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Generator Coordinate Method (GCM)

1. GCM

Generator Coordinate Method: an approach that treats
large-amplitude fluctuations, which is essential for nuclei
that cannot be approximated by a single mean field.

How it works:

(1D Step1: Construct basis states by constrained HFB calculation.
correlations along important coordinates (e.g., deformation).

(2 Step2: Restore the symmetry of mean-field states. Projections.

(3 Step3: Diagonalize Hamiltonian in space of symmetry-restored
nonorthogonal vacua.

GCM based on EDF has been applied to double-beta
decay, however...



Comparison between GCM and SM
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Current results with EDF-based GCM
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Both the shell model and the
EDF-hased GCM could he
missing important physics.

The discrepancy may be

because:

* The GCM omits correlations.

* The shell model omits many
single-particle levels.

Does the discrepancy come
from methods themselves, or
the interactions they use?



Ultimate goal and :
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Ultimate goal.:

The perfect many-body method will include all possible
correlations in an infinitely large space.

To get closer to the ultimate goal.:

We can use SM Hamiltonian in the GCM.

- more correlations.
- larger model space.

. B
Our short-term goal is more modest:
a shell-model Hamiltonian-based GCM in one and two (and

ossibly more) shells.
P y ) )




Our Current Procedure
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- Using a shell-model Hamiltonian.
- HFB states |®(¢)) with multipole constraints ¢i = (O:).
We are trying to include all possible collective correlations.

O1 = 02, O = 020,
Oy = X(Py+ P)), Os=1(So+ S},
- Angular momentum and particle number projection

IMK;NZ;q) = P PN PZ|®(q))

- Configuration mixing within GCM:
U200 = >[5 (@)|JMK; NZ;q)



Validation of GCM
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The first 2+-state energies and B(E2) given by Hamiltonian-

based GCM are in great agreement with SM results.



Level 1 GCM: Axial shape and pn pairing fluctuation

2. Correlations
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ot B exact solution 1 We use the KB3G interaction for
two GCM calculations:

7 - Black column: we set all the two-
' body matrix elements of the
HamiltonianwithJ =1and T =0
to zero.

_ Mgt is overestimated.

7 - Red column: we use the full
KB3G Hamiltonian:

Mgt is suppressed, close to SM.
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Level 2 GCM: Triaxial deformation

2. Correlations
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surfaces for 76Ge and 76Se give minima with triaxial deformation.



Level 2 GCM: triaxial deformation
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TABLE I. Matrix elements MY produced in the GCM by
GCN2850 and JUN45 for the decay of "°Ge, with and without triaxial
deformation as a generator coordinate, and by those same interactions
with exact diagonalization.

GCN2850 JUN45
Axial GCM 2.93 3.51
Triaxial GCM 2.56 3.16
Exact 2.81 3.37

CJ and J. Engel, PRC 96, 054310 (2017)

10~15% reduction of NME it triaxial shape fluctuation is

iINncluged.




Two-shell GCM for 76Ge
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T

- Eftective pfsdg-shell interaction based on chiral EFT can be
calculated by many-body perturbation theory (MBPT), similarity
renormalization group (SRG) or couple cluster (CC).

- We employ an effective pfsdg-shell interaction calculated by
extended Krenciglowa-Kuo perturbative method, which are
provided by J. D. Holt.

- The monopole part of the resulting Hamiltonian is sensitive to
the three-body part of the initial interaction, which one generally
reduces to an effective two-body interaction by summing the
third particle over a set of occupied states.

pfsdg: 3N torces normal ordered with respect to 56N
We optimize the single-particle energies for pfsdg-shell

interactions by fitting the measured occupancies of
valence neutron and proton orbits.




Two-shell GCM for 76Ge
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* Larger model space: triaxially deformed as predicted.
* How does triaxial shape influence NMEs"?

CJ and J. Engel, PRC 96, 054310 (2017)



Two-shell GCM for 76Ge
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TABLE II. GCM results for the Gamow-Teller (M), Fermi
(M), and tensor (M3") OvBB matrix elements for the decay of °Ge

in two shells, without and with triaxial deformation.

Axial Triaxial
M 3.18 1.9
Ay 0.55 0.38
8A
MO ~0.01 —0.02
Total MY 3.72 2.35

e The low-lying spectra are well

described.

e [he NME is slightly smaller than the

single-shell result.
e |Importance of triaxial deformation in
larger space.




GCM with jj55 space
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We want to extend the Hamiltonian-based GCM to larger model space and

heavier OvBB-decay candidates (e.g., 1°Nd), for which no effective shell-
model interaction exists.

STEP1: \We move forwards to 124Sn, 130Te, and 136Xe to check how GCM with
shell-model Hamiltonian works for them.

- We use the SVD effective Hamiltonian within 0gzj2, 1dsse, 1dap. 2172, Oh11y
> orbits (called j55 model space here). M. Horoi’'s group has done a lot

of shell-model calculation with this interaction, providing a great testing
ground.

- Because these nuclel are considered to be nearly spherical or slightly
deformed, only axial deformation, isoscalar pairing, and isovector pn
pairing are treated as coordinates (but separately for latter two).



GCM with jj55 space

4. GCM with jb5 space
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The theoretical neutron shell vacancies and proton shell occupancies

given by GCM are very close to the exact diagonalization from SM.



GCM with jj55 space

4. GCM with jjb5 space
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7F A GCM(NREDF) | TABLE II: The NMEs obtained with SVD Hamiltonian by
- <.> Ic;(;nMC(I\SnYJD) 1 using GCM and SM for *?*Sn, '*°Te, and '**Xe. CD-Bonn
6 - 7 SRC parametrization was used.
51 A é - M2 MO MY MO
> f ® Y 1 "“Sn GCM 2.48 —0.51 —0.03 2.76
°§ 4 - SM 1.85 —0.47 —0.01 2.15
' 1 9Te GCM 2.25 —0.47 —0.02 2.52
3r - - SM 1.66 —0.44 —0.01 1.94
I o Nom ] %X  GCM 217 -032  —002 235
_ ¢ 0 SM 1.50 —040  —0.01  1.76
1 = -
O | | |
124Sn 130Te 136Xe

The NMEs given by our SVD-based GCM are closer to the exact

result, ~30% larger than SM results, most of them come from GT part.



GCM with jj55 space
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GCM with jj55 space
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06 il SOome potential improvement:
Il | - Treat deformation, isovector
r§ | pairing, isoscalar pairing as

Ll _ coordinates at the same time.

- Non-collective correlations
ol ] should be considered. (e.g.,
quasiparticle excitation?)

more than 80% overestimation

IS from />3 contributions:
Non-collective correlations?




Summary of OvBB NME given by GCM
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Summary

5. Summary

We are trying to combine the virtues of the shell model and EDF
calculations by the Hamiltonian-based GCM.

Tests against exact solutions in one shell indicate that we indeed
have captured important valence-space correlations.

Calculation has been extended to two major shell (e.qg., pfsdg
shell) model space, which is out of scope of the conventional SM.

Extending to j/55 model space indicates that non-collective
correlations may be required.

We can improve the Hamiltonian-based GCM by using path
integral and the auxiliary-field Monte Carlo method.

Also, we can improve the angular-momentum and particle-
number projections by using the linear algebra.
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