⌘t,tz is the isospin function, Ylm spherical harmon-
ics, �sm the two-body spin function, and the sum runs
over orbital angular momenta `↵ of correct parity ⇡↵ that
can couple with s↵ yielding j↵. The radial dependence
is modeled by �↵(r), which is independent of j↵z and, to
good accuracy, also of t↵z due to isospin symmetry.

Based on this asymptotic form, the nuclear contacts
for a nucleus with A nucleons are defined as

C↵� =
A(A� 1)

2
hA↵

|A�
i. (19)

The factor A(A� 1)/2 appears in place of the number of
proton-proton, neutron-proton or neutron-neutron pairs
present in previous publications because here the wave
function is anti-symmetric under permutation of any two
nucleons.

The diagonal contacts C↵↵ are proportional to the
number of correlated pairs in the nucleus with quantum
numbers ↵. However, in this work we apply the GCF to
describe the short-range behavior of the two-body densi-
ties relevant for 0⌫�� transitions. Hence, we define new
contact parameters that involve di↵erent initial (i) and
final (f) nuclear states as

C↵�(f, i) =
A(A� 1)

2
hA↵(f)|A�(i)i. (20)

Using the above definition, we can write the dominant
contributions to the transition densities defined in Eq. (9)
at short distances. For F and GT transitions, we expect
pairs in an s-wave state, mainly with s = 0, j = 0, t =
1. Denoting the corresponding contact parameter for a

transition of two neutrons to two protons (nn ! pp) with
such quantum numbers as C0

pp,nn(f, i), the F transition
density can be expressed as

⇢F (r) ���!
r!0

1

4⇡
|�0(r)|2C0

pp,nn(f, i), (21)

where �0(r) is the radial function for the ` = 0, s =
0, j = 0, t = 1 channel. Since ⇢S = ⇢F , the above
asymptotic form is valid for transition density associated
with the short-range operator of Eq. (7). As for the GT
transition, the �ab operator leads to a factor of (�3) in
this s = 0 channel and we similarly obtain

⇢GT (r) ���!
r!0

�
3

4⇡
|�0(r)|2C0

pp,nn(f, i), (22)

which implies the following relation between the F and
GT densities for short distances

⇢GT (r . 1 fm) = �3⇢F (r . 1 fm). (23)

Based on our previous experience with two-body den-
sities [41, 42], these expressions should provide a good
description of the transition densities for r . 1 fm.
To calculate the 0⌫�� matrix elements, we wish to

combine the GCF expressions, valid at short distances,
and the long-range behavior of the nuclear SM many-
body wave functions. The main unknowns in this ap-
proach are the values of the relevant contacts, which
in general depend upon the nucleus and on the partic-
ular nuclear interaction. Nevertheless, previous studies
have shown that for the case of the contacts defined in
Eq. (19), contact ratios C↵↵(X)/C↵↵(Y ), for any two nu-
clei X and Y , are model independent [42, 82, 84]. In this
sense, contact ratios can be interpreted as long-range,
low-resolution quantities that do not depend on the de-
tails of the nuclear interaction.
Such a model independence is expected to hold also

for ratios of the contacts defined in Eq. (20). Therefore,
the ratio of the contacts C0,SM

pp,nn(f1, i1)/C
0,SM
pp,nn(f2, i2)—

indices 1 and 2 denote di↵erent 0⌫�� decays—is inferred
from SM transition densities at short distances. Then,
the contact C0,VN

pp,nn(f2, i2) is obtained by fitting the short-
range behavior to the transition density “2” computed
with VMC for a given realistic nuclear interaction VN .
Finally, the contact for transition “1” is obtained exploit-
ing the model independence of the ratios:

C0,VN
pp,nn(f1, i1) =

C0,SM
pp,nn(f1, i1)

C0,SM
pp,nn(f2, i2)

C0,VN
pp,nn(f2, i2). (24)

This procedure allows us to obtain contact values of
heavy nuclei for any nuclear interaction, using only a sin-
gle ab-initio calculation for light nuclei and SM ones for
both heavy and light nuclei. In Sec. IV we provide ample
evidence on the accuracy of the model independence of
contact ratios.
The contact value C0,VN

pp,nn(f1, i1) and the correspond-
ing short-range radial function fully determine the short-
range part (r . 1 fm) of the transition densities for a

<latexit sha1_base64="yR3rmQ3dcP0LVb4SBVE5QgNUr7c=">AAACgnicdVFda9swFFW8bu2yj7bb415EQ2Hswchu2iZsD2V72WMLTVuITZHlm0REH0aSW4LxL9jr9uP2byY7GdSlvSA4nHOuzpVuVghuHSF/e8GLrZevtnde99+8ffd+d2//w5XVpWEwYVpoc5NRC4IrmDjuBNwUBqjMBFxnyx+Nfn0HxnKtLt2qgFTSueIzzqjz1MXX270BCcdjMhweYxIekziORx6Qo3g0jnAUkrYGaFPnt/u9ZZJrVkpQjglq7TQihUsrahxnAup+UlooKFvSOUw9VFSCTat20hofeibHM238UQ637MOOikprVzLzTkndwj7WGvIpbVq62SituCpKB4qtg2alwE7j5tk45waYEysPKDPcz4rZghrKnP+cTsocVDtBh2wCndbCduks0yKv+/1EwT3TUlKVV0l2B6yeRqlHXm3u0gJXg6iuH/kW1LW+rjHx9NruG/x6/u8APw+u4jA6CeOL4eDs+2ZRO+gTOkCfUYRO0Rn6ic7RBDEE6Bf6jf4EW8GXIAqO1tagt+n5iDoVfPsH8G3GYQ==</latexit>;
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close to each other. Explicitly, any nuclear wave func-
tion  (r1, r2, ..., rA) is expected to obey the asymptotic
form [40]

 ����!
rij!0

X

↵

'↵(rij)A
↵(Rij , {rk}k 6=i,j). (17)

Here rij = rj � ri and Rij = (ri + rj)/2 are the rel-
ative and center of mass coordinates of the pair, and ↵
denotes its quantum numbers, i.e., parity ⇡↵, spin s↵, to-
tal angular momentum j↵, and projection j↵z, and total
isospin t↵ and projection t↵z. Isospin quantum numbers
are relevant to keep the nuclear wave function  anti-
symmetric under permutations of any two nucleons. This
convention is equivalent to the one in most previous GCF
studies considering wave functions anti-symmetric under
separate permutations of protons and neutrons. The so-
lution of the zero-energy two-body Schrödinger equation
'↵(rij) describes the pair dynamics when the two nu-
cleons are close together. It is a universal function, i.e.
identical for all nuclei and all quantum states, but de-
pends on the model and the nuclear interaction. It can
be written as

'↵ (r) ⌘ ⌘t↵,t↵z

X

`↵2⇡↵

�↵(r) [Y`↵ (r̂)⌦ �s↵ ]
j↵m↵ , (18)

where ⌘t,tz is the isospin function, Ylm spherical harmon-
ics, �sm the two-body spin function, and the sum runs
over orbital angular momenta `↵ of correct parity ⇡↵ that
can couple with s↵ yielding j↵. The radial dependence
is modeled by �↵(r), which is independent of j↵z and, to
good accuracy, also of t↵z due to isospin symmetry.

Based on this asymptotic form, the nuclear contacts
for a nucleus with A nucleons are defined as

C↵� =
A(A� 1)

2
hA↵

|A�
i. (19)

The factor A(A� 1)/2 appears in place of the number of
proton-proton, neutron-proton or neutron-neutron pairs
present in previous publications because here the wave
function is anti-symmetric under permutation of any two
nucleons.

The diagonal contacts C↵↵ are proportional to the
number of correlated pairs in the nucleus with quantum
numbers ↵. However, in this work we apply the GCF to
describe the short-range behavior of the two-body densi-
ties relevant for 0⌫�� transitions. Hence, we define new
contact parameters that involve di↵erent initial (i) and
final (f) nuclear states as

C↵�(f, i) =
A(A� 1)

2
hA↵(f)|A�(i)i. (20)

Using the above definition, we can write the dominant
contributions to the transition densities defined in Eq. (9)
at short distances. For F and GT transitions, we expect
pairs in an s-wave state, mainly with s = 0, j = 0, t =
1. Denoting the corresponding contact parameter for a

transition of two neutrons to two protons (nn ! pp) with
such quantum numbers as C0

pp,nn(f, i), the F transition
density can be expressed as

⇢F (r) ���!
r!0

1

4⇡
|�0(r)|2C0

pp,nn(f, i), (21)

where �0(r) is the radial function for the ` = 0, s =
0, j = 0, t = 1 channel. Since ⇢S = ⇢F , the above
asymptotic form is valid for transition density associated
with the short-range operator of Eq. (7). As for the GT
transition, the �ab operator leads to a factor of (�3) in
this s = 0 channel and we similarly obtain

⇢GT (r) ���!
r!0

�
3

4⇡
|�0(r)|2C0

pp,nn(f, i), (22)

which implies the following relation between the F and
GT densities for short distances

⇢GT (r . 1 fm) = �3⇢F (r . 1 fm). (23)

Based on our previous experience with two-body den-
sities [41, 42], these expressions should provide a good
description of the transition densities for r . 1 fm.
To calculate the 0⌫�� matrix elements, we wish to

combine the GCF expressions, valid at short distances,
and the long-range behavior of the nuclear SM many-
body wave functions. The main unknowns in this ap-
proach are the values of the relevant contacts, which
in general depend upon the nucleus and on the partic-
ular nuclear interaction. Nevertheless, previous studies
have shown that for the case of the contacts defined in
Eq. (19), contact ratios C↵↵(X)/C↵↵(Y ), for any two nu-
clei X and Y , are model independent [42, 82, 84]. In this
sense, contact ratios can be interpreted as long-range,
low-resolution quantities that do not depend on the de-
tails of the nuclear interaction.
Such a model independence is expected to hold also

for ratios of the contacts defined in Eq. (20). Therefore,
the ratio of the contacts C0,SM

pp,nn(f1, i1)/C
0,SM
pp,nn(f2, i2)—

indices 1 and 2 denote di↵erent 0⌫�� decays—is inferred
from SM transition densities at short distances. Then,
the contact C0,VN

pp,nn(f2, i2) is obtained by fitting the short-
range behavior to the transition density “2” computed
with VMC for a given realistic nuclear interaction VN .
Finally, the contact for transition “1” is obtained exploit-
ing the model independence of the ratios:

C0,VN
pp,nn(f1, i1) =

C0,SM
pp,nn(f1, i1)

C0,SM
pp,nn(f2, i2)

C0,VN
pp,nn(f2, i2). (24)

This procedure allows us to obtain contact values of
heavy nuclei for any nuclear interaction, using only a sin-
gle ab-initio calculation for light nuclei and SM ones for
both heavy and light nuclei. In Sec. IV we provide ample
evidence on the accuracy of the model independence of
contact ratios.
The contact value C0,VN

pp,nn(f1, i1) and the correspond-
ing short-range radial function fully determine the short-
range part (r . 1 fm) of the transition densities for a

The contacts are typically determined on VMC calculations, which are not feasible for heavy nuclei.



VALIDATION OF THE GCF-SM METHOD
The ratio of contacts is a low-resolution quantity that should not depend on the nuclear interaction 
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close to each other. Explicitly, any nuclear wave func-
tion  (r1, r2, ..., rA) is expected to obey the asymptotic
form [40]

 ����!
rij!0

X

↵

'↵(rij)A
↵(Rij , {rk}k 6=i,j). (17)

Here rij = rj � ri and Rij = (ri + rj)/2 are the rel-
ative and center of mass coordinates of the pair, and ↵
denotes its quantum numbers, i.e., parity ⇡↵, spin s↵, to-
tal angular momentum j↵, and projection j↵z, and total
isospin t↵ and projection t↵z. Isospin quantum numbers
are relevant to keep the nuclear wave function  anti-
symmetric under permutations of any two nucleons. This
convention is equivalent to the one in most previous GCF
studies considering wave functions anti-symmetric under
separate permutations of protons and neutrons. The so-
lution of the zero-energy two-body Schrödinger equation
'↵(rij) describes the pair dynamics when the two nu-
cleons are close together. It is a universal function, i.e.
identical for all nuclei and all quantum states, but de-
pends on the model and the nuclear interaction. It can
be written as

'↵ (r) ⌘ ⌘t↵,t↵z

X

`↵2⇡↵

�↵(r) [Y`↵ (r̂)⌦ �s↵ ]
j↵m↵ , (18)

where ⌘t,tz is the isospin function, Ylm spherical harmon-
ics, �sm the two-body spin function, and the sum runs
over orbital angular momenta `↵ of correct parity ⇡↵ that
can couple with s↵ yielding j↵. The radial dependence
is modeled by �↵(r), which is independent of j↵z and, to
good accuracy, also of t↵z due to isospin symmetry.

Based on this asymptotic form, the nuclear contacts
for a nucleus with A nucleons are defined as

C↵� =
A(A� 1)

2
hA↵

|A�
i. (19)

The factor A(A� 1)/2 appears in place of the number of
proton-proton, neutron-proton or neutron-neutron pairs
present in previous publications because here the wave
function is anti-symmetric under permutation of any two
nucleons.

The diagonal contacts C↵↵ are proportional to the
number of correlated pairs in the nucleus with quantum
numbers ↵. However, in this work we apply the GCF to
describe the short-range behavior of the two-body densi-
ties relevant for 0⌫�� transitions. Hence, we define new
contact parameters that involve di↵erent initial (i) and
final (f) nuclear states as

C↵�(f, i) =
A(A� 1)

2
hA↵(f)|A�(i)i. (20)

Using the above definition, we can write the dominant
contributions to the transition densities defined in Eq. (9)
at short distances. For F and GT transitions, we expect
pairs in an s-wave state, mainly with s = 0, j = 0, t =
1. Denoting the corresponding contact parameter for a

transition of two neutrons to two protons (nn ! pp) with
such quantum numbers as C0

pp,nn(f, i), the F transition
density can be expressed as

⇢F (r) ���!
r!0

1

4⇡
|�0(r)|2C0

pp,nn(f, i), (21)

where �0(r) is the radial function for the ` = 0, s =
0, j = 0, t = 1 channel. Since ⇢S = ⇢F , the above
asymptotic form is valid for transition density associated
with the short-range operator of Eq. (7). As for the GT
transition, the �ab operator leads to a factor of (�3) in
this s = 0 channel and we similarly obtain

⇢GT (r) ���!
r!0

�
3

4⇡
|�0(r)|2C0

pp,nn(f, i), (22)

which implies the following relation between the F and
GT densities for short distances

⇢GT (r . 1 fm) = �3⇢F (r . 1 fm). (23)

Based on our previous experience with two-body den-
sities [41, 42], these expressions should provide a good
description of the transition densities for r . 1 fm.
To calculate the 0⌫�� matrix elements, we wish to

combine the GCF expressions, valid at short distances,
and the long-range behavior of the nuclear SM many-
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0,SM
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gle ab-initio calculation for light nuclei and SM ones for
both heavy and light nuclei. In Sec. IV we provide ample
evidence on the accuracy of the model independence of
contact ratios.
The contact value C0,VN

pp,nn(f1, i1) and the correspond-
ing short-range radial function fully determine the short-
range part (r . 1 fm) of the transition densities for a

•                heavy-nucleus transition
<latexit sha1_base64="vyXgopIwjH91vOMn7/hTG19PcRA="></latexit>

i1 ! f1
<latexit sha1_base64="ikjKCWSFSBK9OICIssOLNX3j9qY="></latexit>

i2 ! f2•                light-nucleus transition

We teste this assumptions on VMC transition densities: 12Be →12C, 10Be →10C, and 6He →6Be7

FIG. 3: Fermi transition density ratio for di↵erent
nuclei, calculated using di↵erent interactions (AV18 and

SM). At short distances, the ratio plateaus and is
similar for the two interaction models.

given nuclear interaction. On the other hand, the SM
is expected to provide high-quality transition densities
at long distances. Thus, we merge the GCF and SM
results continuously, by scaling the SM transition den-
sities to match the GCF expression around r ' 1 fm.
This approach, dubbed GCF-SM, allows us to obtain
the F and GT transition densities for any given nuclear
interaction—including heavy nuclei where direct ab initio
calculations with high-resolution potentials are currently
not possible. We integrate the resulting transition densi-
ties as in Eq. (10) to evaluate the relevant 0⌫�� NMEs.

In the case of the T transitions the leading contribu-
tion is expected to come from p-wave channels. There
are three such channels (with j = 0, 1, 2) which compli-
cates the analysis. In addition, comparing SM and VMC
calculations, it seems that the model-independence of the
ratios does not hold for the T case. For this reason, in
this work we estimate the T matrix element by the SM
results with a 50% uncertainty. This should not have a
big impact on the total NME as the T part is expected
to be small compared to the GT contribution [15, 25].

IV. RESULTS AND DISCUSSION

A. Light nuclei

In order to use the GCF to describe the short-range
part of the transition densities, we evaluate the contact
C0

pp,nn(f, i) assuming the model independence of contact
ratios. In light nuclei, the availability of both VMC and
SM 0⌫�� transition densities allows us to test the accu-
racy of this approach. Figure 3 displays two ratios of F
transition densities: 12Be ! 12C decay over 10Be ! 10C
and over 6He ! 6Be, obtained with both the VMC and
SM. At short distances the ratio reaches a plateau, as
expected according to Eq. (21), representing the contact

FIG. 4: Fermi, Gamow-Teller and short-range transition
densities calculated with the SM WSS (orange line),
VMC (green points), and the combination of the GCF
and SM WSS (blue band) approaches. For the latter,
only VMC calculations for A = 6 and A = 10 are used

to extract the 12Be !12 C contact value.

ratio of the two transitions. In addition, in both cases
(e.g. A = 10 and A = 6) the value of the ratio at short
distances is very similar for the VMC and SM calcula-
tions, indicating model independence.

To gauge the accuracy of our approach, we use the
VMC transitions for A = 6 and A = 10 to predict results
for A = 12. The contact C0

pp,nn(
10Be,10 C) is fitted to the

VMC calculations using the functional form of Eq. (21).
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ratio of the two transitions. In addition, in both cases
(e.g. A = 10 and A = 6) the value of the ratio at short
distances is very similar for the VMC and SM calcula-
tions, indicating model independence.

To gauge the accuracy of our approach, we use the
VMC transitions for A = 6 and A = 10 to predict results
for A = 12. The contact C0

pp,nn(
10Be,10 C) is fitted to the

VMC calculations using the functional form of Eq. (21).

F: 12Be →12C GT: 12Be →12C 

We merge the GCF and SM densities by scaling the latter to match the GCF expression at r ≃ 1 fm

SR: 12Be →12C



PREDICTIONS OF THE GCF-SM
Having validated the GCF-SM on light nuclei, we make prediction for heavy emitters, comparing 
with other approaches
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Transition Method F GT SR

48Ca ! 48Ti

WSS 0.147 0.969 2.360

WSW 0.139 0.917 2.043

HO 0.146 0.916 2.356

WSS+GCF 0.09(2) 0.66(14) 0.32(6)

WSW+GCF 0.09(2) 0.62(13) 0.27(5)

HO(S)+GCF 0.09(2) 0.62(13) 0.32(6)

HO(W)+GCF 0.10(2) 0.62(13) 0.32(6)

76Ge ! 76Se
HO 0.356 3.022 5.247

HO(S)+GCF 0.23(5) 2.17(49) 0.70(13)

HO(W)+GCF 0.24(5) 2.18(49) 0.70(13)

130Te ! 130Xe
HO 0.416 2.873 5.804

HO(S)+GCF 0.27(6) 2.01(44) 0.78(14)

HO(W)+GCF 0.27(6) 2.02(45) 0.78(15)

136Xe ! 136Ba
HO 0.334 2.302 4.564

HO(S)+GCF 0.21(4) 1.57(35) 0.60(11)

HO(W)+GCF 0.22(4) 1.59(35) 0.60(11)

TABLE III: Fermi, Gamow-Teller, and short-range
NMEs for the 48Ca !

48Ti, 76Ge !
76Se, 130Te !

130Xe and 136Xe !
136Ba transitions using the SM

(HO, WSS, WSW) and the GCF-SM with di↵erent WS
orbitals to fix the values of the contact ratios.

around 35%�60% ofM0⌫
L for A = 48—in good agreement

with Ref. [34]—and around 25% � 40% for the heavier
nuclei. Since M0⌫

S has the same sign as M0⌫
L , the total

matrix element would be enhanced, also in agreement
with Ref. [34]. Despite the di↵erences between our re-
sults and the SM ones of Jokiniemi et al., the relative
importance of the SR term is overall similar, while the
QRPA predicts somewhat larger larger ratio values [90].

It is important to highlight the di↵erences between
the GCF-SM and previous attemps to include SRCs into
the SM and other approaches based on regularized in-
teractions. Some of the correlation functions that pro-
duce larger e↵ect of SRCs, e.g. those by Miller and
Spencer [43], were criticized because they lead to viola-
tion of isospin symmetry: the integral

R1
0 r2⇢F (r)dr 6= 0

when the isospin of the initial and final state is di↵er-
ent [91]. Given the relatively large e↵ects of SRCs, one
might think that the GCF-SM approach can su↵er from
the same shortcomings. Ref. [91] also claims that, in
order to respect isospin symmetry, correlation functions
should peak around r ' 1 fm with a value above 1 to
compensate for the reduction of probability at short dis-
tances. This behavior eventually leads to a relatively
small e↵ect on the NME values. In contrast, to match the
VMC and SM results an appropriate correlation function
should be defined as the ratio of the corresponding tran-
sition densities—by construction, multiplying the SM re-
sults by this correlation function reproduces the VMC
one. By comparing the VMC and SM transition densi-
ties presented in Fig. 4, we notice that the correlation

FIG. 8: Long-range matrix element M0⌫
L calculated

with the combination of the GCF and the SM (blue),
the SM without (orange) and with SRCs from Jokiniemi
et al. (green) [90], the CC from Novario et al. (red)
[32], the VS-IMSRG from Belley et al. (purple) [35],
and the IMSRG+GCM from Yao et al. (brown) [33].

function does not peak around r ' 1 fm. Furthermore,
the GCF-SM approach has a significant di↵erence in that
the SM results are re-scaled to match the short-range be-
havior, so that the e↵ect of the GCF does not approach
unity at long distances unlike most SRC parametriza-
tions. This re-scaling allows the GCF-SM to compensate
for the short-range reduction without a peak at r ' 1
fm. Some violation of the isospin orthogonality can still
be found in our actual results, but this is due to sublead-
ing corrections, like three-body correlations, and possi-
ble small di↵erences between the SM and the exact so-
lution at long distances. Eventually, the good agreement
between the GCF-SM and VMC results in light nuclei
shown in Fig. 4 demonstrates the accuracy of our method.
In addition, most of the available SRC functions as-

sume in their derivation a simple form for the uncorre-
lated wave function, like a Slater determinant in Ref. [44].
The latter di↵ers from the SM wave function and there-
fore leads to inconsistencies when combined with SM cal-
culations. Likewise, the correlation function based on
VMC calculations introduced in Ref. [73] also uses a sim-
ple function for the uncorrelated part. Further, Ref. [73]
uses proton-proton VMC densities of a given nucleus in
contrast to the transition densities involving the initial
and final nuclei used in the GCF-SM approach. In short,
the GCF-SM replaces the need of introducing SRC func-
tions by directly providing the appropriate short-range
structure for any given NN interaction.

V. CONCLUSIONS

We have introduced a novel protocol based on the GCF
that combines SM and QMC methods to compute 0⌫��
decay nuclear matrix elements of heavy nuclei relevant
for experimental searches. The GCF is used to describe
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FIG. 6: Transition densities C0⌫
F (upper panel), C0⌫

F
(middle panel), and C0⌫

S (lower panel) for the
76Ge !76 Se decay obtained with the SM with HO
orbitals (orange line) and the GCF-SM (blue band).

tive 50% uncertainty. Figure 8 presents our results for
M0⌫

L , highlighting that the GCF-SM reduces the value
of M0⌫

L by about 15% � 40% compared to the original
SM calculations. Therefore, our approach introduces a
much larger SRC e↵ect than the one from typical SRC
parametrizations such as the one from Ref. [44] used in
SM 0⌫�� studies, see the very small di↵erence between
the SM (HO) and Jokiniemi et al. results from Ref. [90].
Figure 8 also compares our NMEs with the ab-initio re-

FIG. 7: NMEs of the F (upper panel), GT (middle
panel), and SR (lower panel) operators using the

GCF-SM and the SM approaches, compared to the SR
results of Jokiniemi et al. [90] and Wirth et al. [34].

sults of Novario et al. [32] using the Coupled Cluster
(CC) method and of Yao et al. [33] using the IM-GCM
approach for 48Ca and of Belley et al. [35] using the va-
lence space IMSRG (VS-IMSRG) method for 48Ca and
76Ge. Our long-range NMEs are in very good agreement
with all the ab initio results for 48Ca even though these
calculations use di↵erent nuclear interactions, and are
also consistent with the VS-IMSRG for 76Ge. This good
agreement supports our predictions for 130Te and 136Xe,
for which ab initio NMEs are not available.
Comparing Figs. 7 and 8, it is apparent that the SR

term contributes significantly to the total NME: M0⌫
S is

Good agreement with microscopic approaches for 48Ca and 76Ge, results for 130Te and 136Xe 
indicate 20% quenching with respect to SM results;



So far we used the highly-realistic but phenomenological AV18 + UIX Hamiltonian

• Extension to local chiral-EFT interactions straightforward within the VMC

• Using non-local chiral-EFT interactions is also possible, but requires ab-initio methods 
other than the VMC, e.g. the no-core shell model

PATH FORWARD (MODEL UNCERTAINTY)

• Comparing with other microscopic approaches (CC, IM-SRG, etc.);

Extending the GCF-SM approach

• Complementary theoretical insight from the operator evolution from the similarity 
renormalization group 

Thorough test of the model-independence of the ratios:

• Go beyond the two-nucleon factorization including three-body effects 

• Computing other quantities, including neutrino-full single- and double-beta decays
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Comparison with VMC matrix elements of light nuclei

PATH FORWARD (MODEL UNCERTAINTY)
9

FIG. 5: Ratio of nuclear matrix elements of the F
(upper panel), GT (central panel), and SR (lower panel)
operators. Results obtained combining the GCF and

SM, or just the SM approach, divided by the VMC ones
with the AV18+UX Hamiltonian. Both WSS and WSW
parametrizations are used for the SM calculations.

light nuclei, the only di↵erence being that we use all the
VMC and SM transition densities for A = 6, A = 10, and
A = 12 nuclei to extract the contact values. The short-
range components of the transition densities are mod-
eled according to Eqs. (21) and (22) and continuously
matched to re-scaled SM results, so that the long-range
part C0⌫

↵ (r) is fully specified.

While for light nuclei A  12 WSS and WSW clearly

improve the transition densities in Eq. (9) in relation with
the VMC results, the HO and WS radial wave functions
lead to very similar results in 48Ca, see Fig. 2. Based on
this observation, for A � 48 nuclei our SM transitions are
obtained with HO orbitals. On the other hand the SM
transition densities for A = 6, A = 10, and A = 12 used
to extract the contact ratios against AV18+UX VMC
results are always carried out with WS single-particle
states. Specifically, we denote the HO results for heavy
nuclei “HO(S)” or “HO(W)” depending on whether the
WSS or WSW parametrization is used to extract the con-
tacts from light-nuclei transitions.
Figure 6 illustrates the di↵erences between SM and

GCF-SM transition densities for the 76Ge ! 76Se decay,
covering the F, GT, and SR operators. The short-range
behavior of the SM is modified in a consistent fashion
as in light nuclei, and reflects the underlying realistic
nuclear potential. Analogously to Fig. 5, we do not report
the SM transition densities for the SR operator, as the
corresponding NMEs are about 7 times larger than the
GCF-SM values.
The GCF-SM results for the F, GT and SR matrix

elements for A = 48, A = 76, A = 130 and A = 136
are displayed in Fig. 7 and their numerical values are
listed in Table III. We supplement these predictions with
conservative estimates for the uncertainties associated to
the matching procedure and the extraction of the contact
ratios as described in Sec IVA. Our results indicate that
the F and GT matrix elements are reduced by about
20%�45% compared to the conventional SM calculations
due to the additional SRC introduced via the GCF.
The bottom panel of Fig. 7 shows that the value of the

short-range NME is significantly smaller in A = 48 than
in heavier nuclei, a trend which is similar when we replace
the SR transition potential with the one corresponding
to the NV-Ia* interaction—M0⌫

S only changes by about
20%. Figure 7 also indicates that our short-range NMEs
are in general smaller but consistent within error-bars
with the SM results by Jokiniemi et al. [90], which cover
a wider range of SR transition potentials—not includ-
ing the AV18 one we use—and are further corrected by
the SRC parametrization of Ref. [44]. In contrast, we
only use one SR potential and just include uncertain-
ties associated to the matching procedure and the ex-
traction of the contact ratios. The M0⌫

S values obtained
with the QRPA by Jokiniemi et al. are somewhat larger
than ours. Remarkably, our SR NME for 48Ca is in good
agreement with the in-medium similarity renormalization
group (IMSRG) combined with the generator coordinate
method (IM-GCM) ab-initio result of Wirth et al. [34].
This is particularly interesting since they use a di↵er-
ent nuclear interaction and also a di↵erent procedure for
determining the SR coupling gNN

⌫ .
Eventually, the total 0⌫�� decay NME is the sum of

the long-range term M0⌫
L = M0⌫

GT +M0⌫
F +M0⌫

T and the
short-range matrix element M0⌫

S . As discussed in Sec-
tion III, we evaluate the relatively small MT contribu-
tion within the standard SM, associated to a conserva-
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the SM transition densities for the SR operator, as the
corresponding NMEs are about 7 times larger than the
GCF-SM values.
The GCF-SM results for the F, GT and SR matrix

elements for A = 48, A = 76, A = 130 and A = 136
are displayed in Fig. 7 and their numerical values are
listed in Table III. We supplement these predictions with
conservative estimates for the uncertainties associated to
the matching procedure and the extraction of the contact
ratios as described in Sec IVA. Our results indicate that
the F and GT matrix elements are reduced by about
20%�45% compared to the conventional SM calculations
due to the additional SRC introduced via the GCF.
The bottom panel of Fig. 7 shows that the value of the

short-range NME is significantly smaller in A = 48 than
in heavier nuclei, a trend which is similar when we replace
the SR transition potential with the one corresponding
to the NV-Ia* interaction—M0⌫

S only changes by about
20%. Figure 7 also indicates that our short-range NMEs
are in general smaller but consistent within error-bars
with the SM results by Jokiniemi et al. [90], which cover
a wider range of SR transition potentials—not includ-
ing the AV18 one we use—and are further corrected by
the SRC parametrization of Ref. [44]. In contrast, we
only use one SR potential and just include uncertain-
ties associated to the matching procedure and the ex-
traction of the contact ratios. The M0⌫

S values obtained
with the QRPA by Jokiniemi et al. are somewhat larger
than ours. Remarkably, our SR NME for 48Ca is in good
agreement with the in-medium similarity renormalization
group (IMSRG) combined with the generator coordinate
method (IM-GCM) ab-initio result of Wirth et al. [34].
This is particularly interesting since they use a di↵er-
ent nuclear interaction and also a di↵erent procedure for
determining the SR coupling gNN

⌫ .
Eventually, the total 0⌫�� decay NME is the sum of

the long-range term M0⌫
L = M0⌫

GT +M0⌫
F +M0⌫

T and the
short-range matrix element M0⌫

S . As discussed in Sec-
tion III, we evaluate the relatively small MT contribu-
tion within the standard SM, associated to a conserva-
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FIG. 5: Ratio of nuclear matrix elements of the F
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transitions [64–66]. It is also one of the common methods
to compute 0⌫��-decay NMEs [15–18].
In order to handle both light and heavy nuclei, the nu-

clear SM simplifies the many-body problem by restrict-
ing to a relatively small configuration space consisting of
one or two harmonic oscillator shells. This excludes from
the calculation the core—filled with nucleons—below and
the high-energy orbitals—empty—above the configura-
tion space, but their impact is captured by an e↵ective in-
teraction corresponding to the configuration space. The
resulting many-body Schrödinger equation is

He↵ | SMi = E | SMi, (16)

which we solve using the J-coupled code NATHAN [65].
Even though ab initio approaches allow one to obtain ef-
fective interactions solely based onNN and three-nucleon
forces [67], in this work we use high-quality interactions
obtained from NN potentials complemented with small
phenomenological adjustments, mostly on the monopole
part [65].
For light A  12 nuclei we use the p- and sd-shell con-

figuration space and the PSDMWK interaction [68, 69]
corrected for center-of-mass contamination. In heavier
nuclei we use the same configuration space and SM in-
teractions as in previous SM studies [15, 70]: the pf-shell
with the KB3G interaction for 48Ca, the 1p3/2, 1p1/2,
0f5/2, 0g9/2 space with the GCN2850 interaction [15] for
76Ge, and the 1d5/2, 2s1/2, 1d3/2, 0g7/2, 0h11/2 space
with the GCN5082 interaction [15] for 130Te and 136Xe.
The SM wave functions from Eq. (16) directly provide

energies and other observables not dependent on radial
degrees of freedom. However, for 0⌫�� decay the spatial
part is relevant as well, and usually a harmonic oscillator
(HO) basis is used for single-particle states [15, 70]. Here
we follow the improved approach of Ref. [46] and obtain
our transition densities replacing the standard HO spatial
single-particle states by Woods-Saxon (WS) ones, which
reflect a more realistic long-range asymptotic behavior.
We consider two kinds of WS potential: first, the stan-
dard parametrization from Suhonen (WSS) [71]; second,
the potential proposed by Ref. [46] adjusted to the ex-
perimental neutron and proton separation energies and
taking all orbitals in the configuration space as bound
(WSW)—however, these conditions cannot be met for
A = 6 which we only study with WSS. We have checked
that alternative WS parametrizations [72] give very sim-
ilar results to WSS.
In light nuclei, Ref. [46] shows that SM results with

WSW orbitals greatly improve the agreement with VMC
ones. The improvement with WSS is similar. However,
extending the SM results with WS single-particle orbitals
to heavy nuclei is challenging, and only HO calculations
are currently feasible. Fortunately, we have tested in
A = 48 that the di↵erences between using HO and WS
orbitals become smaller for heavier systems. Figure 2
shows minor di↵erences between the F transition density
computed employing the two di↵erent parametrizations
of the WS orbitals and the HO one for single-particle

FIG. 2: Fermi transition density for A = 48 using the
SM with HO, WSS, and WSW single-particle orbitals.

orbitals. Likewise, the GT and T transition densities are
also very similar.
Since the nuclear SM deals with regularized e↵ective

interactions, part of the short-range dynamics is missing
in the wave functions. This shortcoming is common to
other non ab initio approaches such as the QRPA, energy-
density functional theory and interacting boson model.
Because the short-range dynamics can impact 0⌫�� de-
cay NMEs, typically calculations correct for missing
SRCs via a Jastrow-type function. Di↵erent parametriza-
tions have been provided by Miller-Spencer [43] or based
on Argonne and CD-Bonn potentials [44], or by others
[45, 73, 74]. However, in this work we do not include
any additional correlations of this kind, as we introduce
the correct short-range dynamics captured by the VMC
calculations using the GCF.

C. Generalized Contact Formalism

The GCF is an e↵ective theory for describing the im-
pact of SRCs on a variety of nuclear distributions and
observables. This formalism has proven extremely suc-
cessful in modeling the short-range and high-momentum
parts of di↵erent nuclear densities [40–42], and also large
momentum transfer electron scattering experiments sen-
sitive to SRCs [75–79] and other reactions [39, 80–82]. In
a high-resolution picture, when two or more particles are
close to each other, and, therefore, strongly interacting,
the SM solution for the wave function—based on a regu-
larized potential—becomes inaccurate [83]. For example,
SRCs lead to a significant occupation of high momentum
states absent in the SM. On the other hand, QMC meth-
ods fully capture these features but are limited to light
nuclei. Therefore, the GCF provides an ideal framework
to quantitatively incorporate the correct short-range be-
havior into shell-model calculations of heavy nuclei.
The GCF is based on scale separation, leading to

wave-function factorization when two particles are very

Harmonic-Oscillator vs Wood-Saxon orbitals 

• Major differences in light nuclei

• Almost no differences in heavy 
nuclei


