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Quite generally the double beta decay nuclear matrix element
consists of three parts:

MOV
M™ = Mgy — —g§ + Mp" = Mgr(1+ Xr + x1).
A

The Gamow-Teller part M;1is the dominant one. When treated
in the closure approximation it is

MGT — <f|2]kgl . O'kTZ+Tk+H(rlka E_)|l>7

The " " neutrino potential” H(r;;,E) originates from the
corresponding particle physics responsnble for the Lepton
Number Violation. A large variety of neutrino potentials
have been considered in the literature, hence also a large
variey of the corresponding nuclear matrix elements.



For the simplest scenario the " " neutrino potential” originating
from the light neutrino propagator is

hK(qz)qdq
q+EN. —(E;+Ef))2

2 ©. @)
HK(”lz, Ekn) = @R/ Tk (gri2)
A 0

Where f;+(qr) = jo(qr) and hr = g4/(1 + g°/M,?)? is the nuclear
axial current form factor, M, ~ 1 GeV. The dependence on the
excitation energy in the denominator is weak, hence it is
replaced by some average constant value E.

We will consider evaluation in the closure approximation. Thus,
the matrix elements formally depend only on the initial and final
nuclear ground state wave functions.

Tests suggests that the closure approximation is accurate to
about 10%.



As we will see, the neutrino momentum is ~200 MeV so the
dependence on the nuclear excitation energy is weak. The potential
H(r,E) looks like a Coulomb 1/r radial dependence. Finite size

and higher order currents remove the singularity at r=0.
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How does the matrix element M» . depend on the distance
between the two neutrons that are transformed into two
protons ? This is determined by the function C%.(r)

Car(r) = {f1Zuor - 047 77 8(r — ru) H(rie, E)|i).
o0
It is normalized by the obvious relation ((_);VT = / Cg‘)T(r) dr,
0

Thus, if we could somehow determine C(r) we could obtain M%,

In order to obtain C(r) consider first the matrix elements of
the operator o, 0, between two noninteracting neutrons and two
protons coupled to the angular momentum J without the neutrino
potential:

7, () = (p(1), P )T || o102 || n(1), 0’ Q)(r); T)

n',p,p’



Here are few examples for the f,,, and f5,, orbits. These functions,
as expected, typically extend up to the nuclear diameter, peaking near
the middle. Some of them, in particular those with J = 0, are
asymmetric with larger amplitude at small distances.
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Function C™(r) evaluated in QRPA. Note the peak at ~ 1fm. There

is little contribution from r > 2-3 fm. And the function for different
nuclei look very similar, essentially universal. The magnitude of M
is determined basically by the height of the peak.
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C(fm™)

Now C(r) evaluated in the nuclear shell model. All relevant
features look the same as in QRPA despite the very different

way the equations of motion are formulated and solved.
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C(r) for the hypothetical 0Ovpp decay of °He.
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The calculation was performed
using the ab initio variational
Monte-Carlo method. So most
of the approximations inherent
in NSM or QRPA are avoided.
Yet the C(r) function looks,

at least qualitatively, very
similar to the results shown
before.

Figure from Pastore et al.,1710.05026



The fact that the resulting C(r) is concentrated at r < ~2fm is the
result of cancellation between J = O (pairing) and other values of ]
(broken pairs). We have seen the effect of such cancellation before.
It is again common to QRPA and NSM.
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The cancellation of contributions beyond r ~ fm is a consequence of
nuclear interaction. It happens only when the strength of the isoscalar
pairing has the correct value.

The radial dependence of M® evaluated in the exactly solvable model
(Engel & Vogel Phys. Rev. C69, 034304 (2004)). Note that the cancellation
for r > 2-3 fm appears only near g,, = 1. That happens in real nuclei also.
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This is the analog of C?(r ) evaluated in the exactly solvable model.
The curve with g,, = 1.0, which is a closest analog of the realistic
situation and it indeed looks quite similar to it.
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Lets consider once more the GT m.e. for OvBp

Mg]r)r — <f|ZlkUl . O-kTZ_FTk_'_H(rlka E)|l>,

If we remove from the operator the neutrino potential
H(r,E) we obtain the matrix element of the double GT
operator connecting the ground states of the initial and
final nuclei. The same operator would be responsible for
the 2vpp decay if it would be OK to treat it in the closure
approximation. It is also a component of the * " double GT"
strength function for the initial nucleus |i>.

2 .
My = (fIZnor - owry T 1i),

In reality, the closure approximation is not good for the 2vpf
decay, but we can still consider the corresponding value if we
somehow can guess the correct average energy denominator.

The correct expression . (fllot¥||m)({m|loT™||i)

for M2 includes energy = Zn En—(M; +Mp)/2
denominators




We can define the radial function C?V,(r) the same way as for the
genuine M matrix element, thus

C3'(r) = (fIZwor - 0x8(r — ru) 7 7.t i),
o0
M2 = / CZ'(r)dr.
0

It is now clear that, at least formally, the following equality holds:
COV(r‘) H(r EO) C2VC|(r‘) Whlle Mg}]”)[‘ — / Cg‘fr(r) di",
0

So, if we can somehow determine the function C*(r) we will be
able to determine C%(r) and thus also the ultimate goal, the M% .
And, moreover, this is so for any neutrino potential. Thus,
evaluation of M is reduced to a simple integral, provided any one
of the functions C(r) is known. All of such M%.are then consistent
and easily evaluated.
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Double GT strength of 48Ca evaluated in the shell model with several

model hamiltonians (see Shimizu et al, 1709.01088). The 2vfp

closure matrix element (i.e. the DGT transition to the 8Ti ground

state) that we are interested in represents only about

10-4 fraction of the shown total strength.




Cross sections of (t,3He) and (d,?He) reactions
give B(6T*) for $* and 3~ products of the amplitudes
(B(6T)/2) entering the numerator of M2Vt
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The B~ strength is dominated
by the giant GT resonance.
However, the p* strength is
concentrated at low energy,
little (but unknown) strength
to the giant.
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Clearly, determination of M?' is not easy. We do know the
value of M?', however M?' cannot be extracted from the
known 2vBp decay half-life. That's because while both MY

and M?¥ depend only on the virtual 1* states in the
intermediate odd-odd nucleus, the weights of individual states
are different. Those at higher energies contribute less to M2
than to M.

This would be OK if the higher energy states have negligibly
small either <m| o t* |i> and <m| ot |f>. But that is not the
case, apparently.
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The B~ and p* strength function
calculated in SRQRPA

with 21 s.p. levels. Note

the different scales in the

two panels.

In the B~ case one can clearly
see the giant GT state. Also,
the strength saturates at

~15 MeV.

On the other hand, the much
smaller p* strength, unlike the
usual claims, gets substantial
contribution from relatively
high excitation energies as well.

Whether this high-lying p*
strength exists or not is the
crucial question.
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Illustration of the difficulties.
In the upper panel are the
contributions fo the M from
states up to E. Even though

the correct value is reached
(by design), it is also crossed at
lower energies, followed by

a drop at ~ 10 MeV.

In the lower panel the same
calculation is done for M2,

In this case the high energy
drop is much larger because

it is not reduced by the energy
denominator present in the
True M%.

While the states up to ~5 MeV
can be studied experimentally,
the ~ 10 MeV can not. It is not
clear whether they exist or not.
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Again, this feature appears to be
present in other nuclear models

as well. Here are the shell model
results for M% in 48Ca (upper panel)
and in the model case of 3¢Ar.
(From Kortelainen and Suhonen,

J. Phys. G 30, 2003 (2004)).

The drop at ~ 10 MeV is again visible,
perhaps it is less apparent that in the
heavier nuclei treated by QRPA.

Nevertheless, the inherent uncertainty
in M?v, is substantial.
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Dependence on the cut-off in summing over
the 1* excitation energies:

The 2vBp and OvBP matrix elements,

and the corresponding C(r) distribution
functions are essentially independent

of that cut-off. However, the 2vpp

closure matrix element does depend
strongly on this cut-off; even changing

signh in this case.
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Here are the functions C* (r) evaluated with QRPA for several
nuclei. The peak at small r is essentially compensated by the
substantial tail at larger r because M?v;+,, is very small. Besides,
the C?(r) depends on the nuclear parameters used, thus it
is uncertain, particularly its tail at r > 2fm.
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For comparison, the C(r)

function for 136Xe evaluated

in the NSM by Shimizu et al.

The yellow line corresponds

to the C?v,(r) . It is qualitatively
Similar to the corresponding
QRPA curve. However, differences
are be expected due to the
absence of the giant GT

state in the NSM in this case.
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Further insight can be gained by the transformation into the LS scheme.
Since T=1, the S=1 requires odd parity, suppressed at small r. Hence, we
expect that most contribution comes from S=0, as shown.
Further, by using the spin projection operators one can show that
M2+ = [-3 M>(S=0) + M*¥(5=1)1/4 and M>¢ = [ M*¥(S=0) + M>(5=1)]/4 .
The same is true for the corresponding C(r) functions. Neglecting the S=1
contribution, we conclude that C? 1, (r) = -3 C?¢,(r) and naturally also
MZVGTCI = -3 MZVFCI
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However, M?z, = O if the nuclear states have a definite isospin.
This is automatic in NSM. In QRPA based on the BCS functions
this requirement based on the isospin symmetry can be fulfilled
without isospin projection simply by requiring that the isovector
(T=1) nucleon-nucleon interaction has the same strength in the
pp, nn, and np channel. That is true even if the pp and nn pairing
are treated by BCS and the pn by QRPA.

In previous slide I showed that if the S=1 part is negligible, then
M1 = -3 M>g,. Hence M?¥;, = O implies that also M*;1, = O.
That is in agreement (essentially) with our numerical results, and
in disagreement with the assumption of Shimizu et al.

It also suggests a * " restoration” of the Wigner SU(4) symmetry.



We know that M?¥is small but non-vanishing. Could it be compatible
WlTh MzVGTd - O ?

Since M? x AE = M> ;¢ , where AE is the average energy denominator,
the above is possible provided a contraintuitive AE = O,

But that is perfectly possible with the numerators in M2V,
MB+.-(m) MB~.(m), having positive and negative signs, despite
The fact that all excitation energies are positive.



Summary

1) Only small distances, r < 2 fm, contribute to the M%.
That seems to be an universal conclusion, common to
all methods where it was tested.

2) That explains, or justifies at least, why the calculated
M% change little with A or Z, unlike M?".

3) There is a close relation between M% and the
2vpp closure matrix element M?v.

4) If M> or, better yet, its radial dependence C?(r)
could be experimentally determined, it would make
the determination of the M% easier for all possible
OvpBp mechanisms.

5) I argued that the assumption of Shimizu et al. that there
is a proportionality between M® and M?' is unlikely
correct, since MV~ 0.

6) Reliable determination of M, and C*(r) is not easy.

But more work, in theory and experiment, is needed to see
how realistic this is.
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Calculated M% by different methods (color coded)
The spread of the M°" values for each nucleus is ~ 3. On the other
hand, there is relatively little variation from one nucleus to the next.
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From C(r) we know that the
OvBp operator has a short range
character. That is also visible in
the momentum analog €(q). The

characteristic momentum is not
Ac/R but fic/ry~ 200 MeV.

This is again the result of
cancellation between the
=0 (pairing) part and the
other 7 (broken pairs) parts.
Note that the lower panel
has ~ 3 times larger y scale.
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%10 OHe OvBp decay, evaluated using
the variational Monte Carlo
a0 A method, with no approximation.
=~ The behavior at large values of

o)
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310" £ This has to do with the different
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