SRG-evolved operators for β and $\beta\beta$ decay

Nuclear Theory for Double-Beta Decay and Fundamental Symmetries Topical Collaboration Winter Meeting

The University of North Carolina at Chapel Hill

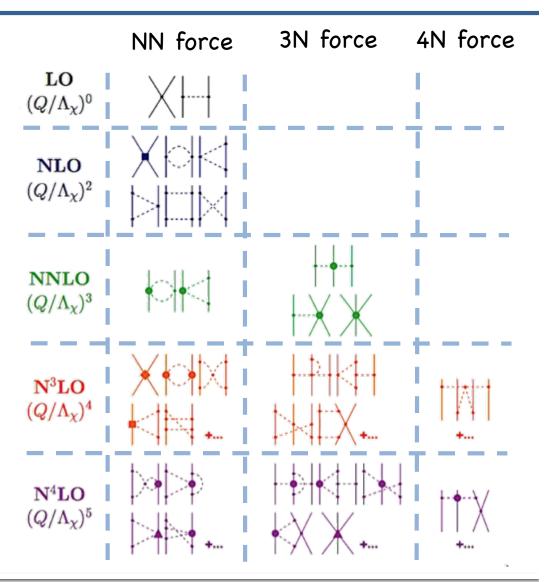
Sofia Quaglioni

LLNL-PRES-745900 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

We start from the chiral effective field theory of quantum chromodynamics

Links the nuclear forces to the fundamental theory of quantum chromodynamics (QCD)

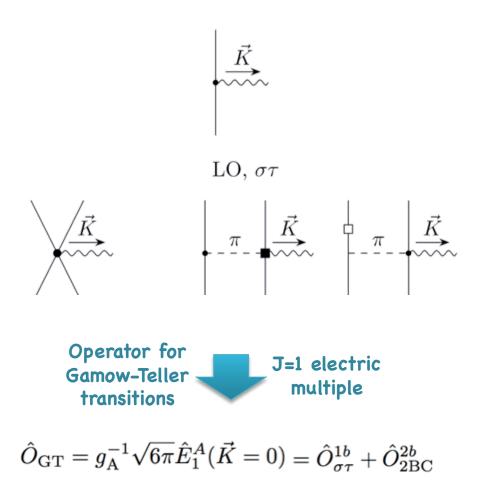
- organization in systematically improvable expansion: (Q/Λ)^ν
- empirically constrained parameters capture unresolved short-distance physics



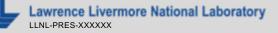
We start from the chiral effective field theory of quantum chromodynamics

Chiral effective field theory also provides nuclear currents

- LO: standard 1-body currents
- Sub-leading orders introduce
 2-body currents (2BC or MEC)
- Application of 2BC so far largely unexplored

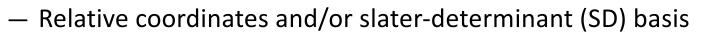


Axial-vector currents



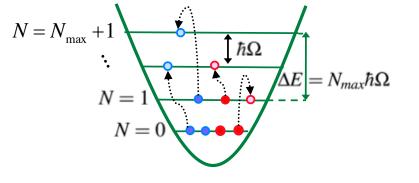
To constrain the chiral EFT parameters we need efficient few- and many-body methods

- Ab initio no-core shell model (NCSM)
 - Superposition of harmonic oscillator (HO) wave functions
 - 'Diagonalize' Hamiltonian matrix
 - Short- and medium-range correlations
 - Bound states, narrow resonances



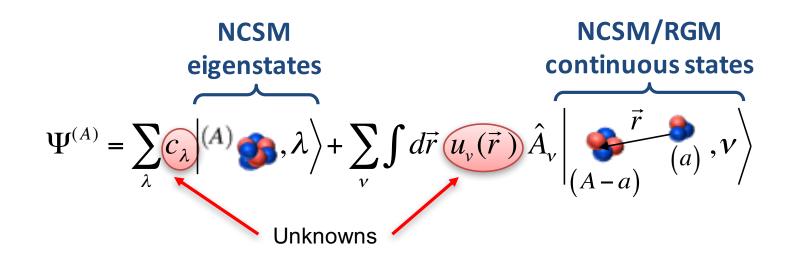
$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1}) \quad \text{relative coordinates}$$

$$\Psi_{\rm SD}^{A} = \sum_{N=0}^{N_{\rm max}} \sum_{j} c_{Nj}^{\rm SD} \Phi_{{\rm SD}Nj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM}) \qquad \text{SD basis}$$



To constrain the chiral EFT parameters we need efficient few- and many-body methods

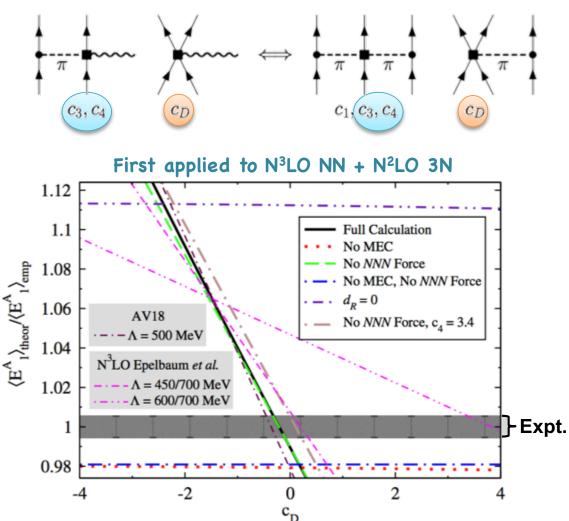
- Ab initio NCSM with continuum (NCSMC)
 - Generalized cluster expansion
 - Discrete NCSM eigenstates: short- and medium-range correlations
 - Continuous microscopic-cluster states: cluster dynamics, long range
 - Bound states, narrow and broad resonances, scattering states



The two-body axial-vector share their parameters with the NN and 3N forces

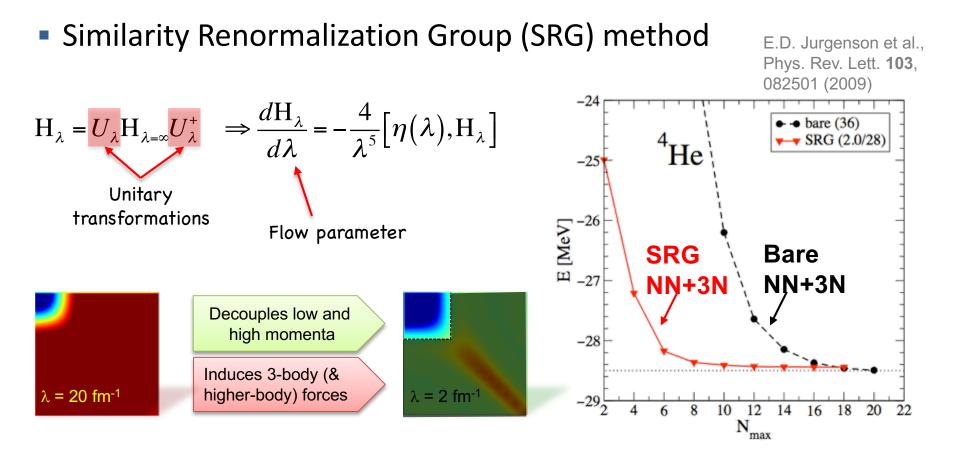
Park et al., Gardestig & Phillips, ...

- c_D: shared with one-pion exchange plus two-nucleon contact 3N force
- c₃,c₄: shared with two-pionexchange NN and 3N forces
- ³H β-decay half-life can be used to constrain c_D
- Note: results all but insensitive to 3N force!



D. Gazit, SQ, P. Navratil, PRL103, 102502

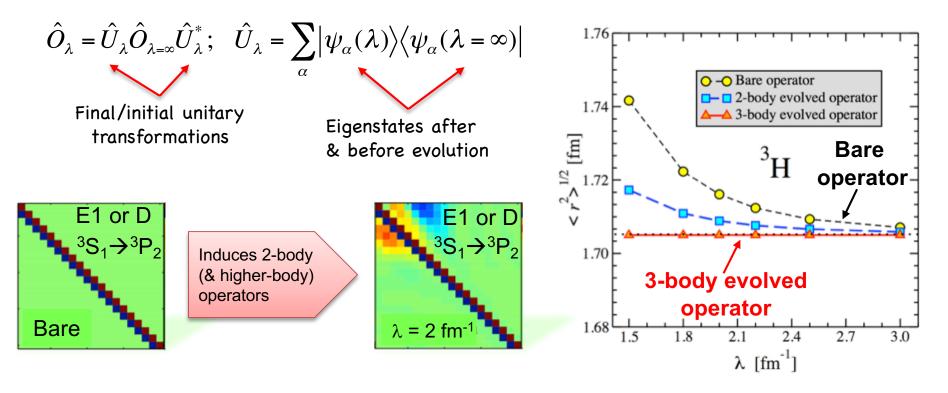
To decouple low- and high-momentum components, promote convergence, use unitary transformations



For the lightest nuclei SRG-evolved NN+3N forces allow to obtain unitarily equivalent results in much smaller model spaces

SRG evolution of transition operators

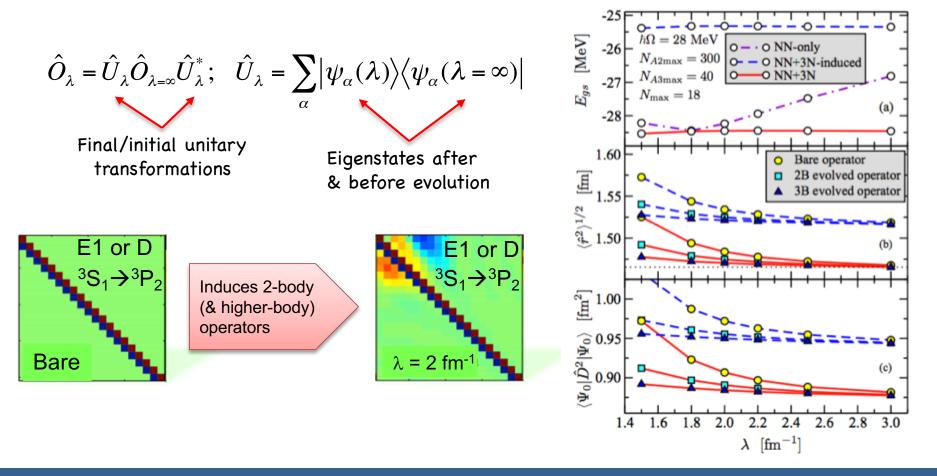
Schuster, S.Q., Johnson, Jurgenson, Navratil, PRC 90, 011301(R); PRC 92, 014320



• In practice $U_{\lambda}^{J^{\pi}TT_{z}}$ is block-diagonal. For a general transition operator one has to compute and store all relevant blocks.

SRG evolution of transition operators

Schuster, S.Q., Johnson, Jurgenson, Navratil, PRC 90, 011301(R); PRC 92, 014320



In ⁴He, the inclusion of up to three-body induced terms all but completely restores the invariance of transitions under SRG

SRG 2-body evolution of transition operators

Schuster, S.Q., Johnson, Jurgenson, Navratil, PRC 90, 011301(R); PRC 92, 014320

$$\hat{O}_{\lambda} = \hat{U}_{\lambda} \hat{O}_{\lambda=\infty} \hat{U}_{\lambda}^{*}; \quad \hat{U}_{\lambda} = \sum_{\alpha} |\psi_{\alpha}(\lambda)\rangle \langle \psi_{\alpha}(\lambda = \infty)|$$
Final/initial unitary
transformations
Eigenstates after
& before evolution
$$\hat{O}(\vec{r}_{1},\vec{r}_{2}) = \mathcal{A} \exp\left(-\frac{(\vec{r}_{1} - \vec{r}_{2})^{2}}{a_{0}^{2}}\right)$$

$$\mathcal{A} \int \exp\left(-\frac{r^{2}}{a_{0}^{2}}\right) d\vec{r} = 1$$

The shorter the range, the more renormalization
 The 3B contribution relatively more important for the longer range

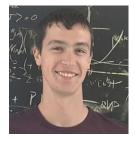
SRG 2-body evolution of general operators

Gysbers, Calci, Navratil, S.Q., Gazit, Wendt

- Evolution up to 2-body level determined in A=2 space
 - Carried out in the relative-coordinate 2-nucleon basis using the code NCSMv2B
 - Implemented for general operators of any rank
 - Matrix elements of evolved operator are also converted to the single-particle SD basis

$$\hat{O}_{GT} = \hat{O}_{\sigma\tau}^{(1)} + \hat{O}_{2BC}^{(2)} \qquad \begin{array}{c} \text{bare} \\ \text{operator} \end{array}$$

$$\hat{O}_{GT;\lambda} = \hat{O}_{\sigma\tau}^{(1)} + \hat{O}_{\sigma\tau;\lambda}^{(2)} + \hat{O}_{2BC;\lambda}^{(2)} + \cdots \qquad \begin{array}{c} \text{evolved} \\ \text{operator} \end{array}$$



Gamow-Teller ³H→³He transition matrix element

Gysbers, Calci, Navratil, S.Q., Gazit, Wendt

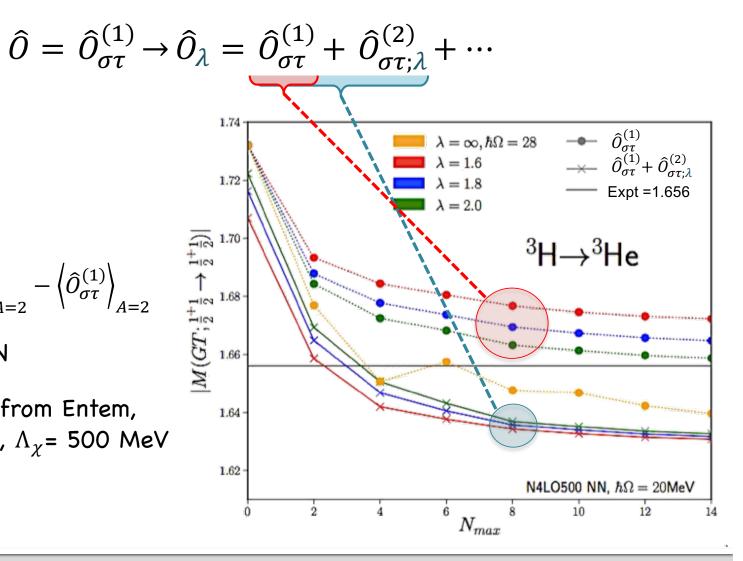
Operator:

Standard $\sigma\tau$ (1-body)

$$\left\langle \hat{O}_{\sigma\tau;\lambda}^{(2)} \right\rangle_{A=2} = \left\langle \left(\hat{O}_{\sigma\tau}^{(1)} \right)_{\lambda} \right\rangle_{A=2} - \left\langle \hat{O}_{\sigma\tau}^{(1)} \right\rangle_{A=2}$$

Interaction: N⁴LO NN

 Chiral NN @ N⁴LO from Entem, Machleidt & Nosyk, Λ_χ = 500 MeV



Gamow-Teller ${}^{3}H \rightarrow {}^{3}He$ transition matrix element

Gysbers, Calci, Navratil, S.Q., Gazit, Wendt

Operator:

 $\sigma\tau$ (1-body) + chiral 2BC (2-body)

Interaction: N⁴LO NN

- Chiral NN @ N⁴LO from Entem, Machleidt & Nosyk, Λ_{χ} = 500 MeV
- Determined: $c_D = 0.45$

3N force repulsive!



Gamow-Teller ⁶He→⁶Li transition matrix element

Gysbers, Calci, Navratil, S.Q., Gazit, Wendt

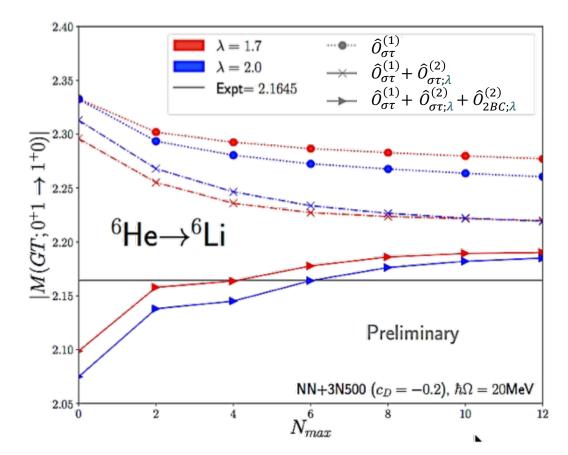
$$\hat{O} = \hat{O}_{\sigma\tau}^{(1)} + \hat{O}_{2BC}^{(2)} \to \hat{O}_{\lambda} = \hat{O}_{\sigma\tau}^{(1)} + \hat{O}_{\sigma\tau;\lambda}^{(2)} + \hat{O}_{2BC;\lambda}^{(2)} + \cdots$$

Operator:

 $\sigma\tau$ (1-body) + chiral 2BC (2-body)

Interaction: NN+3N(500)

- Chiral NN @ N³LO from Entem & Machleidt, Λ_{χ} = 500 MeV
- Local chiral 3N @ N²LO from Navratil, Λ_{χ} = 500 MeV
- Still missing: clustering, continuum effects



New set of chiral forces

Gysbers, Navratil, S.Q.

NN_{N4LO} +3 N_{LNL}

- Chiral NN @ N⁴LO from Entem & Machleidt & Nosyk, Λ_χ = 500 MeV
- Chiral 3N @ N²LO from Navratil with local (650 MeV cutoff) and non-local (500 MeV cutoff) regulators
 - Constrained on ${}^{3}\text{H}$ $\beta\text{-decay}$ half-life and binding energy

NN_{N4LO}+3N_{LNL+E7}

- NN_{N4LO}+3N_{LNL} plus E7 spin-orbit term of the 3N force at N⁴LO by Girlanda, Kyevsky & Viviani
 - Constrained on n-⁴He phase shifts (SQ)

Center-of-Mass Energy (MeV)

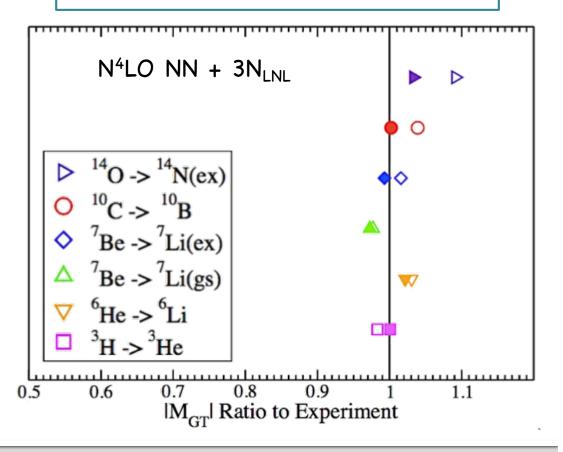
-90

Large Gamow-Teller transition in light nuclei Gysbers, Navratil, S.Q.

Interaction: $N^4LO NN + 3N_{LNL+E7}$

- Chiral NN @ N⁴LO from Entem & Machleidt & Nosyk Λ_{χ} = 500 MeV
- Chiral 3N @ N²LO from Navratil, with local (650 MeV) & non-local (500 MeV) regulators

$$\begin{array}{l} \bigcirc \quad \sigma\tau \to \hat{O}_{\sigma\tau}^{(1)} + \hat{O}_{\sigma\tau;\lambda}^{(2)} \\ \bullet \quad \sigma\tau + 2BC \to \hat{O}_{\sigma\tau}^{(1)} + \hat{O}_{\sigma\tau;\lambda}^{(2)} + \hat{O}_{2BC;\lambda}^{(2)} \end{array}$$

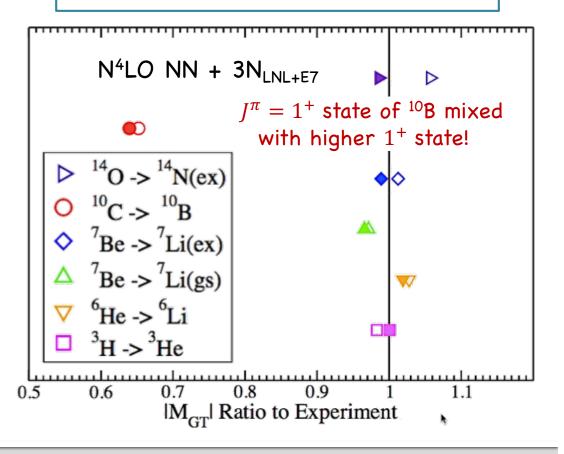


Large Gamow-Teller transition in light nuclei Gysbers, Navratil, S.Q.

Interaction: N⁴LO NN + 3N_{LNL+E7}

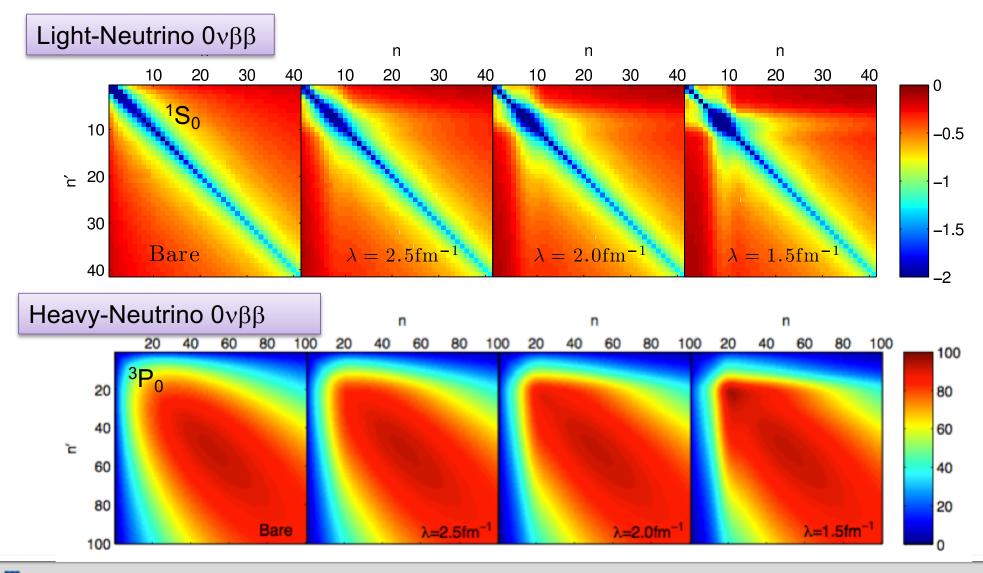
- Chiral NN @ N⁴LO from Entem & Machleidt & Nosyk Λ_{χ} = 500 MeV
- Chiral 3N @ N²LO from Navratil, with local (650 MeV) & non-local (500 MeV) regulators
- Chiral E7 term of 3N @ N⁴LO from Girlanda, Viviani & Kievsky

$$\begin{array}{l} \bullet \quad \sigma\tau \to \hat{O}_{\sigma\tau}^{(1)} + \hat{O}_{\sigma\tau;\lambda}^{(2)} \\ \bullet \quad \sigma\tau + 2BC \to \hat{O}_{\sigma\tau}^{(1)} + \hat{O}_{\sigma\tau;\lambda}^{(2)} + \hat{O}_{2BC;\lambda}^{(2)} \end{array}$$



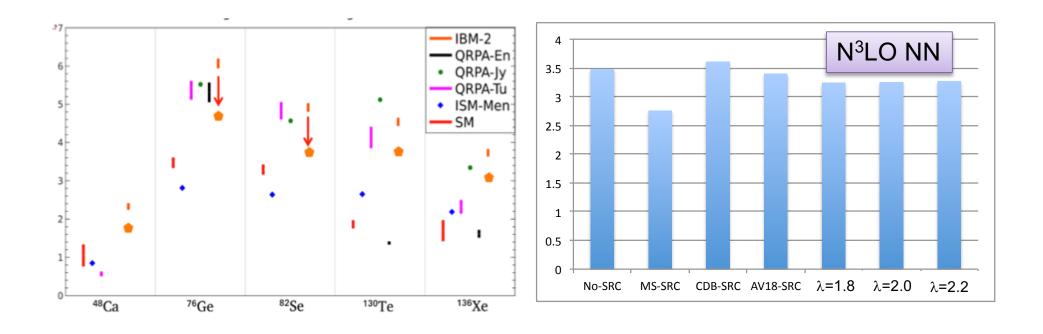
SRG 2-body evolution of the $0\nu\beta\beta$ operator

In collaboration with Schuster, Horoi, Engel, Holt, Navratil



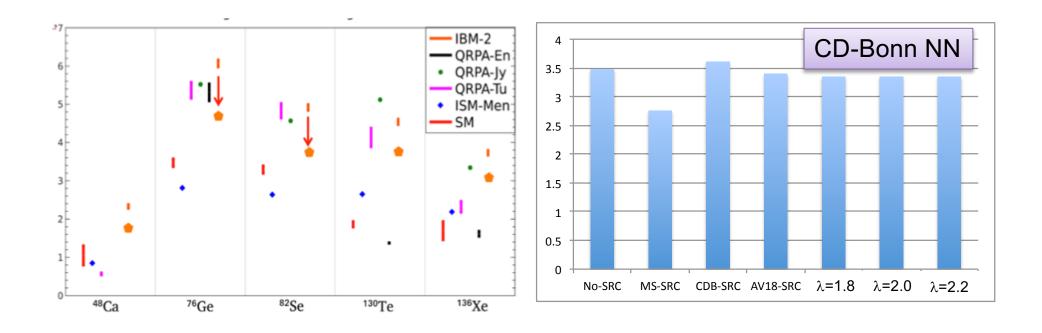
In collaboration with Schuster, Horoi, Engel, Holt, Navratil

Matrix elements for light-neutrino exchange mechanism



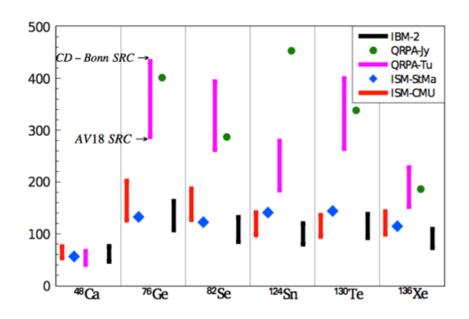
In collaboration with Schuster, Horoi, Engel, Holt, Navratil

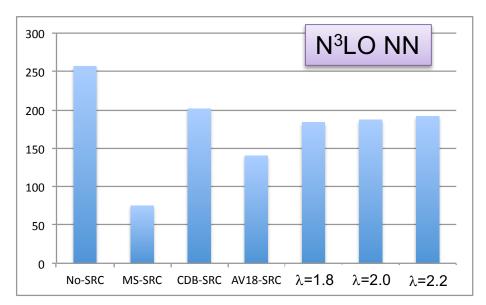
Matrix elements for light-neutrino exchange mechanism



In collaboration with Schuster, Horoi, Engel, Holt, Navratil

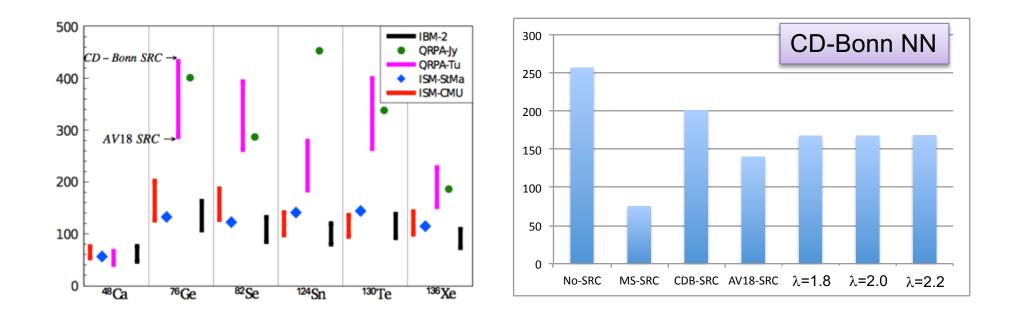
Matrix elements for heavy-neutrino exchange mechanism





In collaboration with Schuster, Horoi, Engel, Holt, Navratil

Matrix elements for heavy-neutrino exchange mechanism



This work needs to be completed by carrying out calculations in many-body perturbation theory (MBPT)

SRG 3-body evolution of general operators

Gysbers (10 weeks internship at LLNL, funded by DBD TC), S.Q., Navratil

- Evolution at the 3-body level determined in A=3 space
 - Carried out in the relative-coordinate 3-nucleon basis using the code MANYEFF
 - Implemented for general operators of any rank
 - Conversion of matrix elements of evolved operator to the single-particle SD basis non trivial, only partially implemented

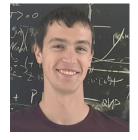
 $\hat{\alpha}(2)$ $\hat{\alpha}(2)$ $\hat{\alpha}(2)$ $\hat{\alpha}(2)$ $\hat{\alpha}(2)$ $\hat{\alpha}(3)$

– Applied to $0\nu\beta\beta$ operators

$$\left\langle \hat{O}_{0\nu\beta\beta}^{(3)} = O_{GT}^{(3)}, O_{F}^{(2)}, O_{T}^{(2)} \longrightarrow O_{0\nu\beta\beta;\lambda}^{(1)} + O_{0\nu\beta\beta;\lambda}^{(2)} + \cdots \right.$$

$$\left\langle \hat{O}_{0\nu\beta\beta;\lambda}^{(3)} \right\rangle_{A=3} = \left\langle \left(\hat{O}_{0\nu\beta\beta}^{(2)} \right)_{\lambda} \right\rangle_{A=3} - \left\langle \hat{O}_{0\nu\beta\beta;\lambda}^{(2)} \right\rangle_{A=3}$$

$$available on NERSC$$



Conclusions

- SRG 2-body evolution of general operators
 - Applied to: $\sigma\tau$ operator and chiral 2BC, $0\nu\beta\beta$ operators
 - 2-body evolved matrix elements available in relative coordinates and translated to single-particle coordinates
- SRG 3-body evolution of general operators
 - Conversion from relative to single-particle coordinates challenging
 - Applied to $0\nu\beta\beta$ operators; 3-body evolved matrix elements available in relative coordinates and translated to single-particle coordinates
- Important to describe weak transitions
 - Gamow-Teller transitions of light nuclei
 - ⁷⁶Ge 0νββ transitions, especially with heavy neutrino (**to be completed with** calculations in many-body perturbation theory)

Collaborators contributing to the present results

- K. Wendt (LLNL)
- P. Gysbers (UBC/TRIUMF)
- P. Navratil, J. Holt (TRIUMF)
- M. Horoi (CMU), J. Engel (UNC)
- E. Jurgenson (LLNL)
- C. Johnson (SDSU)
- M. Schuster (WIT)
- Doron Gazit (Hebrew U)

