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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
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Quite generally the double beta decay nuclear matrix element 
consists of three parts: 

The Gamow-Teller part MGT is the dominant one. When treated 
in the closure approximation it is 

The ``neutrino potential”  H(rij,E) originates from the  
corresponding particle physics responsible for the Lepton 
Number Violation. A large variety of neutrino potentials 
have been considered in the literature, hence also a large 
variey of the corresponding nuclear matrix elements.  
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then
1

T1/2
= G0ν(E0, Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(E0, Z) is a precisely calculable phase-space factor
and M0ν is the nuclear matrix element. The effective Majorana
neutrino mass ⟨mββ⟩ is related to the absolute mass scale and
oscillation parameters through

⟨mββ⟩ =
N∑

i

|Uei |2eiαi mi, (all mi ! 0), (2)

where Uei is the first row of the neutrino mixing matrix and
the αi are unknown Majorana phases. Any uncertainty in M0ν

makes the value of ⟨mββ⟩ equally uncertain.
As stated above, we use the QRPA and RQRPA methods

based on the G matrix derived from the realistic Bonn-CD
nucleon-nucleon force, i.e., the many body Hamiltonian is

H =
A∑

i=1

p2
i

2mp

+ 1
2

A∑

i,j=1

VG-matrix(i, j ). (3)

We describe in detail in Sec. V below the input used to solve
the corresponding well-known equations of motion.

In the QRPA (and RQRPA) M0ν is written as a sum over the
virtual intermediate states, labeled by their angular momentum
and parity J π and indices ki and kf (explanations of the
notation are in Appendix A, and in Ref. II):

MK =
∑

J π ,ki ,kf ,J

∑

pnp′n′

(− 1)jn+jp′+J+J √
2J + 1

{
jp jn J

jn′ jp′ J

}

×⟨p(1), p′(2);J ∥f̄ (r12)OKf̄ (r12)∥n(1), n′(2);J ⟩
× ⟨0+

f ||[ ˜c+
p′ c̃n′ ]J ||J πkf ⟩⟨J πkf |J πki⟩

× ⟨J πki ||[c+
p c̃n]J ||0+

i ⟩. (4)

The operators OK,K = Fermi (F), Gamow-Teller (GT), and
Tensor (T) contain neutrino potentials and spin and isospin
operators, and RPA energies E

ki,kf

J π . The neutrino potentials, in
turn, are integrals over the exchanged momentum q,

HK

(
r12, E

k
J π

)

= 2
πg2

A

R

∫ ∞

0
fK (qr12)

hK (q2)qdq

q + Ek
J π − (Ei + Ef )/2

. (5)

The functions fF,GT(qr12) = j0(qr12) and fT (qr12) = j2(qr12)
are spherical Bessel functions (the sign of j2 was given
incorrectly in Ref. [14]). The functions hK (q2) are defined
in Appendix A and in Ref.II. The potentials depend explicitly,
though rather weakly, on the energies of the virtual intermedi-
ate states, Ek

J π . The function f̄ (r12) in Eq. (4) represents the
effects of short-range correlations. These will be discussed in
detail in Sec. IV.

Two separate multipole decompositions are built into
Eq. (4). One, already mentioned, is in terms the J π of the
virtual states in the intermediate nucleus, the good quantum
numbers of the QRPA and RQRPA. The other decomposition
is based on the angular momenta and parities J π of the pairs
of neutrons that are transformed into protons with the same

J π (we drop the superscript π from now on for convenience).
This latter representation is particularly revealing. In Fig. 1
we illustrate it both in the LSSM and QRPA, with the same
single particle-spaces in each. These two rather different
approaches agree in a semiquantitative way, but the LSSM
entries for J > 0 are systematically smaller in absolute
value.

Reference [15] makes the claim that QRPA results are too
large because they omit configurations with seniority greater
than 4, which are especially effective in canceling the pairing
part of the matrix element. This statement is not correct. The
QRPA does include configurations with higher seniority (4, 8,
12, etc.) and, as Fig. 1 shows, the broken pair contributions
to the matrix elements are as large or larger than in the
LSSM. (Some of the difference might be due to differences in
single-particle energies and occupation numbers, which are not
identical in the two calculations even though the single-particle

FIG. 1. Contributions of different angular momenta J associated
with the two decaying neutrons to the Gamow-Teller part of M0ν

in 82Se (upper panel) and 130Te (lower panel). The results of LSSM
(dark histogram) [23] and QRPA treatments (lighter histogram) are
compared. Both calculations use the same single-particle spaces:
(f5/2, p3/2, p1/2, g9/2) for 82Se and (g7/2, d5/2, d3/2, s1/2, h11/2) for
130Te. In the QRPA calculation the particle-particle interaction was
adjusted to reproduce the experimental 2νββ-decay rate.
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Where fGT(qr) = j0(qr) and hGT = gA/(1 + q2/MA
2)2 is the nuclear 

axial current form factor, MA ~ 1 GeV. The dependence on the 
excitation energy  in the denominator is weak, hence it is 
replaced by some average constant value E. 
 
We will consider evaluation in the closure approximation. Thus, 
the matrix elements formally depend only on the initial and final 
nuclear ground state wave functions. 
 
Tests suggests that the closure approximation is accurate to 
about 10%. 

For the simplest scenario the ``neutrino potential” originating  
from the light neutrino propagator is 



fns….nucleon finite size 
hot…higher order terms 
        in weak currents 

As we will see, the neutrino momentum is ~200 MeV so the 
dependence on the nuclear excitation energy is weak. The potential 
H(r,E) looks like a Coulomb 1/r radial dependence. Finite size 
and higher order currents remove the singularity at r=0. 
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Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is

015502-2

How does the matrix element M0ν
GT depend on the distance 

between the two neutrons that are transformed into two 
protons ? This is determined by the function C0ν

GT(r) 
 
 
 
It is normalized by the obvious relation  
 
Thus, if we could somehow determine C(r) we could obtain M0ν.  
 
In order to obtain C(r) consider first the matrix elements  of  
the operator σ1 

. σ2 between two noninteracting neutrons and two  
protons coupled to the angular momentum J without the neutrino 
potential:    
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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Function C0ν(r) evaluated in QRPA. Note the peak at ~ 1fm. There 
is little contribution from r > 2-3 fm. And the function for different 
nuclei look very similar, essentially universal. The magnitude of M0ν 
is determined basically by the height of the peak. 
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of turning o↵ the momentum dependence of gV,A(q2) is
less than 5%.

For the weak-magnetic contributions GT-MM, some
care has to be taken when removing the form factors.
As evident from Eqs. (A5) and (A6), in the absence of
gV (q2), both VGT,MM and VT,MM are singular at r ! 0.
To compute the GT-MM matrix element in the second
line of Table IV we used the regularization of the delta
function in Eq. (27), with R = 0.6 fm. Varying R be-
tween 0.6 and 0.8 fm does not have an appreciable e↵ect
on the result. The good agreement for the values of GT-
MM in the first and second line of Table IV indicates that
the result does not strongly depend on the way the region
of large q2 is regulated. For the T-MM matrix element,

the second line of Table IV is obtained by naively using
the potential VT,MM (r) in Eq. (A6). Here the divergence
at r = 0 does not spoil the evaluation of the associated
matrix element. Again this is due to the fact that the
tensor operator T (Sab) gives zero on pairs in relative
S-wave. In fact, the ⌧+a ⌧+b is selecting out valence (nn)
pairs in the initial state. These are largely in a 1S0 rela-
tive state, with some 3P0 components which are however
zero at short-range due to an angular momentum barrier.
While in Table IV we only report results for the impact

of form factors on the light neutrino-exchange potentials,
the same features are shared by matrix elements of the
V⇡⇡ and V⇡N potentials, as they are proportional to to
the AP and PP components in IV. The same holds for
the VNN potential, which is analogous to GT-MM. In
particular, changing the regularization of the delta func-
tion potential from Eq. (27) to a dipole form factor, ei-
ther gV (q2) or gA(q2) has little e↵ect on the F-NN and
GT-NN matrix elements.
The impact of the axial and vector form factors on

the 10He!10Be and 12Be!10C transitions is illustrated
in Fig. 5. The solid and dashed lines denote the distri-
butions C̄(q) defined in Eq. (26), with and without the
dipole form factors for gV,A(q2). We see that the dipole
form factors start to have an e↵ect at around q ⇠ 200
MeV, and cut o↵ the distributions for q & 500 MeV. The
e↵ect is similar for the F-⌫ and GT-⌫, which are mostly
long-distance, and the pion-range GT-⇡⇡ and GT-⇡N
matrix elements, which are induced by heavy LNV new
physics.

In the third row of Table IV, we report results ob-
tained by regulating the matrix elements with the F (r)
function defined in Eq. (28) with RL = 0.7 fm. We stud-
ied the sensitivity of our results with respect to variation
of RL 2 {0.6, 0.8} fm and found that the most a↵ected
matrix elements are those characterized by the presence
of the node. For example, by comparing the second and
the third rows in the table we can see that GT-⌫ and
F-⌫ undergo a ⇠ 18% and ⇠ 13% variation, respectively,
whereas T-⌫ is essentially una↵ected by the regulator
function. This is because the T-like operators are already
zero at short-distances.

Finally, in the forth row of Table IV we report re-
sults obtained by artificially turning o↵ the “one-pion-
exchange-like” correlation operators in the nuclear wave
functions as discussed in Sec. III. Turning the correlations
o↵ has a dramatic e↵ect on the tensor matrix elements,
which become statistically equal to zero. The GT-⌫ and
F-⌫ magnitudes increase by ⇠ 10% with respect to the
correlated results given in the first row of the table. The
e↵ect of the “one-pion-exchange-like” correlations is rep-
resented in Fig. 6, where the blue triangles (solid line)
in the left (right) panel represent the r-space (q-space)
GT-AA transition distribution obtained by turning o↵
the correlations to be compared with the red dots (solid
line) obtained with the correlated wave function.

In closing this section, we reiterate that 0⌫�� matrix
elements involve on average values of momentum transfer

C(r) for the hypothetical 0νββ decay of 10He.  

The calculation was performed 
using the ab initio variational 
Monte-Carlo method. So most 
of the approximations inherent 
in NSM or QRPA are avoided. 
Yet the C(r) function looks, 
at least qualitatively, very 
similar to the results shown 
before. 

Figure from Pastore et al.,1710.05026  



ŠIMKOVIC, FAESSLER, RODIN, VOGEL, AND ENGEL PHYSICAL REVIEW C 77, 045503 (2008)

protons. The corresponding neutrino potentials are the Fourier
transforms over the neutrino momentum q as shown in Eq. (5).
Obviously, the range of r12 is restricted from above by
r12 ! 2Rnucl. We show here, however, that in reality only much
smaller values, r12 <∼ 2–3 fm, or equivalently larger values
of q, are relevant. Thus a good description of the physics
involving distances r12 ∼ 1 fm, or q ∼ 200 MeV is important.
That finding has not been recognized before, but perhaps it
should be not so surprising that q ∼ pFermi is the most relevant
momentum transfer.

An example of the r12 dependence of M0ν is shown in
Fig. 4 for three nuclei. The quantity C(r) is defined by
evaluating M0ν after multiplying HK (r ′, Ek

J π ) by r2δ(r − r ′),
so that C(r) is the contribution at r to M0ν , with

∫ ∞
0 C(r)dr =

M0ν . As the lower panel of the figure demonstrates, the
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FIG. 4. The dependence on r12 of M0ν for 76Ge, 100Mo, and 130Te.
The upper panel shows the full matrix element, and the lower panel
shows separately ‘pairing’ (J = 0 for the two decaying neutrons) and
‘broken pair’ (J ̸= 0) contributions. The integrated matrix element is
5.35 for 76Ge, 4.46 for 100Mo, and 4.09 for 130Te. The gpp values that
reproduce the known T 2ν

1/2 are 1.030, 1.096, and 0.994. The single-
particle space for 76Ge contains nine levels (oscillator shells N =
3, 4), and that for 100Mo and 130Te contains 13 levels (oscillator shells
N = 3, 4 plus the f and h orbits from N = 5). Short-range correlation
are not included, i.e., f̄ (r12) = 1 in Eq. (4).
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FIG. 5. The r12 dependence of M0ν for 76Ge, from calculations
with different number of single-particle orbits. The dot-dashed curve
was obtained with 21 s.p. subshells, the full curve with 12 subshells,
the dashed curve with nine subshells, the dotted curve with six
subshells, and the double dot-dashed curve with only four subshells.

cancellation between the J = 0 and J ̸= 0 components is
essentially complete for r12 >∼ 2–3 fm. Since the typical
distance from a particular nucleon to its nearest neighbor is
∼1.7 fm (because Rnucl = 1.2A1/3) the nucleons participating
in the 0νββ decay are mostly nearest neighbors. Short-range
nucleon-nucleon repulsion, the finite nucleon size, represented
by nucleon form factors, and components of the weak currents
that are typically suppressed by q/Mnucleon are therefore more
important than one would naively expect.

Perhaps the most interesting thing about the figure is that
the pairing and nonpairing parts of C(r) taken individually (as
in the two panels of the figure) extend to significantly larger r .
The cancellation between them, that we discussed earlier, is
particularly effective beyond 2 or 3 fm, leaving essentially
nothing there. Figure 5 shows that the shape of C(r), like
the integrated matrix element, is essentially independent of
the number of single-particle orbits included, as long as the
truncation is not too severe (as it is with the dash-double-dot
curve, for which important spin-orbit partners were omitted—
only the four single particle states p3/2, p1/2, f5/2, g9/2 were
included) and the coupling constant gpp is chosen to reproduce
the measured 2νββ lifetime. For other values of gpp the
cancellation between the J = 0 and J ̸= 0 contributions at r
larger than 2 or 3 fm is not as complete as in Fig. 4. We return
to this point shortly.

We show the r12 dependence of the different parts of the
M0ν in Fig. 6. All individual contributions die out at r larger
than 2 or 3 fm. The pseudoscalar-axial vector interference part
has opposite sign from the other contributions, and essentially
(and accidentally) cancels the contributions of the vector, weak
magnetism and pure pseudoscalar pieces. The higher-order
terms reduce the matrix element noticeably, and have to be
included.

To gain some insight into the renormalization of the double-
beta decay operator in the shell model, Ref. [17] employs a
solvable model based on the algebra SO(5) × SO(5). The
valence space contains two major shells (fpg9/2 and sdg7/2),
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The fact that the resulting C(r) is concentrated at r < ~2fm is the 
result of cancellation between J = 0 (pairing) and other values of J
(broken pairs). We have seen the effect of such cancellation before.  
It is again common to QRPA and NSM. 
   



The radial dependence of  M0ν evaluated in the exactly solvable model  
(Engel & Vogel Phys. Rev. C69, 034304 (2004)). Note that the cancellation 
for r > 2-3 fm appears only near gpp = 1. That happens in real nuclei also.

The cancellation of contributions beyond r ~ fm is a consequence of 
nuclear interaction. It happens only when the strength of the isoscalar 
 pairing has the correct value. 



This is the analog of C2ν
cl(r ) evaluated in the exactly solvable model.  

The curve with gpp = 1.0, which is a closest analog of the realistic  
situation and it indeed looks quite similar to it.  

Closest analog to the real situation 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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Lets consider once more the GT m.e. for 0νββ 

If we remove from the operator the neutrino potential 
H(r,E) we obtain the matrix element of the double GT 
operator connecting the ground states of the initial and 
final nuclei. The same operator would be responsible for 
the 2νββ decay if it would be OK to treat it in the closure 
approximation. It is also a component of the ``double GT” 
strength function for the initial nucleus |i>. 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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In reality, the closure approximation is not good for the 2νββ  
decay, but we can still consider the corresponding value if we  
somehow can guess the correct average energy denominator. 

The correct expression  
for M2ν includes energy 
denominators 



ŠIMKOVIC, HODÁK, FAESSLER, AND VOGEL PHYSICAL REVIEW C 83, 015502 (2011)

masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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We can define the radial function C2ν
cl(r) the same way as for the 

genuine M0ν matrix element, thus 

It is now clear that, at least formally, the following equality holds: 
C0ν(r) = H(r,E0) C2ν

cl(r) while  
 
 
So, if we can somehow determine the function C2ν

cl(r) we will be 
able to determine C0ν(r) and thus also the ultimate goal, the M0ν . 
And, moreover, this is so for any neutrino potential. Thus, 
evaluation of M0ν is reduced to a simple integral, provided any one 
of the functions C(r) is known. All of such M0ν

i
 are then consistent 

and easily evaluated. 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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Double GT strength of 48Ca evaluated in the shell model with several 
model hamiltonians (see Shimizu et al, 1709.01088). The 2νββ 
closure matrix element (i.e. the DGT transition to the 48Ti ground 
state) that we are interested in represents only about  
10-4 fraction of the shown total strength. 



	Cross sections of (t,3He) and (d,2He) reactions 
 give B(GT±) for β+ and β-; products of the amplitudes  
(B(GT)1/2) entering the numerator of  M2ν

GT  

Closure	2νββ-decay	
	NME	

Grewe,	…Frekers	at	al,	PRC	78,	044301	(2008)		

The β- strength is dominated 
by the giant GT resonance. 
However, the β+ strength is 
concentrated at low energy, 
little (but unknown) strength  
to the giant. 



Shimizu et al. claim that the 
M0ν and M2ν

cl matrix elements 
are proportional to each other. 
 
In (a) the calculated m.e. 
for pf shell nuclei are shown. 
 
In (b) the heavier nuclei are 
considered. The proportionality 
seems to be confirmed, except 
when QRPA is used. 
 
So, who is right? 



Clearly, determination of  M2ν
cl is not easy. We do know the 

value of M2ν, however M2ν
cl cannot be extracted from the  

known 2νββ decay half-life. That’s because while both M2ν

 and M2ν
cl depend only on the virtual 1+ states in the 

intermediate odd-odd nucleus, the weights of individual states 
are different. Those at higher energies contribute less to M2ν 
than to M2ν

cl. 
 
This would be OK if the higher energy states have negligibly 
small either <m| σ τ+ |i> and <m| σ τ- |f>. But that is not the 
case, apparently. 
 



 
The β- and β+ strength function  
calculated in SRQRPA 
with 21  s.p. levels. Note  
the different scales in the  
two panels. 
In the β- case one can clearly 
see the giant GT state. Also, 
the strength saturates at  
~15 MeV. 
On the other hand, the much  
smaller β+ strength, unlike the 
usual claims, gets substantial 
contribution from relatively 
high excitation energies as well. 
 
Whether this high-lying β+ 
strength exists or not is the 
crucial question. 
 

76Se 
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TABLE II. The 2νββ-decay closure nuclear matrix element |M2ν
cl | evaluated using the single-state

dominance hypothesis (SSD) and with help of the measured β± strengths in charge exchange reactions
(ChER). The adopted values of the 2νββ-decay half-times T

2ν−exp
1/2 , taken from Ref. [17], are also

shown. In the ChER case the matrix elements |M2ν | and M2ν
cl have been determined by assuming

equal phases for its each individual contribution.

Nucleus T
2ν−exp

1/2 (y) SSD ChER

|M2ν | (MeV−1) |M2ν
cl | |M2ν | (MeV−1) |M2ν

cl |
48Ca 4.4 × 1019 – – 0.083 0.220 [25]
76Ge 1.5 × 1021 – – 0.159 0.522 [26]
96Zr 2.3 × 1019 – – – 0.222 [27]
100Mo 7.1 × 1018 0.208 0.350 [29] – –
116Cd 2.8 × 1019 0.187 0.349 [29] 0.064 0.305 [28]
128Te 1.9 × 1024 0.019 0.0327 [29] – –

are shown in Table II. That method can be used, obviously,
only for the nuclei where the corresponding experimental data
are available.

Comparison of the NMEs M2ν
exp and M2ν

cl in Table I tells
us right away that, at least within the QRPA, the summation
in the Eq. (6) contains both positive and negative parts (see
also Fig. 5). This is obviously so since for most nuclei the
quantity Ē2ν − (Mi + Mf )/2 in Eq. (7) becomes negative,
while each of the denominators in the Eq. (6) is positive.
Hence, we cannot expect good agreement between the M2ν

cl
from QRPA and those from items (ii) and (iii) above. And,
moreover, we cannot expect that SSD is a valid hypothesis for
all candidate nuclei. Comparison of the corresponding entries
in Tables I and II confirms that expectation.

Since there is a substantial experimental activity devoted
to the determination of the β± strengths, it is worthwhile
to examine in more detail the somewhat unexpected finding
that in many cases M2ν and M2ν

cl have opposite signs.
Obviously, this has to do with the different weight of the
corresponding terms in the Eq. (6) and its closure analog.
We plot in Fig. 7 the corresponding running sums as a
function of the excitation energy in the intermediate nucleus.
One can see that the negative values of M2ν

cl arise from
excitation energies Eex > 10 MeV that are difficult to explore
experimentally.

The negative contributions to M2ν and M2ν
cl from higher

excitation energies cause in several nuclei even the reversal
of the sign of M2ν

cl to the negative one. While, clearly, there
is a substantial β− strength at these excitation energies,
QRPA predicts that there is a sufficient β+ strength there
as well, leading to the reduction of the M2ν and M2ν

cl
visible in Fig. 7. Our QRPA calculations suggest that about
0.2 units of the B(GT) β+ strength is distributed among
states with Eex ! 10 MeV in all considered nuclei. Such
β+ strength has not been observed experimentally so far. It
remains to be seen whether it exists at all or is hidden in
the “grass,” i.e., distributed among many weak states that
escape identification. Until this dilemma is resolved we cannot
decide whether the closure matrix elements M2ν

cl in Table I are
realistic.

In the previous section we discussed the phenomenon of
quenching of the axial current matrix elements. Figure 6

suggests that using the effective geff
A < 1.27 reduces the

negative contribution of the higher-lying 1+ states to the
matrix element M ′2ν

cl . To see how large that effect might
be we performed QRPA calculation with geff

A = 0.9 based
on the empirical evidence that the degree of quenching
increases with A. The resulting quenched matrix elements
M ′2ν

cl are shown in Table III. While, as remarked earlier, it
is unknown whether all mutipoles are affected by the axial
current quenching, not only the GT 1+ states, we nevertheless
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FIG. 7. (Color online) The running sums of M2ν (upper panel)
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cl (lower panel) for selected nuclei; gA = 1.269 was used.
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Illustration of the difficulties. 
In the upper panel are the  
contributions to the M2ν from 
states up to E. Even though 
the correct value is reached 
(by design), it is also crossed at 
lower energies, followed by 
a drop at ~ 10 MeV. 
 
 
In the lower panel the same 
calculation is done for M2ν

cl. 
In this case the high energy 
drop is much larger because 
it is not reduced by the energy 
denominator present in the 
true M2ν.
 
While the states up to ~5 MeV 
can be studied experimentally, 
the ~ 10 MeV can not. It is not 
clear whether they exist or not.



Again, this feature appears to be  
present in other nuclear models 
as well. Here are the shell model 
results for M2ν in 48Ca (upper panel)  
and in the model case of 36Ar.  
(From Kortelainen and Suhonen,  
J. Phys. G 30, 2003 (2004)). 
 
The drop at ~ 10 MeV is again visible, 
perhaps it is less apparent that in the 
heavier nuclei treated by QRPA. 
 
Nevertheless, the inherent uncertainty 
in M2ν

cl is substantial.   
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FIG. 1. (Color online) Multipole decomposition of C2ν
cl (r) as

function of relative distance of two β-decaying neutrons in the 76Ge
nucleus. Calculation performed for 76Ge with 23 single-particle levels
model space. Positive-parity multipoles are shown in the upper panel
and the negative-parity ones are in the lower panel.

given by

C2ν
cl (r, J π ) =

∑

ki ,kf ,J

∑

pnp′n′

(− 1)jn+jp′+J π +J

×
√

2J + 1

{
jp jn J π

jn′ jp′ J

}

× f J
n,n′,p,p′ (r)

×⟨0+
f ||[ ˜c+

p′ c̃n′]J ||J πkf ⟩⟨J πkf |J πki⟩
× ⟨J πki ||[c+

p c̃n]J ||0+
i ⟩. (10)

Here ki and kf are the labels of the excited states with the
multipolarity J π in the intermediate nucleus built on the initial
and final nuclear ground states, and ⟨0+

f ||[c+
p′ c̃n′ ]J ||J πkf ⟩ and

⟨J πki ||[c+
p c̃n]J ||0+

i ⟩ are the corresponding QRPA amplitudes.
It is now clear that, by construction,

C0ν
GT(r) = H (r, Ē) × C2ν

cl (r), (11)

which is valid for any shape of the neutrino potential H (r, Ē).
Thus, if C2ν

cl (r) is known, C0ν
GT(r) and therefore also M0ν

GT can
be easily determined. The Eq. (11) represents the basic relation
between the 0ν and 2ν ββ-decay modes that we will explore
further.

Note that while the function C2ν
cl (r) has a substantial

negative tail past r ∼ 2–3 fm, these distances contribute very
little to C0ν

GT(r). This is a consequence of the shape of the
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FIG. 2. (Color online) C2ν
cl (r) as a function of the relative distance

of the decaying neutron pair for different nuclei.

neutrino potential H (r, Ē) that decreases fast with increasing
values of the distance r .

A. Neutrino potential

The neutrino potential HGT(r, Ē) governing the Gamow-
Teller part of the matrix element M0ν is defined as

HGT(r, E0ν)

= 2R

π

∫ ∞

0
j0(qr)

q

q + E0ν

f 2
FNS(q2)gHOT(q2) dq, (12)

where

fFNS = 1
(
1 + q2

M2
A

)2 (13)

takes into account the finite size of the nucleon and is usually
approximated using the above dipole type form factor with
MA = 1.09 GeV [13] (varying MA between 1.0 and 1.2 GeV
makes little difference). The function gHOT(q2) includes the
terms from higher-order hadron currents, namely induced
pseudoscalar and weak magnetism [14]. The short-range
correlations are included using the method of Ref. [15]. The
Jastrow-like two-body function derived there is applied when
the radial integrals in both functions C0ν and C2ν

cl are evaluated;
they do not appear explicitly in Eq. (12).

We show in Fig. 3 the shape of the potential. When the finite
nucleon size, higher-order terms are neglected, and Ē0ν = 0
is assumed, the potential has Coulomb-like shape R/r . The
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FIG. 1. (Color online) Multipole decomposition of C2ν
cl (r) as

function of relative distance of two β-decaying neutrons in the 76Ge
nucleus. Calculation performed for 76Ge with 23 single-particle levels
model space. Positive-parity multipoles are shown in the upper panel
and the negative-parity ones are in the lower panel.

given by

C2ν
cl (r, J π ) =

∑

ki ,kf ,J

∑

pnp′n′

(− 1)jn+jp′+J π +J

×
√

2J + 1

{
jp jn J π

jn′ jp′ J

}

× f J
n,n′,p,p′ (r)

×⟨0+
f ||[ ˜c+

p′ c̃n′]J ||J πkf ⟩⟨J πkf |J πki⟩
× ⟨J πki ||[c+

p c̃n]J ||0+
i ⟩. (10)

Here ki and kf are the labels of the excited states with the
multipolarity J π in the intermediate nucleus built on the initial
and final nuclear ground states, and ⟨0+

f ||[c+
p′ c̃n′ ]J ||J πkf ⟩ and

⟨J πki ||[c+
p c̃n]J ||0+

i ⟩ are the corresponding QRPA amplitudes.
It is now clear that, by construction,

C0ν
GT(r) = H (r, Ē) × C2ν

cl (r), (11)

which is valid for any shape of the neutrino potential H (r, Ē).
Thus, if C2ν

cl (r) is known, C0ν
GT(r) and therefore also M0ν

GT can
be easily determined. The Eq. (11) represents the basic relation
between the 0ν and 2ν ββ-decay modes that we will explore
further.

Note that while the function C2ν
cl (r) has a substantial

negative tail past r ∼ 2–3 fm, these distances contribute very
little to C0ν

GT(r). This is a consequence of the shape of the
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FIG. 2. (Color online) C2ν
cl (r) as a function of the relative distance

of the decaying neutron pair for different nuclei.

neutrino potential H (r, Ē) that decreases fast with increasing
values of the distance r .

A. Neutrino potential

The neutrino potential HGT(r, Ē) governing the Gamow-
Teller part of the matrix element M0ν is defined as

HGT(r, E0ν)

= 2R

π

∫ ∞

0
j0(qr)

q

q + E0ν

f 2
FNS(q2)gHOT(q2) dq, (12)

where

fFNS = 1
(
1 + q2

M2
A

)2 (13)

takes into account the finite size of the nucleon and is usually
approximated using the above dipole type form factor with
MA = 1.09 GeV [13] (varying MA between 1.0 and 1.2 GeV
makes little difference). The function gHOT(q2) includes the
terms from higher-order hadron currents, namely induced
pseudoscalar and weak magnetism [14]. The short-range
correlations are included using the method of Ref. [15]. The
Jastrow-like two-body function derived there is applied when
the radial integrals in both functions C0ν and C2ν

cl are evaluated;
they do not appear explicitly in Eq. (12).

We show in Fig. 3 the shape of the potential. When the finite
nucleon size, higher-order terms are neglected, and Ē0ν = 0
is assumed, the potential has Coulomb-like shape R/r . The
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Here are the functions C2ν
cl(r) evaluated with QRPA for several  

nuclei. The peak at small r is essentially compensated by the  
substantial tail at larger r because M2ν

GTcl is very small. Besides, 
the C2ν

cl(r) depends on the nuclear parameters used, thus it  
is uncertain, particularly its tail at r > 2fm.  



For comparison, the C(r)  
function for 136Xe evaluated 
in the NSM by Shimizu et al. 
The yellow line corresponds 
to the C2ν

cl(r) . It is qualitatively 
Similar to the corresponding 
QRPA curve. However, differences 
are be expected due to the 
absence of the giant GT 
state in the NSM in this case.  



Further insight can be gained by the transformation into the LS scheme. 
Since T=1, the S=1 requires odd parity, suppressed at small r. Hence, we  
expect that most contribution comes from S=0, as shown. 
Further, by using the spin projection operators one can show that 
M2ν

GTcl = [-3 M2ν(S=0) + M2ν(S=1)]/4 and M2ν
Fcl = [ M2ν(S=0) + M2ν(S=1)]/4 . 

The same is true for the corresponding C(r) functions. Neglecting the S=1 
contribution, we conclude that C2ν

GTcl(r) = -3 C2ν
Fcl(r) and naturally also 

                                                                                       M2ν
GTcl = -3 M2ν

Fcl 
 



 
  

However, M2ν
Fcl = 0 if the nuclear states have a definite isospin. 

This is automatic in NSM. In QRPA based on the BCS functions 
this requirement based on the isospin symmetry can be fulfilled 
without isospin projection simply by requiring that the isovector 
(T=1) nucleon-nucleon interaction has the same strength in the 
pp, nn, and np channel. That is true even if the pp and nn pairing 
are treated by BCS and the pn by QRPA. 
 
In previous slide I showed that if the S=1 part is negligible, then 
M2ν

GTcl = -3 M2ν
Fcl. Hence M2ν

Fcl = 0 implies that also M2ν
GTcl = 0. 

That is in agreement (essentially) with our numerical results, and 
in disagreement with the assumption of Shimizu et al. 
It also suggests a ``restoration” of the Wigner SU(4) symmetry. 
 
 
   



We know that M2ν is small but non-vanishing. Could it be compatible 
with  M2ν

GTcl = 0 ? 
 
Since M2ν x ΔE = M2ν

GTcl , where ΔE is the average energy denominator, 
the above is possible provided a contraintuitive ΔE = 0. 
 
But that is perfectly possible with the numerators in M2ν , 
Mβ+

GT(m) Mβ-
GT(m), having positive and negative signs, despite 

The fact that all excitation energies are positive. 
 



Summary 
 
1) Only small distances, r < 2 fm, contribute to the M0ν.  
    That seems to be an universal conclusion, common to 
    all methods where it was tested. 
2) That explains, or justifies at least, why the calculated 
     M0ν change little with A or Z, unlike M2ν. 
3) There is a close relation between M0ν and the 
     2νββ closure matrix element M2ν

cl. 
4) If M2ν

cl or, better yet, its radial dependence C2ν
cl(r) 

    could be experimentally determined, it would make 
    the determination of the M0ν easier for all possible 
    0νββ mechanisms.  
5) I argued that the assumption of Shimizu et al. that there 
    is a proportionality between  M0ν and M2ν

cl is unlikely 
    correct, since M2ν

cl ~ 0. 
6) Reliable determination of M2ν

cl and C2ν
cl(r) is not easy. 

    But more work, in theory and experiment, is needed to see  
    how realistic this is. 
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FIG. 5. Top panel: Nuclear matrix elements (M0⌫) for 0⌫��
decay candidates as a function of mass number A. All the
plotted results are obtained with the assumption that the ax-
ial coupling constant gA is unquenched and are from di↵erent
nuclear models: the shell model (SM) from the Strasbourg-
Madrid (black circles) [111], Tokyo (black circle in 48Ca) [112],
and Michigan (black bars) [82] groups; the interacting bo-
son model (IBM-2, green squares) [107]; di↵erent versions
of the quasiparticle random-phase approximation (QRPA)
from the Tübingen (red bars) [113, 114], Jyväskylä (orange
times signs) [81], and Chapel Hill (magenta crosses) [115]
groups; and energy density functional theory (EDF), relativis-
tic (downside cyan triangles) [116, 117] and non-relativistic
(blue triangles) [118]. QRPA error bars result from the use of
two realistic nuclear interactions, while shell model error bars
result from the use of several di↵erent treatments of short
range correlations. Bottom panel: Associated 0⌫�� decay
half-lives, scaled by the square of the unknown parameter
m�� .

operator �⌧ , which is equivalent to using an e↵ective
value of the axial coupling constant that multiplies this
operator in place of its “bare” value of gA ' 1.27. This
phenomenological modification is sometimes referred to
as the “quenching” or “renormalization” of gA. In Sec. IV
we review possible sources of the renormalization, none
of which has yet been shown to fully explain the e↵ect,
and their consequences for 0⌫�� matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [119, 122, 123], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [124, 125]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
energy Ei.
The configuration space usually comprises only a rela-

tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those
single-particle states,

|�̄ii =
X

j

cij | ji , (18)

with the cij determined by exact diagonalization of He↵.
The shell model describes ground-state nuclear proper-

ties such as masses, separation energies, and charge radii
quite well. It also does a good job with low-lying excita-
tion spectra and with electromagnetic moments and tran-
sitions [119, 122, 123]. The wide variety of successes over
a broad range of isotopes reflects the shell model’s ability
to capture both the excitation of a single particle from
an orbital below the Fermi surface to one above, in the
spirit of the original naive shell model [126, 127], and col-
lective correlations that come from the coherent motion
of many nucleons in the configuration space. The exact
diagonalization of He↵ means that the shell model states
|�̄ii contain all correlations (isovector and isoscalar pair-
ing, quadrupole collectivity, etc.) that can be induced by
He↵.
This careful treatment of correlations, on the other

hand, restricts the range of shell model to relatively
small configuration spaces, at present those for which the
Hilbert-space dimension is less than about (1011) [128,
129]. For this reason most shell model calculations of

Figure from review by Engel and Menendez 
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times signs) [81], and Chapel Hill (magenta crosses) [115]
groups; and energy density functional theory (EDF), relativis-
tic (downside cyan triangles) [116, 117] and non-relativistic
(blue triangles) [118]. QRPA error bars result from the use of
two realistic nuclear interactions, while shell model error bars
result from the use of several di↵erent treatments of short
range correlations. Bottom panel: Associated 0⌫�� decay
half-lives, scaled by the square of the unknown parameter
m�� .

operator �⌧ , which is equivalent to using an e↵ective
value of the axial coupling constant that multiplies this
operator in place of its “bare” value of gA ' 1.27. This
phenomenological modification is sometimes referred to
as the “quenching” or “renormalization” of gA. In Sec. IV
we review possible sources of the renormalization, none
of which has yet been shown to fully explain the e↵ect,
and their consequences for 0⌫�� matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [119, 122, 123], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [124, 125]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
energy Ei.
The configuration space usually comprises only a rela-

tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those
single-particle states,

|�̄ii =
X

j

cij | ji , (18)

with the cij determined by exact diagonalization of He↵.
The shell model describes ground-state nuclear proper-

ties such as masses, separation energies, and charge radii
quite well. It also does a good job with low-lying excita-
tion spectra and with electromagnetic moments and tran-
sitions [119, 122, 123]. The wide variety of successes over
a broad range of isotopes reflects the shell model’s ability
to capture both the excitation of a single particle from
an orbital below the Fermi surface to one above, in the
spirit of the original naive shell model [126, 127], and col-
lective correlations that come from the coherent motion
of many nucleons in the configuration space. The exact
diagonalization of He↵ means that the shell model states
|�̄ii contain all correlations (isovector and isoscalar pair-
ing, quadrupole collectivity, etc.) that can be induced by
He↵.
This careful treatment of correlations, on the other

hand, restricts the range of shell model to relatively
small configuration spaces, at present those for which the
Hilbert-space dimension is less than about (1011) [128,
129]. For this reason most shell model calculations of

Calculated M0ν by different methods (color coded) 
The spread of the M0n values for each nucleus is ~ 3. On the other 
hand, there is relatively little variation from one nucleus to the next. 
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IV. SHORT-RANGE CORRELATIONS AND OTHER
HIGH-MOMENTUM PHENOMENA

Since only r12 <∼ 2–3 fm, [equivalently q > h̄c/(2–3 fm)],
contributes to M0ν , some otherwise negligible effects become
important. These effects are not commonly included, or
included only in rough approximation, in nuclear-structure cal-
culations. For example, the dipole approximation for nucleon
form factors and the corresponding parameters MV and MA

come from electron and neutrino charged-current-scattering
from on-shell nucleons. Nuclear structure deals with bound
nucleons and virtual neutrinos that are far off-shell. Similarly,
the induced pseudoscalar current, with its strength obtained
from the Goldberger-Treiman relation, has been tested in muon
capture on simple systems. Here we are using this current
for off-shell virtual neutrinos. Short range nucleon-nucleon
repulsion has been considered carefully when calculating
nuclear binding energies, but here we need its effect on a
transition operator connecting two different nuclear ground
states. All these effects will introduce some uncertainty
because their treatment is not well tested. Nevertheless, it is
important to understand their size at least roughly.

To show the importance of high momenta explicitly, we
display in Fig. 8 the q dependence C(q)—defined in complete
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FIG. 8. The momentum-transfer dependence of M0ν in 76Ge. The
upper panel is for the full matrix element; in the lower panel we
separate the J = 0 and J ̸= 0 parts. The scale is different in the two
panels. The model space contains nine subshells.
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FIG. 9. The r12 dependence of M0ν in 76Ge evaluated in the model
space that contains nine subshells. The four curves show the effects
of different treatments of short-range correlations. The resulting M0ν

values are 5.32 when the effect of short range correlations is ignored,
5.01 when the UCOM transformation [24] is applied, 4.14 when
the f̄ (r12) from Fermi hypernetted-chain calculations [25] is used in
Eq. (4), and 3.98 when the phenomenological Jastrow f̄ (r12) is
used [26].

analogy to C(r)—of M0ν in 76Ge, in a similar manner to which
we exhibited the r12 dependence earlier. The cancellation
between the J = 0 and J ̸= 0 parts is particularly complete
at lower values of q so that the resulting curve in the upper
panel, although reduced in magnitude, is clearly shifted toward
higher q.

The first high-momentum effect we examine is short-range
correlations. Figure 9 displays the r12 dependence of M0ν

for several methods of handling short-range physics. For
obvious reasons all methods reduce the magnitude of M0ν .
The Unitary Correlation Operator Method (UCOM) [24] leads
to the smallest reduction, less than 5%. The phenomenological
Jastrow-like function f̄ (r12) in Eq. (4) (from Ref. [26]) reduces
M0ν by about 20%. We also display the results of using a
microscopically-derived Jastrow function [25]; its effect is
similar to that of the phenomenological function. Since it is
not clear which approach is best, we believe it prudent to treat
the differences as a relatively modest uncertainty.

Nucleon form factors pose fewer problems because it turns
out that once the short-range correlations effects are included,
no matter how, the form factors are almost irrelevant as long
as the cut-off masses MA,V are at least as large as the standard
values (MA = 1.09 GeV and MV = 0.85 GeV). In Fig. 10 we
show the dependence of M0ν on the values of MA,V which for
this purpose are set equal to each other, with three alternatives
for treating short-range correlations. By 2 GeV the curves
have essentially reached the infinite-mass limit. Since they are
essentially flat past 1 GeV for both the UCOM and Jastrow-like
prescriptions, including the form factors causes only minor
changes in M0ν . Only if the correlations are ignored altogether
do the form factors make a significant difference.

Finally, there is little doubt that the higher order weak
currents, induced pseudoscalar and weak magnetism, should
be included in the calculation. Even though the Goldberger-
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J=0
Other J 

From C(r) we know that the 
0νββ operator has a short range 
character. That is also visible in 
the momentum analog C(q). The 
characteristic momentum is not 
hc/R but hc/r0 ~ 200 MeV.  

This is again the result of 
cancellation between the  
J=0 (pairing) part and the 
other J (broken pairs) parts. 
Note that the lower panel 
has ~ 3 times larger y scale.
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in momentum space for the 10He!10Be and 12Be!12C de-
cays. Solid and dashed lines are obtained, respectively, with
and without the inclusion of the momentum dependence in
nucleonic form factors. See text for explanation.
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of turning o↵ the momentum dependence of gV,A(q2) is
less than 5%.

For the weak-magnetic contributions GT-MM, some
care has to be taken when removing the form factors.
As evident from Eqs. (A5) and (A6), in the absence of
gV (q2), both VGT,MM and VT,MM are singular at r ! 0.
To compute the GT-MM matrix element in the second
line of Table IV we used the regularization of the delta
function in Eq. (27), with R = 0.6 fm. Varying R be-
tween 0.6 and 0.8 fm does not have an appreciable e↵ect
on the result. The good agreement for the values of GT-
MM in the first and second line of Table IV indicates that
the result does not strongly depend on the way the region
of large q2 is regulated. For the T-MM matrix element,

the second line of Table IV is obtained by naively using
the potential VT,MM (r) in Eq. (A6). Here the divergence
at r = 0 does not spoil the evaluation of the associated
matrix element. Again this is due to the fact that the
tensor operator T (Sab) gives zero on pairs in relative
S-wave. In fact, the ⌧+a ⌧+b is selecting out valence (nn)
pairs in the initial state. These are largely in a 1S0 rela-
tive state, with some 3P0 components which are however
zero at short-range due to an angular momentum barrier.
While in Table IV we only report results for the impact

of form factors on the light neutrino-exchange potentials,
the same features are shared by matrix elements of the
V⇡⇡ and V⇡N potentials, as they are proportional to to
the AP and PP components in IV. The same holds for
the VNN potential, which is analogous to GT-MM. In
particular, changing the regularization of the delta func-
tion potential from Eq. (27) to a dipole form factor, ei-
ther gV (q2) or gA(q2) has little e↵ect on the F-NN and
GT-NN matrix elements.
The impact of the axial and vector form factors on

the 10He!10Be and 12Be!10C transitions is illustrated
in Fig. 5. The solid and dashed lines denote the distri-
butions C̄(q) defined in Eq. (26), with and without the
dipole form factors for gV,A(q2). We see that the dipole
form factors start to have an e↵ect at around q ⇠ 200
MeV, and cut o↵ the distributions for q & 500 MeV. The
e↵ect is similar for the F-⌫ and GT-⌫, which are mostly
long-distance, and the pion-range GT-⇡⇡ and GT-⇡N
matrix elements, which are induced by heavy LNV new
physics.

In the third row of Table IV, we report results ob-
tained by regulating the matrix elements with the F (r)
function defined in Eq. (28) with RL = 0.7 fm. We stud-
ied the sensitivity of our results with respect to variation
of RL 2 {0.6, 0.8} fm and found that the most a↵ected
matrix elements are those characterized by the presence
of the node. For example, by comparing the second and
the third rows in the table we can see that GT-⌫ and
F-⌫ undergo a ⇠ 18% and ⇠ 13% variation, respectively,
whereas T-⌫ is essentially una↵ected by the regulator
function. This is because the T-like operators are already
zero at short-distances.

Finally, in the forth row of Table IV we report re-
sults obtained by artificially turning o↵ the “one-pion-
exchange-like” correlation operators in the nuclear wave
functions as discussed in Sec. III. Turning the correlations
o↵ has a dramatic e↵ect on the tensor matrix elements,
which become statistically equal to zero. The GT-⌫ and
F-⌫ magnitudes increase by ⇠ 10% with respect to the
correlated results given in the first row of the table. The
e↵ect of the “one-pion-exchange-like” correlations is rep-
resented in Fig. 6, where the blue triangles (solid line)
in the left (right) panel represent the r-space (q-space)
GT-AA transition distribution obtained by turning o↵
the correlations to be compared with the red dots (solid
line) obtained with the correlated wave function.

In closing this section, we reiterate that 0⌫�� matrix
elements involve on average values of momentum transfer

Again, C(q) for the hypothetical 
10He 0νββ decay, evaluated using 
the variational Monte Carlo  
method, with no approximation. 
The behavior at large values of 
q (q > 400 MeV) is a bit different. 
This has to do with the different 
treatment of the nucleon finite 
size.  
 


