
Changfeng Jiao
Department of Physics

San Diego State University

 Feb 3rd @ University of Carolina at Chapel Hill 

The Hamiltonian-based generator-
coordinate calculations of 0νββ decay 
NMEs



Generator Coordinate Method (GCM) 
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

Generator Coordinate Method:  an approach that treats 
large-amplitude fluctuations, which is essential for nuclei 
that cannot be approximated by a single mean field. 
How it works:
① Step1: Construct basis states by constrained HFB calculation. 
                 correlations along important coordinates (e.g., deformation).

② Step2: Restore the symmetry of mean-field states. Projections.

③ Step3: Diagonalize Hamiltonian in space of symmetry-restored                  
asdad nonorthogonal vacua.

GCM based on EDF has been applied to double-beta 
decay, however…  



Comparison between GCM and SM 
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

Current results with EDF-based GCM 

The discrepancy may be 
because:
• The GCM omits correlations. 
• The shell model omits many 

single-particle levels. 

Does the discrepancy come 
from methods themselves, or 
the interactions they use?

Both the shell model and the 
EDF-based GCM could be 
missing important physics. 
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Ultimate goal and : 
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

We can use SM Hamiltonian in the GCM.

Our short-term goal is more modest: 
a shell-model Hamiltonian-based GCM in one and two (and 
possibly more) shells.

Ultimate goal:  
The perfect many-body method will include all possible 
correlations in an infinitely large space.

To get closer to the ultimate goal: 

more correlations. 
larger model space.



Our Current Procedure
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary

Using a shell-model Hamiltonian.
HFB states             with multipole constraints                .  

      We are trying to include all possible collective correlations.

Angular momentum and particle number projection

Configuration mixing within GCM:  

1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary
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V

g2
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M0ν
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T

= 2R

πg2
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∫ ∞

0
q dq ⟨F |

∑

a,b

j0(qrab)[hGT(q)σ⃗a · σ⃗b + hF(q)] + j2(qrab)hT(q)[3σ1 · r⃗abσ2 · r⃗ab − σ1 · σ2]

q + E − (EI + EF )/2
τ+
a τ+

b |I ⟩ , (1)

where GT, F, and T refer to the Gamow-Teller, Fermi, and
tensor parts of the matrix element. The vector and axial
coupling constants are given by gV = 1 and gA ≈ 1.27, |I ⟩
and |F ⟩ are the ground-states of the initial and final nuclei, rab

is the distance between nucleons a and b, j0 and j2 are the
usual spherical Bessel functions, Ē is an average excitation
energy (to which the matrix element is not sensitive), and
the nuclear radius R = 1.2A1/3 fm makes the matrix element
dimensionless. The functions hF(q), hGT(q), and hT(q) contain
nucleon form factors and forbidden corrections to the weak
current. We modify our wave functions at short distances
with the “Argonne” correlation function [21]. A detailed
presentation of the form of the matrix element can be found in
Ref. [20].

The crucial ingredients in Eq. (1) are the initial and final
ground states |I ⟩ and |F ⟩. To obtain them, we use a shell-model
effective Hamiltonian Heff in a valence space whose size we
are free to choose. The first step in the GCM procedure is to
generate a set of reference quasiparticle vacua |ϕ(q1,q2, . . .)⟩
that provide the minimum energy such states can have while
constrained to also have expectation values qi = ⟨Oi⟩ for a set
of collective operators Oi . Here we take the operators Oi to be

O1 = Q20, O2 = Q22,
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2 (P0 + P
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0 ), O4 = 1

2 (S0 + S
†
0), (2)
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with M labeling the angular-momentum z projection and a
labeling nucleons, and the brackets signifying the coupling
of orbital angular momentum, spin, and isospin to various
values, each of which has a z projection of zero. The operator
c
†
l creates a particle in the single-particle level with orbital

angular momentum l. The operator P
†
0 creates a correlated

isoscalar pair, and the operator S
†
0 a correlated isovector

neutron-proton pair. We actually only constrain one of the
two pair amplitudes at a time: the isoscalar amplitude when
computing M0ν

GT (and M0ν
T , which is small) and the isovector

amplitude when computing M0ν
F . The usual deformation

parameters β and γ are related to q1 ≡ ⟨Q20⟩ and q2 ≡ ⟨Q22⟩
by β = (χb2/ω0)

√
q2

1 + 2q2
2 (with b the oscillator length given

by 2R/
√

5 (3A/2)−1/6, ω0 = 41.2A−1/3, and χ = 0.28) and
γ = tan−1(

√
2q2/q1).

To efficiently include the effect of neutron-proton pairing,
we start, as in Ref. [14], from a Bogoliubov transformation that
mixes neutrons and protons, i.e., from quasiparticle operators
of the (schematic) form

α† ∼ upc†p + vpcp + unc
†
n + vncn. (4)

In the full equations single-particle states are summed over, so
that each of the coefficients u and v are replaced by matrices,
as described in Ref. [22]. We then solve constrained Hartree-
Fock-Bogoliubov (HFB) equations, minimizing expectation
values of the form

⟨H ′⟩ = ⟨Heff⟩ − λZ(⟨NZ⟩ − Z) − λN (⟨NN ⟩ − N )

−
∑

i

λi(⟨Oi⟩ − qi), (5)

where the NZ and NN are the proton and neutron number
operators, λZ and λN are corresponding Lagrange multipliers,
the sum over i includes up to three of the four Oi in Eq. (2),
and the other λi are Lagrange multipliers to constrain the
expectation values of those operators to qi . We solve these
equations many times, constraining each time to a different
point on a mesh in the space of qi .

Having obtained a set of HFB vacua with various amounts
of axial deformation, triaxial deformation, and isoscalar or
isovector pairing, we construct the GCM state by superposing
projected HFB vacua:

∣∣,J
NZσ

〉
=

∑

K,q

f JK
qσ |JMK; NZ; q⟩ , (6)

where |JMK; NZ; q⟩ ≡ P̂ J
MKP̂ N P̂ Z|ϕ(q)⟩ and q is short

for the set of all qi . Here, the P̂ ′s are projection operators
onto states with well-defined angular momentum J and z
component M , neutron number N , and proton number Z [23].
The weight functions f JK

qσ , where σ enumerates states with
the same quantum numbers, follow from the Hill-Wheeler
equations [23]

∑

K ′,q ′

{
HJ

KK ′ (q; q ′) − EJ
σ N J

KK ′ (q; q ′)
}
f JK ′

q ′σ = 0, (7)

where the Hamiltonian kernelHJ
KK ′(q; q ′) and the norm kernel

N J
KK ′ (q; q ′) are given by

HJ
KK ′(q; q ′) = ⟨ϕ(q)| HeffP̂

J
KK ′ P̂

N P̂ Z |ϕ(q ′)⟩ ,

N J
KK ′ (q; q ′) = ⟨ϕ(q)| P̂ J

KK ′ P̂
N P̂ Z |ϕ(q ′)⟩ .

(8)

To solve Eq. (7), we first diagonalize the norm kernel N
and then use the nonzero eigenvalues and corresponding
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Validation of GCM
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

The first 2+-state energies and B(E2) given by Hamiltonian-
based GCM are in great agreement with SM results.



Level 1 GCM: Axial shape and pn pairing fluctuation
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CJ and J. Engel, PRC 96, 054310 (2017)

Black column: we set all the two-
body matrix elements of the 
Hamiltonian with J  = 1 and T  = 0 
to zero. 

   MGT is overestimated.
Red column: we use the full 
KB3G Hamiltonian: 

   MGT is suppressed, close to SM. 

We use the KB3G interaction for 
two GCM calculations:

pn pairing 
constrained

Level 1 GCM: Axial shape and pn pairing fluctuation
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2
(P0 + P †
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isoscalar pn pairing constrained
is the isoscalar pairing amplitude 

� = hP0 + P †
0 i/2

�

The wave functions are pushed into 
a region with large isoscalar pairing 
amplitude.  
                 reduce  the 0νββ NMEs. 

N. Hinohara and J. Engel, PRC 90, 031301(R) (2014)
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FIG. 2. (Color online) Dependence of the GCM (solid) and
QRPA (dashed) 0νββ matrix elements on the strength gT =0 of the
isoscalar pairing interaction. The red (upper) and blue (lower) lines
of each type correspond to the interaction parameters extracted from
SkO′ and SkM*. The divergence in the QRPA near gT =0/ḡT =1 = 1.5
is discussed in the text.

To clarify this last statement, we show the GCM and QRPA
matrix elements as functions of gT =0/ḡT =1 in Fig. 2. The
QRPA curves lie slightly above their GCM counterparts until
gT =0/ḡT =1 reaches a critical value slightly larger than 1.5;
at that point a mean-field phase transition from an isovector
pair condensate to an isoscalar condensate causes the famous
QRPA “collapse.” The collapse is spurious, as the GCM results
show. Its presence in mean-field theory makes the QRPA
unreliable near the critical point. It is actually a bit of a
coincidence that the QRPA matrix elements in the table are
as close as they are to those of the GCM; a small change in
gT =0 would alter them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather than
1.0 does not have a huge effect on the 0νββ matrix element).
The GCM result is not only better behaved near the critical
point but also, we believe, quite accurate. In the SO(8) model
used to test many-body methods in ββ decay many times,
the GCM result is nearly exact for all gT =0. That is not the
case for extensions of the QRPA that attempt to ameliorate
its shortcomings [32,33], though some of those work better
around the phase transition than others.

To show why the GCM behaves well, we dis-
play in the bottom right part of Fig. 3 the quantity
NφI

NφF
⟨φF |PF M̂0νPI |φI ⟩, where |φI ⟩ is a quasiparticle vac-

uum in 76Ge constrained to have isoscalar pairing amplitude
φI , φF is an analogous state in 76Se, PI , PF project onto states
with angular momentum zero and the appropriate values of
Z and N , and NφI

,NφF
normalize the projected states. This

quantity is the contribution to the 0νββ matrix element from
states with particular values of the initial and final isoscalar
pairing amplitudes. The contribution is positive around zero
condensation in the two nuclei and negative when the final
pairing amplitude is large. Thus the GCM states must contain
components with significant pn pairing when gT =0 is near its
fit value. The appearance of this plot is different from those
in which the matrix element is plotted versus initial and final
deformation [6–8]. Here the matrix element is small or negative
even if the initial and final pairing amplitudes have the same
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FIG. 3. (Color online) Bottom right: NφI
NφF

⟨φF |PF M̂0ν

PI |φI ⟩ for projected quasiparticle vacua with different values of the
initial and final isoscalar pairing amplitudes φI and φF , from the
SkO′-based interaction (see text). Top and bottom left: Square of
collective wave functions in 76Ge and 76Se.

value, as long as that value is large. The behavior reflects the
qualitatively different effects of isovector and isoscalar pairs
on the matrix element [3], effects that have no analog in the
realm of deformation.

The weight function f in the GCM ansatz multiplies
nonorthogonal states and so is not really a “collective ground-
state wave function.” The object that does play that role is a
member of an orthogonalized set defined, e.g., in Refs. [4]
and [7]. The top and left parts of Fig. 3 show the square of
this collective wave function for 76Ge and 76Se, with gT =0

set both to zero and the fit value. It is clear in both nuclei,
but particularly in 76Se, that the isoscalar pairing interaction
pushes the wave function into regions of large φ, where
the matrix element in the bottom right panel is significantly
reduced. It is also clear that for gT =0 ̸= 0 the collective wave
functions are far from the Gaussians that one would obtain in
the harmonic (QRPA) approximation. Isoscalar pairing really
is, and must be treated as, a large-amplitude mode.

We turn finally to the more realistic calculation that includes
both deformation and the pn pairing amplitude as generator
coordinates. We fit the couplings in H just as described earlier;
the strength of the quadrupole interaction no longer vanishes
and some of the other parameters change slightly: gT =1

0 = 0.90
for the interaction based on SkO′ and 0.79 for that based on
SkM*, and gT =0 = 1.75 for SkO′ and 1.51 for SkM*, in units
of ḡT =1. The calculated B(GT+) in both cases is larger than the
experimental data with or without quenching, which therefore
does not affect the value of gT =0.

First we analyze the influence of the number and
angular-momentum projection on energy. The bottom part
of Fig. 1 shows the projected potential energy surfaces
⟨β,φ|PHP |β,φ⟩ for two values of φ, along with the
unprojected surface from the top part of the panel. Projecting
at φ = 0 without including pn interactions, the figure shows,
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With GCN2850 or JUN45 interaction, projected potential energy 
surfaces for 76Ge and 76Se give minima with triaxial deformation. 

Level 2 GCM: Triaxial deformation
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. Introduction   2. GCM based on shell-model Hamiltonian   3. Calculations and results   4. Summary
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triaxial deformation constrained

1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary
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Level 2 GCM: triaxial deformation
1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

10~15% reduction of NME if triaxial shape fluctuation is 
included. 

C. F. JIAO, J. ENGEL, AND J. D. HOLT PHYSICAL REVIEW C 96, 054310 (2017)

FIG. 3. Low-lying excitation spectra of 76Ge and 76Se produced
in one shell by the GCM with the GCN2850 interaction, with and
without triaxial deformation (labeled by the parameter γ ). The results
from the exact diagonalization of the shell-model Hamiltonian appear
for comparison [41].

at β2 = 0.24, γ = 30◦ in 76Ge, a result that agrees well
with those of EDF-based GCM calculations [38], and at
β2 = 0.30, γ = 51◦ in 76Se. In addition to this “static”
triaxial deformation (the deformation that would obtain in a
pure mean-field calculation), dynamical triaxial deformation,
produced by fluctuations around the dominant mean field, arise
from the γ -soft PESs in both isotopes. The GCM, which mixes
states with a range of γ values, incorporates these dynamical
effects.

Our complete calculations include as generator coordinates
both deformation parameters q1 and q2 (or equivalently β and
γ ) as well as one of the proton-neutron-pairing parameters
q3 and q4. We can assess the effects of triaxial shape
fluctuations by including or excluding triaxially deformed
configurations from the set of GCM basis states. Including
them has clear effects on spectroscopy. Figure 3 shows the
spectra of low-lying 0+ and 2+ states in the two important
A = 76 isotopes with GCN2850; triaxial shapes improve the
excited-state energies significantly in both nuclei. The values
for the strength B(E2; 0+ → 2+) are affected in a similar way.
With triaxial deformation (and with the usual effective charges
eeff
p = 1.5e and eeff

n = 0.5e) the values in e2b2 are 0.169 in 76Ge
(vs the exact-diagonalization value of 0.158) and 0.251 in 76Se
(vs the exact value of 0.209). Without triaxial deformation the
numbers are smaller: 0.159 in 76Ge, and 0.236 in 76Se.

Triaxial deformation has a non-negligible effect on the
0νββ matrix element as well. As Table I shows, our full
GCM calculation gives values for the matrix elements M0ν

that are about 10% smaller than the results obtained without
triaxially deformed configurations. The full matrix elements,
though slightly suppressed, are in good agreement with those
of exact diagonalization (in this calculation only, we neglected
the very small matrix element M0ν

T ). The GCM approach
with neutron-proton pairing indeed captures most of the
correlations around the Fermi surface that are important for
0νββ decay. The small discrepancy may be due to fluctuations
in like-particle pairing, which we do not treat here but which,
according to the EDF-based work of Ref. [12], increase 0νββ

TABLE I. Matrix elements M0ν produced in the GCM by
GCN2850 and JUN45 for the decay of 76Ge, with and without triaxial
deformation as a generator coordinate, and by those same interactions
with exact diagonalization.

GCN2850 JUN45

Axial GCM 2.93 3.51
Triaxial GCM 2.56 3.16
Exact 2.81 3.37 

matrix elements slightly. We could include those fluctuations,
but at the cost of a considerable increase in computing time.

IV. RESULTS IN TWO SHELLS

The promise of the Hamiltonian-based GCM is an eventual
ab initio calculation. Here we take a step in that direction by
working in the full fp-sdg two-shell space. The number of
states for A = 76 nuclei in this space is still too large for exact
diagonalization.

Before considering Ge and Se, we make one more test, for
48Ca, the one experimental candidate in which an exact two-
shell calculation is almost possible at present. Reference [4]
uses the SDPFMU-DB interaction, with the omission of some
cross-shell excitations, to compute the 0νββ matrix element
nearly exactly. Our GCM result, 1.082, is close to 1.073, the
result of Ref. [4], and suggests in addition that the cross-shell
excitations neglected in that paper really are unimportant. With
some confidence in the performance of the GCM in two shells,
we turn to the decay of 76Ge.

The first issue we must grapple with in this midshell nucleus
is what to use for the valence-space Hamiltonian. In Ref. [14]
the authors used a multiseparable collective Hamiltonian that
we wish to improve on here. The size of the two-shell space,
however, makes the usual procedure, in which shell-model
Hamiltonians are tuned to data, difficult to follow; furthermore,
there are no well-tested Hamiltonians for this space on the
market. The first step in the usual approach is to produce an
initial valence-space Hamiltonian, traditionally in many-body
perturbation theory. Deficiencies in the many-body method
are then remedied by tuning single-particle energies and
interaction matrix elements to experimental data. Here we must
settle for adjusting only single-particle energies. The tuning of
interaction matrix elements requires repeated calculations that
are simply too time consuming.

Although nonperturbative methods such as the in-medium
similarity renormalization group can produce shell-model
Hamiltonians [42,43], they have not been tested systematically
for valence spaces larger than one major harmonic-oscillator
shell. We therefore use the extended Krenciglowa-Kuo (EKK)
variant [17] of many-body perturbation theory, suitable for
nondegenerate valence spaces, to construct an effective Hamil-
tonian from a third-order Q-box in the pf -sdg shell. (The orig-
inal Krenciglowa-Kuo method was first presented in Ref. [44]).
We begin from the 1.8/2.0 two- plus three-nucleon (3N)
chiral interaction of Refs. [45,46]; the interaction reproduces
ground-state energies across the light- and medium-mass
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Effective pfsdg-shell interaction based on chiral EFT can be 
calculated by many-body perturbation theory (MBPT), similarity 
renormalization group (SRG) or couple cluster (CC).  
We employ an effective pfsdg-shell interaction calculated by  
extended Krenciglowa-Kuo perturbative method, which are 
provided by J. D. Holt. 
The monopole part of the resulting Hamiltonian is sensitive to 
the three-body part of the initial interaction, which one generally 
reduces to an effective two-body interaction by summing the 
third particle over a set of occupied states.

pfsdg: 3N forces normal ordered with respect to 56Ni 
We optimize the single-particle energies for pfsdg-shell 
interactions by fitting the measured occupancies of 
valence neutron and proton orbits.
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• Larger model space: triaxially deformed as predicted. 
• How does triaxial shape influence NMEs?
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FIG. 6. Calculated low-lying excitation spectra of 76Ge and 76Se
produced by the Hamiltonian pf sdg alongside the exact result with
GCN2850 in one shell and experimental data [54].

the renormalization required to correct the one-shell transition
rates.

We turn finally to the 0νββ matrix elements, which appear
in Table II. The total matrix element, once triaxial deformation
is included, is only slightly smaller than that from GCN2850 in
a single shell (the second entry in the first column of Table I).

Though our interaction is clearly not perfect, the result
suggests that enlarging the space further may not dramatically
change the matrix element, though gradual but continual
changes with the addition of successive shells cannot be ruled
out. It also shows the importance of including triaxial shapes
in larger spaces.

Figure 7 summarizes our ββ results. For the decay of 48Ca,
as noted, we reproduce the exact-shell-model results nearly
perfectly in both one and two shells. For the decay of 76Ge (and
82Se) in a single shell, the GCM reproduces the exact result
well enough, with two different effective interactions. And in
two shells, with a brand new effective interaction, it obtains a
result that is only slightly different from the GCN2850 result
in one shell.

An important caveat, in addition to those already men-
tioned: We really ought to be using an effective 0νββ operator
to accompany our effective interaction, as in Refs. [55] and
[56]. Those papers lead us to suspect a change of 20% or less
from an effective decay operator in two shells. In any event,
because we made significant phenomenological adjustments to
the single-particle energies in the prototype calculation here,

TABLE II. GCM results for the Gamow-Teller (M0ν
GT), Fermi

(M0ν
F ), and tensor (M0ν

T ) 0νββ matrix elements for the decay of 76Ge
in two shells, without and with triaxial deformation.

Axial Triaxial

M0ν
GT 3.18 1.99

− g2
V

g2
A

M0ν
F 0.55 0.38

M0ν
T −0.01 −0.02

Total M0ν 3.72 2.35

FIG. 7. GCM matrix elements M0ν compared with those of the
shell-model (SM), with either the JUN45 [35], CN2850 [6] KB3G
[16], or SDPFMU-DB [4] interactions. The term pf sdg denotes the
two-shell interaction used here for A ≈ 80 nuclei.

we cannot systematically construct the decay operator that
should accompany the effective interaction.

V. SUMMARY

The perfect many-body method will include all possible
correlations in an infinitely large space. One step on the way
to that ideal is to enlarge the single-particle space for the
shell model, a method that includes all correlations within
that space. Here we have approximately diagonalized a shell-
model Hamiltonian and computed the 0νββ transition matrix
elements for the decay of 76Ge and 82Se in two major shells,
a space well beyond what is typically used. Tests in a single
shell, and in two shells for the light pf -shell isotope 48Ca, show
that the our approximation method includes the most important
correlations. Our first-of-its-kind two-shell calculation in 76Ge
suggests a small effect from the extra single-particle orbitals
and represents a significant step on the road to accurate ββ
matrix elements.

There are at least two ways forward from here. We should
use a better effective Hamiltonian, either by normal-ordering
with respect to an ensemble reference [51] that better includes
bulk effects of three-nucleon forces far from closed shells,
or by careful tuning of the interaction. The second option,
besides being very difficult, would make it impossible to
develop a consistent effective operator, but the first should
be pursued. One can also use our GCM wave functions as a
starting point for refinement by the “multireference” version
of the In-Medium Similarity Renormalization Group. Work in
that direction is in progress.
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The low-lying spectra are well 
described. 
The NME is slightly smaller than the 
single-shell result. 
Importance of triaxial deformation in 
larger space.
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STEP1: We move forwards to 124Sn, 130Te, and 136Xe to check how GCM with 
shell-model Hamiltonian works for them. 

We use the SVD effective Hamiltonian within 0g7/2, 1d5/2, 1d3/2. 2s1/2, 0h11/

2 orbits (called jj55 model space here). M. Horoi’s group has done a lot 
of shell-model calculation with this interaction, providing a great testing 
ground.  

Because these nuclei are considered to be nearly spherical or slightly 
deformed, only axial deformation, isoscalar pairing, and isovector pn 
pairing are treated as coordinates (but separately for latter two).   

We want to extend the Hamiltonian-based GCM to larger model space and 
heavier 0νββ-decay candidates (e.g., 150Nd), for which no effective shell-
model interaction exists.
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The theoretical neutron shell vacancies and proton shell occupancies 
given by GCM are very close to the exact diagonalization from SM.
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The NMEs given by our SVD-based GCM are closer to the exact 
result, ~30% larger than SM results, most of them come from GT part.  

4

TABLE II: The NMEs obtained with SVD Hamiltonian by
using GCM and SM for 124Sn, 130Te, and 136Xe. CD-Bonn
SRC parametrization was used.

M

0⌫
GT

M

0⌫
F

M

0⌫
T

M

0⌫

124Sn GCM 2.48 �0.51 �0.03 2.76
SM 1.85 �0.47 �0.01 2.15

130Te GCM 2.25 �0.47 �0.02 2.52
SM 1.66 �0.44 �0.01 1.94

136Xe GCM 2.17 �0.32 �0.02 2.35
SM 1.50 �0.40 �0.01 1.76

D. Analysis of the nuclear matrix elements for
124Sn, 130Te, and 136Xe

To further understand this 30% overestimation given
by our GCM calculations, the values of the Gamow-
Teller, the Fermi, and the tensor contributions for 0⌫��
decay NMEs of 124Sn, 130Te, and 136Xe are listed in Table
II. Generally, the Fermi and tensor parts of NMEs present
good agreement between our GCM calculations and SM
calculations, while the Gamow-Teller part of NMEs are
noticeably larger in our GCM results, resulting in the
30% overestimation in the total 0⌫�� NMEs.

The analysis of the 0⌫�� NME is extended by looking
at the decomposition of the NMEs over the angular mo-
mentum I of the proton (or neutron) pairs (see Eq. (B4)
in Ref. [16]), called I-pair decomposition. In this case,
the NME can be written as M↵ =

P

I M↵(I), where
M↵(I) represent the contributions from each pair-spin I
to the ↵ part of the NME. To analyse the deviation be-
tween the M0⌫

GT given by GCM and SM, Fig. 3 presents
the I-pair decomposition for the Gamow-Teller part of
our calculated 0⌫�� NMEs, compared to the one calcu-
lated by SM [11, 12]. The bars in Fig. 3 can be added
directly to get the Gamow-Teller part of NMEs. As we
can see, the dramatic cancellation between the I = 0
and I = 2 contributions shown by the SM calculations
is reproduced well by our GCM approach. However, SM
calculations give more negative contributions with I > 4,
which further reduce the Gamow-Teller NMEs. On the
contrary, our GCM approach can barely produce any con-
tributions with I > 4.

Figure 4 visualizes the di↵erences in Gamow-Teller
NMEs between our GCM and SM calculations against
the pair-spin I, which can help us to identify where the
di↵erences mainly come from. If we only include the
I 6 2 contributions, the Gamow-Teller NMEs obtained
by our GCM approach are close to the ones given by
SM in all three nuclei involved. However, if the I 6 4
contribution are taken into account, the di↵erences are
noticeably increased to about 0.5. The inclusion of all
possible pair-spin I contributions would increase these
di↵erences even further. Apparently, the overestimation
of Gamow-Teller NMEs is associated with those large-I-
pair contributions, which may correspond to collective or
non-collective correlations that are excluded from current

FIG. 3: GCM matrix elements M

0⌫ compared with those of
the SM calculations, with either the GCN2850 [9], KB3G [7],
SDPFMU-DB [8], or SVD [11, 12] interactions. The term
pfsdg denotes the two-shell interaction used here for A ⇡ 80
nuclei.

FIG. 4: The di↵erences of Gamow-Teller part of NMEs be-
tween our GCM and SM calculations against the pair-spin I

for 124Sn, 130Te, and 136Xe.

GCM calculation.
Therefore, the deviation between our current

Hamiltonian-based GCM and SM results may be
related to the lack of some correlations which become
important in 124Sn, 124Te, 130Te, 130Xe, 136Xe, and
136Ba. Since these nuclei are all near spherical or weakly
deformed, one can expect the non-collective correlations,
for example, quasiparticle excitations, may overcome the
collective correlations. Currently, the reference states
that the GCM method employs are HFB states imposed
by the time-reversal symmetry, which exclude any
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The dramatic cancellation between 
I = 0 and I = 2 is well described in 
GCM calculations.  
GCM results barely capture I>3 
contributions.
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more than 80% overestimation 
is from I>3 contributions: 
Non-collective correlations?

Some potential improvement:
Treat deformation, isovector 
pairing, isoscalar pairing as 
coordinates at the same time. 
Non-collective correlations 
should be considered. (e.g., 
quasiparticle excitation?)
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We are trying to combine the virtues of the shell model and EDF 
calculations by the Hamiltonian-based GCM. 
Tests against exact solutions in one shell indicate that we indeed 
have captured important valence-space correlations. 
Calculation has been extended to two major shell (e.g., pfsdg 
shell) model space, which is out of scope of the conventional SM. 
Extending to jj55 model space indicates that non-collective 
correlations may be required. 

Perspective

We can improve the Hamiltonian-based GCM by using path 
integral and the auxiliary-field Monte Carlo method. 
Also, we can improve the angular-momentum and particle-
number projections by using the linear algebra.
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