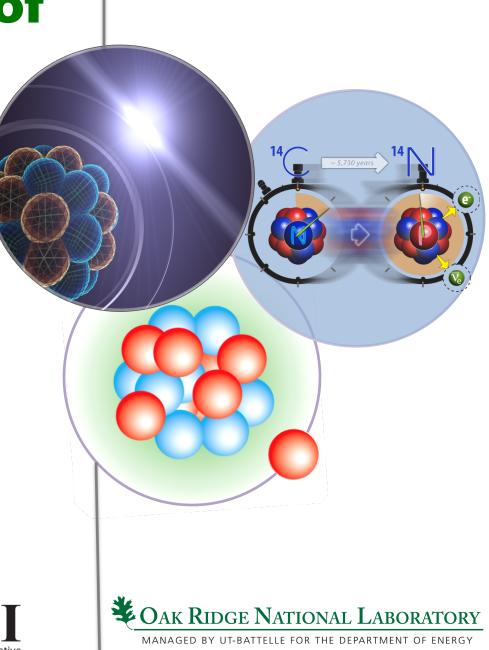
A solution to the quenching puzzle of beta-decays and 0vbb in ⁴⁸Ca

Gaute Hagen Oak Ridge National Laboratory

Topical Collaboration Meeting

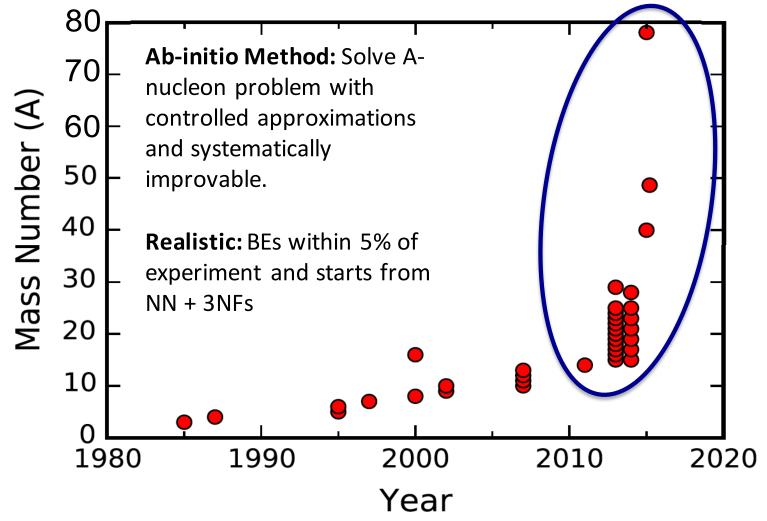
Chapel Hill, February 2nd, 2018



Trend in realistic ab-initio calculations

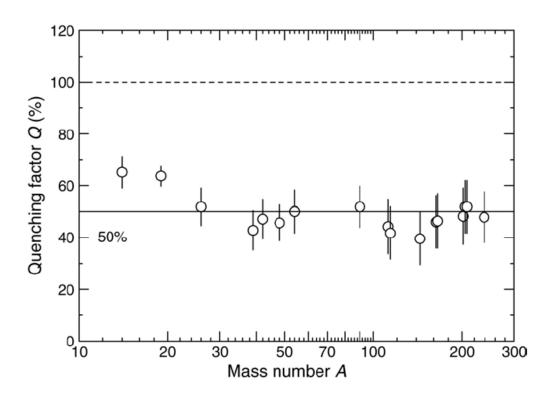
Explosion of many-body methods (Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...)

Application of ideas from EFT and renormalization group (V_{low-k}, Similarity Renormalization Group, ...)



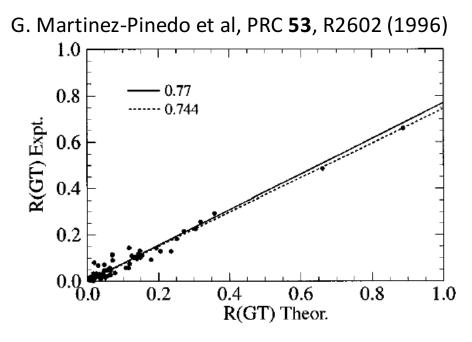
The puzzle of quenched of beta decays

Long-standing problem: Experimental beta-decay strengths quenched compared to theoretical results.

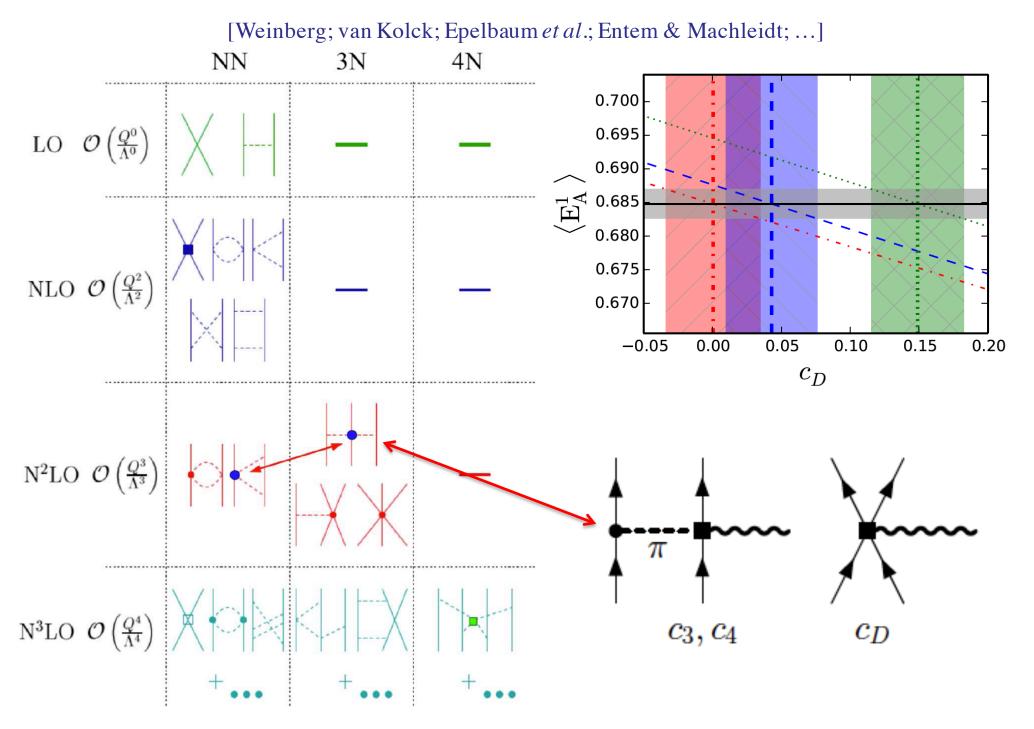


Quenching obtained from chargeexchange (*p*,*n*) experiments. (Gaarde 1983).

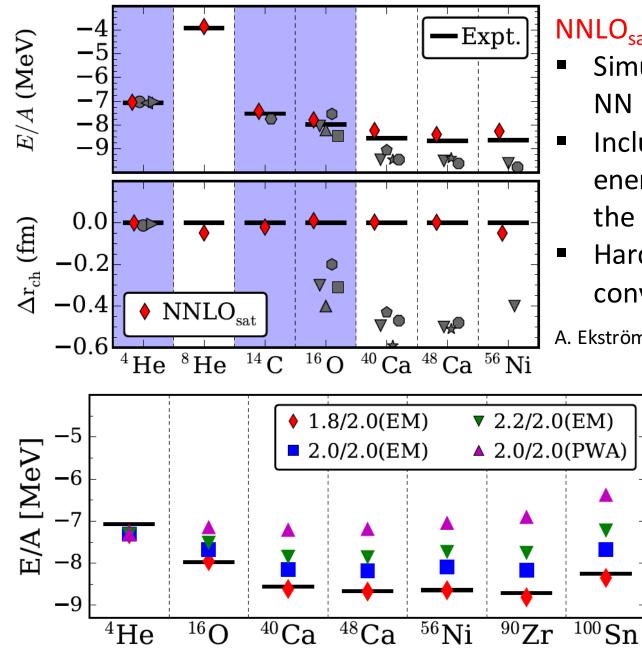
- Renormalizations of the Gamow-Teller operator?
- Missing correlations in nuclear wave functions?
- Model-space truncations?
- Two-body currents (2BCs)?



Nuclear forces from chiral effective field theory



Two interactions from chiral EFT: NNLO_{sat} & 1.8/2.0 (EM)



NNLO_{sat}: Accurate radii and BEs

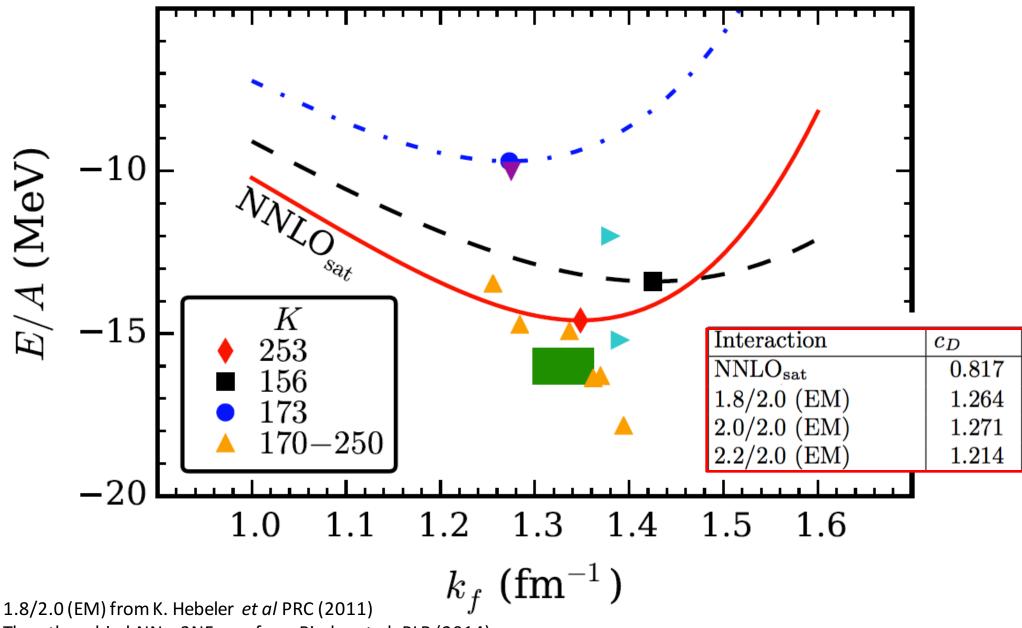
- Simultaneous optimization of NN and 3NFs
- Include charge radii and binding energies of ³H, ^{3,4}He, ¹⁴C, ¹⁶O in the optimization
- Harder interaction: difficult to converge beyond ⁵⁶Ni

A. Ekström et al, Phys. Rev. C 91, 051301(R) (2015).

1.8/2.0(EM): Accurate BEs Soft interaction: SRG NN from Entem & Machleidt with 3NF from chiral EFT

K. Hebeler *et al* PRC (2011).
T. Morris *et al*, arXiv:1709.02786 (2017).

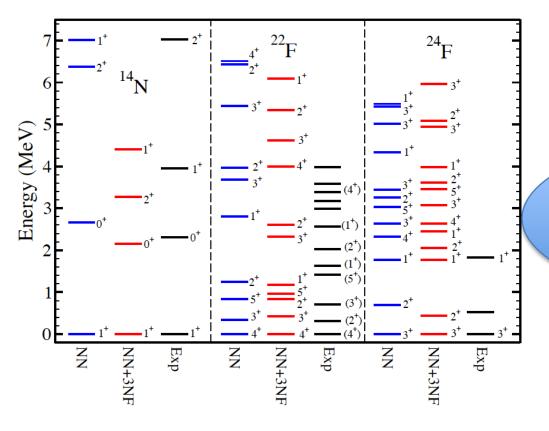
Saturation in nuclear matter from chiral interactions



The other chiral NN + 3NFs are from Binder et al, PLB (2014)

 $\overline{H}_{CCSDT-1} = \begin{bmatrix} \langle S | \overline{H} | S \rangle & \langle D | \overline{H} | S \rangle & \langle T | \overline{H} | S \rangle \\ \langle S | \overline{H} | D \rangle & \langle D | \overline{H} | D \rangle & \langle T | V | D \rangle \\ \langle S | V | T \rangle & \langle D | V | T \rangle & \langle T | F | T \rangle \end{bmatrix}$

 $R_{\nu} = \sum r_{i}^{a} p_{a}^{\dagger} n_{i} + \frac{1}{4} \sum r_{ij}^{ab} p_{a}^{\dagger} N_{b}^{\dagger} N_{j} n_{i} + \frac{1}{36} \sum r_{ijk}^{abc} p_{a}^{\dagger} N_{b}^{\dagger} N_{c}^{\dagger} N_{k} N_{j} n_{i}$



requirements for realistic calcs

A. Ekström, G. Jansen, K. Wendt et al, PRL 113 262504 (2014)

 $\overline{H}_{CCSDT-1} = \begin{bmatrix} \langle S | \overline{H} | S \rangle & \langle D | \overline{H} | S \rangle & \langle T | \overline{H} | S \rangle \\ \langle S | \overline{H} | D \rangle & \langle D | \overline{H} | D \rangle & \langle T | V | D \rangle \\ \langle S | V | T \rangle & \langle D | V | T \rangle & \langle T | F | T \rangle \end{bmatrix}$

 $\overline{H}_{CCSDT-1} =$

			$\langle T \overline{H} S \rangle$	
•	$\langle S \overline{H} D\rangle$	$\langle D \overline{H} D \rangle$	$\langle T V D\rangle$	
	$\langle S V T\rangle$	$\langle D V T\rangle$	$\langle T F T\rangle$	Q-space

 $\overline{H}_{CCSDT-1} =$

- Fock matrix, F, is invertible in any of the blocks.
- Bloch-Horrowitz is exact; iterative solution poss.

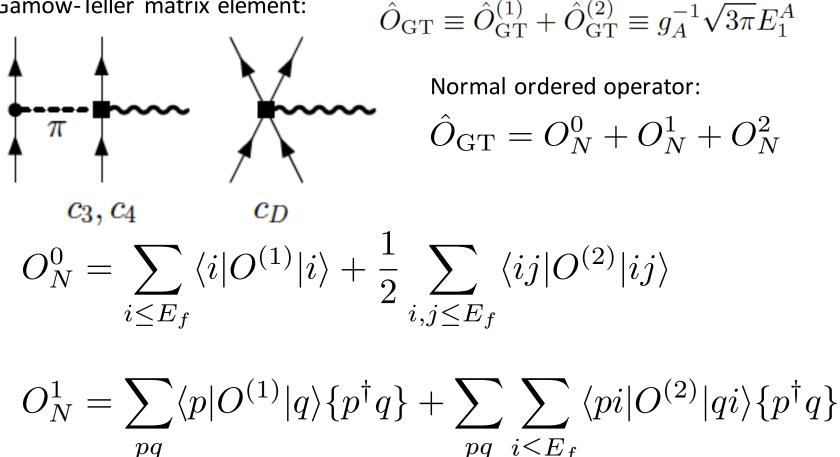
$$\overline{H}_{PP}R_P + \overline{H}_{PQ}(\omega - \overline{H}_{QQ})^{-1}\overline{H}_{QP}R_P = \omega R_P$$

- No large memory for mult R₃ lanczos vectors
- Can only solve for one state at a time

W. C. Haxton and C.-L. Song Phys. Rev. Lett. 84 (2000)
W. C. Haxton Phys. Rev. C 77, 034005 (2008)
C. E. Smith, J. Chem. Phys. 122, 054110 (2005)

Normal ordered one- and two-body current

Gamow-Teller matrix element:



$$O_N^2 = \frac{1}{4} \sum_{pqrs} \langle pq | O^{(2)} | rs \rangle \{ p^{\dagger} q^{\dagger} sr \}$$

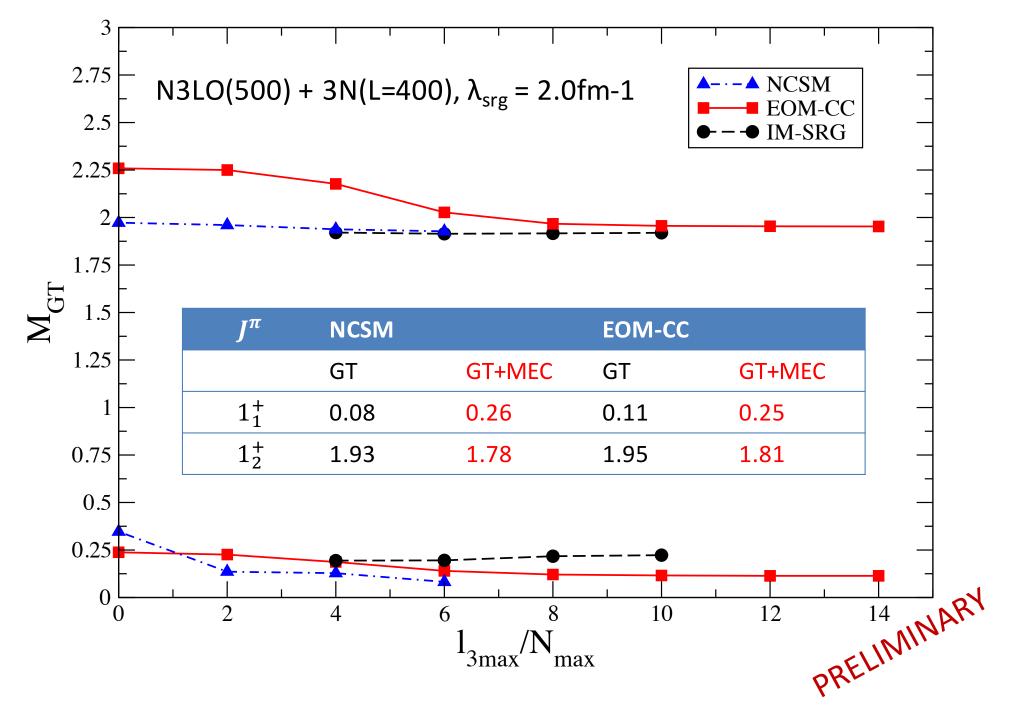
One- and two-body currents and normal ordering in Coupled-Cluster

CCSD similarity transformed normal-ordered current operator: $T = T_1 + T_2$

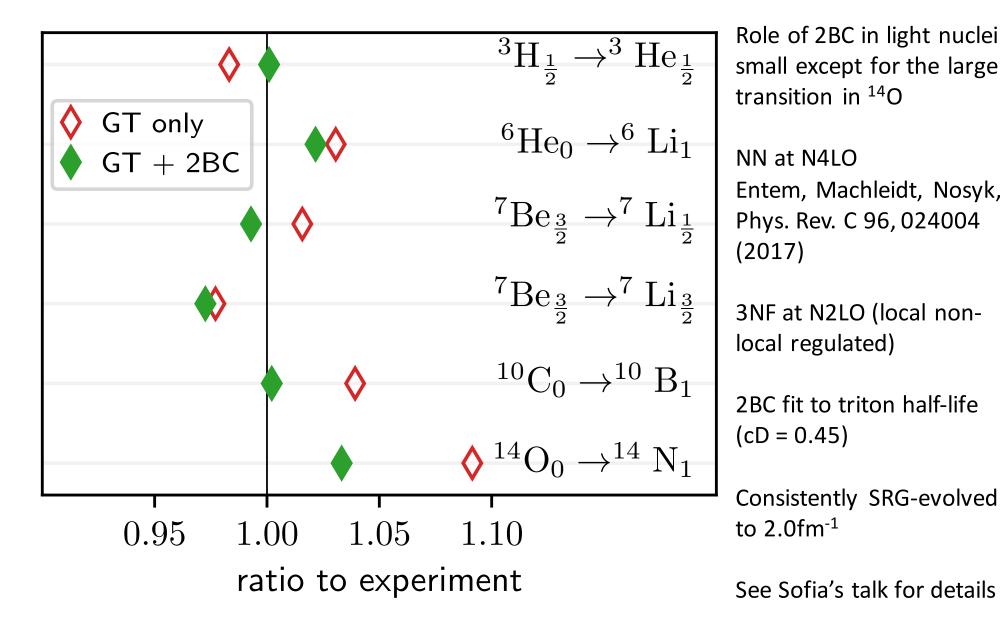
$$\overline{O_{\rm GT}} = e^{-T}O_N e^T = e^{-T}O_N^1 e^T + e^{-T}O_N^2 e^T$$

Normal-ordered 1-body approximation

Benchmarks for Gamow-Teller transitions in ¹⁴C

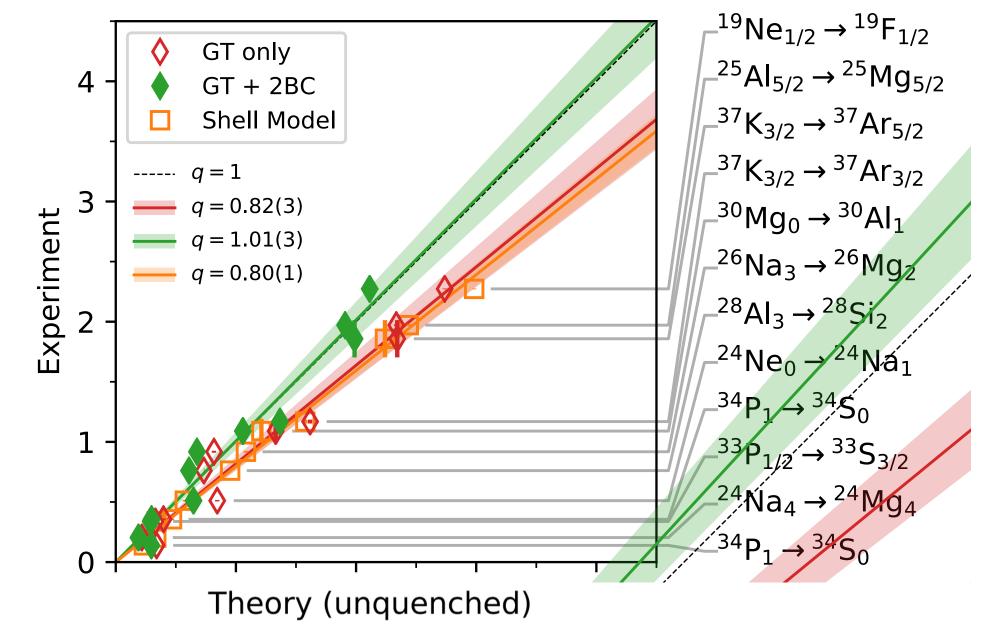


Theory to experiment ratios for beta decays in light nuclei from NCSM



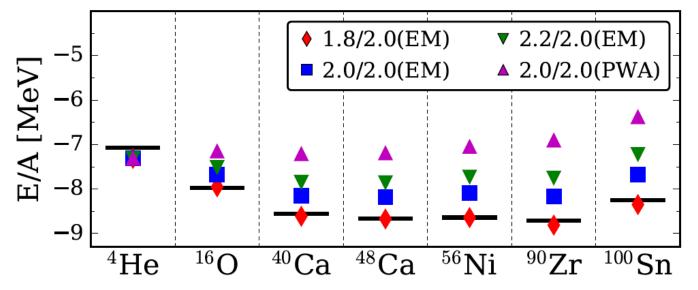
The role of 2BC in sd-shell nuclei

See Jason Holt's talk

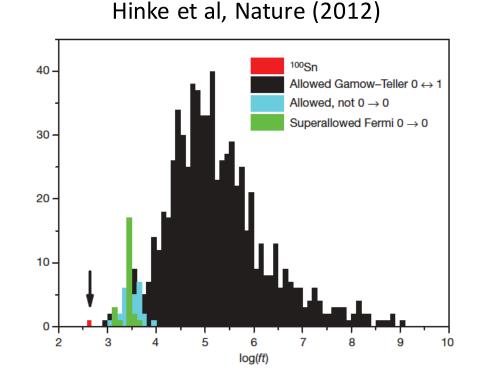


Gamow-Teller transition in ¹⁰⁰Sn

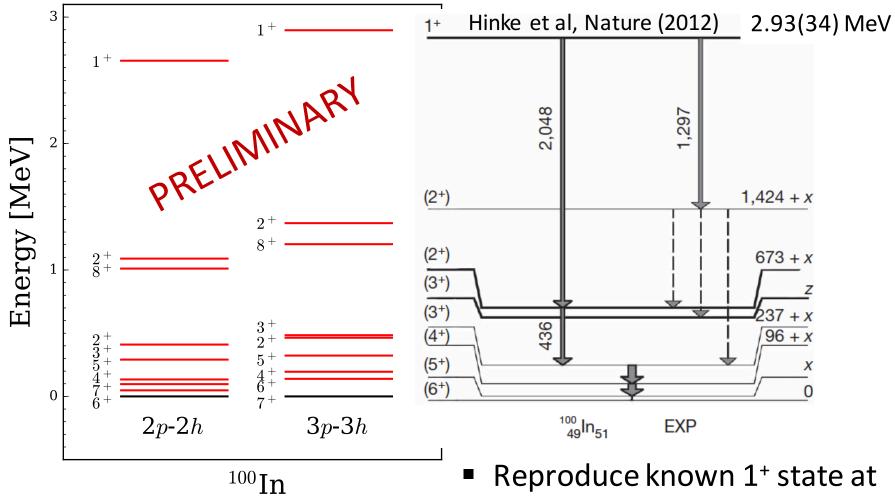
T. Morris *et al*, arXiv:1709.02786 (2017).



- ¹⁰⁰Sn is doubly magic and in the closest proximity to the proton dripline
- ¹⁰⁰Sn is ideally suited for first principles approaches
- Largest known strength in allowed nuclear β-decay



¹⁰⁰In from charge exchange coupled-cluster equation-of-motion method

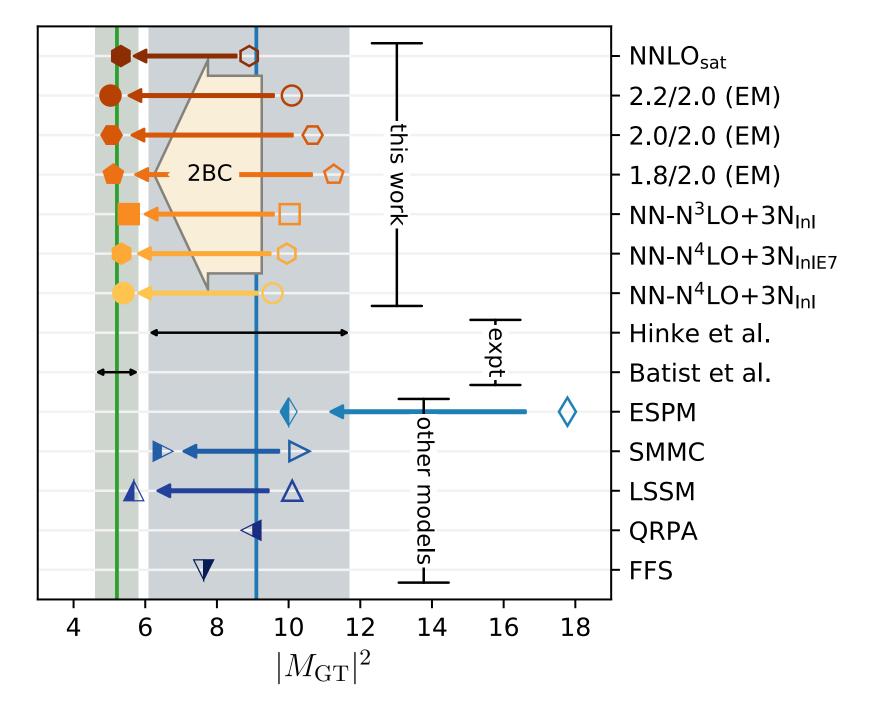


3p-3h charge-exchange EOM:

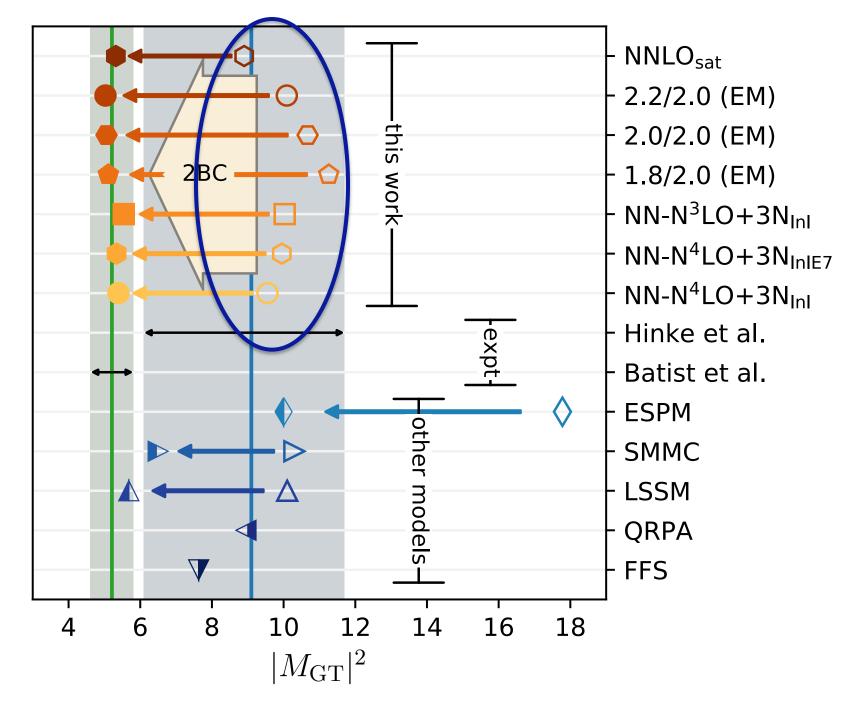
$$\overline{H}_N R_\mu |\Phi_0\rangle = E_\mu R_\mu |\Phi_0\rangle$$

- Reproduce known 1⁺ state at 2.93(34) MeV
- Predict a 7⁺ ground-state for ¹⁰⁰In
- Ground-state spin of ¹⁰⁰In can be measured by CRIS collab. at CERN

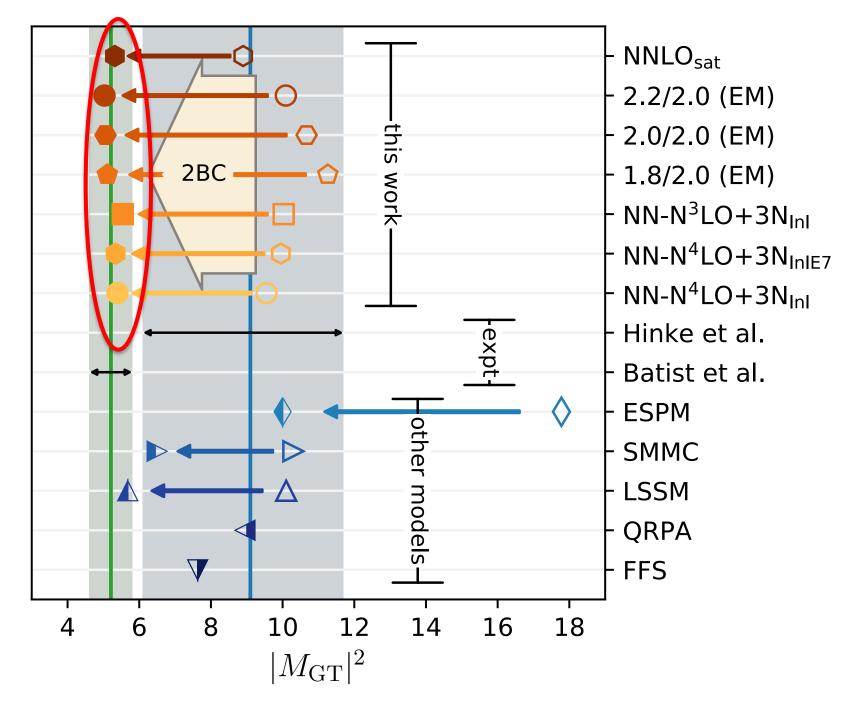
Super allowed Gamow-Teller decay of ¹⁰⁰Sn



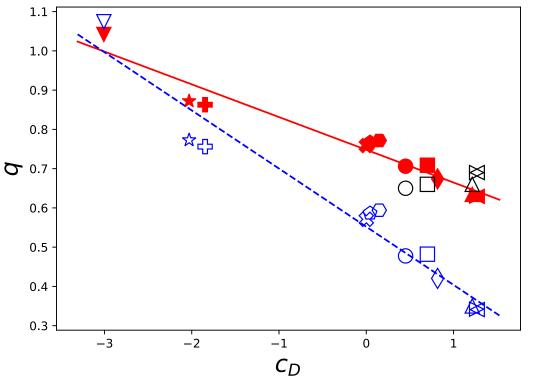
Super allowed Gamow-Teller decay of ¹⁰⁰Sn



Super allowed Gamow-Teller decay of ¹⁰⁰Sn



A simple interpretation of the quenching of beta decays



N4LO+3NF_{L+NL} N3LO+3NF_{L+NL} N3LO+3NF_{L+NL} 1.8/2.0 (EM) 2.0/2.0 (EM) 2.0/2.0 (PWA) Pastore 500 Pastore 600 NNLO_{sat} Ekström 450 Ekström 500 €kström 550 $\rho = 0.09$ $\rho = 0.16$ Contributions pion exchange to the 2BC gives roughly half of the necessary quenching

Contributions from the short range part accounts for the remainder.

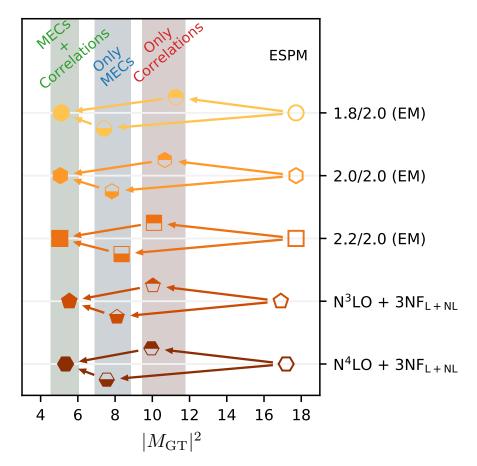
J. Menéndez, D. Gazit, A. Schwenk PRL 107, 062501 (2011)

One-body normal ordering of 2BC in free Fermi gas

$$q \approx 1 - \frac{\rho \hbar^3 c^3}{F_{\pi}^2} \left(\frac{c_D}{g_A \Lambda} + \frac{I}{3} (2c_4 - c_3) + \frac{I}{6m} \right)$$

Interaction	c_D	$2c_4-c_3$	$\Lambda \; [\text{GeV}]$	Ref.
$NNLO_{sat}$	0.817	11.46	0.7	[24]
$NN-N^4LO +3N_{lnl}$	0.45	13.88	0.7	[37]
NN-N ⁴ LO +3N _{lnlE7}	0.45	13.88	0.7	
$NN-N^{3}LO +3N_{lnl}$	0.7	14.0	0.7	[25]
1.8/2.0 (EM)	1.264	14.0	0.7	[23]
2.0/2.0 (EM)	1.271	14.0	0.7	[23]
2.2/2.0 (EM)	1.214	14.0	0.7	[23]
2.0/2.0 (PWA)	-3.007	12.7	0.7	[23]
Pastore 500	-1.847	14.0	1.0	[26]
Pastore 600	-2.03	14.13	1.0	[26]
Ekström 450	0.0004	13.22	0.7	[50]
Ekström 500	0.0431	12.50	0.7	[50]
Ekström 550	0.1488	11.71	0.7	[50]

Role of 2BC and correlations



The role of correlations and 2BC for the family of EFT interactions employed in this work.

Depending on whether one goes along the upper or lower path the role of correlations versus the role of 2BC on the quenching is different. Of course, only the sum of the effects from correlations and 2BC are observable.

Interaction	$ m_{ m GT}(\sigma au) ^2$	$ M_{ m GT}(\sigma au) ^2$	$ m_{ m GT} ^2$	$ M_{ m GT} ^2$	q	q (ESPM)	$\Delta E [{ m MeV}]$	BE/A [MeV]
$NNLO_{sat}$	17.7	8.9	10.3	5.3	0.77	0.76	7.4	not converged
$NN-N^4LO+3N_{lnl}$	17.2	9.6	8.7	5.4	0.75	0.71	6.3	8.1
$NN-N^4LO+3N_{lnlE7}$	17.2	10.0(6)	7.6	5.3(6)	0.73	0.66	3.6	8.9
NN-N ³ LO+3N _{lnl}	16.9	10.0(6)	8.1	5.5(6)	0.74	0.69	6.1	7.6
1.8/2.0 (EM)	17.7	11.3(6)	7.4	5.1(6)	0.67	0.65	5.1	8.4
2.0/2.0 (EM)	17.7	10.7(6)	7.8	5.1(6)	0.69	0.66	6.0	7.7
2.2/2.0 (EM)	17.7	10.1(6)	8.4	5.0(6)	0.70	0.69	6.7	7.2
Batist et al. [6]				5.2 ± 0.6			5.11	8.25
Hinke et al. [5]				$9.1^{+2.6}_{-3.0}$			0.11	0.20

Neutrinoless ββ-decay of ⁴⁸Ca

$$|\langle {}^{48}\mathrm{Ti}|O|{}^{48}\mathrm{Ca}\rangle|^2 = \langle {}^{48}\mathrm{Ti}|O|{}^{48}\mathrm{Ca}\rangle\langle {}^{48}\mathrm{Ca}|O^{\dagger}|{}^{48}\mathrm{Ti}\rangle$$

Closure approximation with Gamow-Teller, Fermi and Tensor $M_{GT}^{0\nu} + \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$ contributions:

The ground-state of ⁴⁸Ca is computed in the CCSD approximation:

$$\overline{H}_N |\Phi_0\rangle = E_0 |\Phi_0\rangle, \ \overline{H}_N = e^{-T} H_N e^T, \ T = T_1 + T_2$$

The CC energy functional is expressed in term of left/right ground-states $\langle \Phi_0 | (1 + \Lambda) \overline{H}_N | \Phi_0 \rangle = E_0, \quad \langle \Phi_0 | (1 + \Lambda) | \Phi_0 \rangle = 1.$ $\Lambda = \sum_{ia} \lambda_a^i a_a a_i^{\dagger} + \frac{1}{2} \sum_{iab} \lambda_{ab}^{ij} a_b a_a a_i^{\dagger} a_j^{\dagger}$

Neutrinoless ββ-decay of ⁴⁸Ca

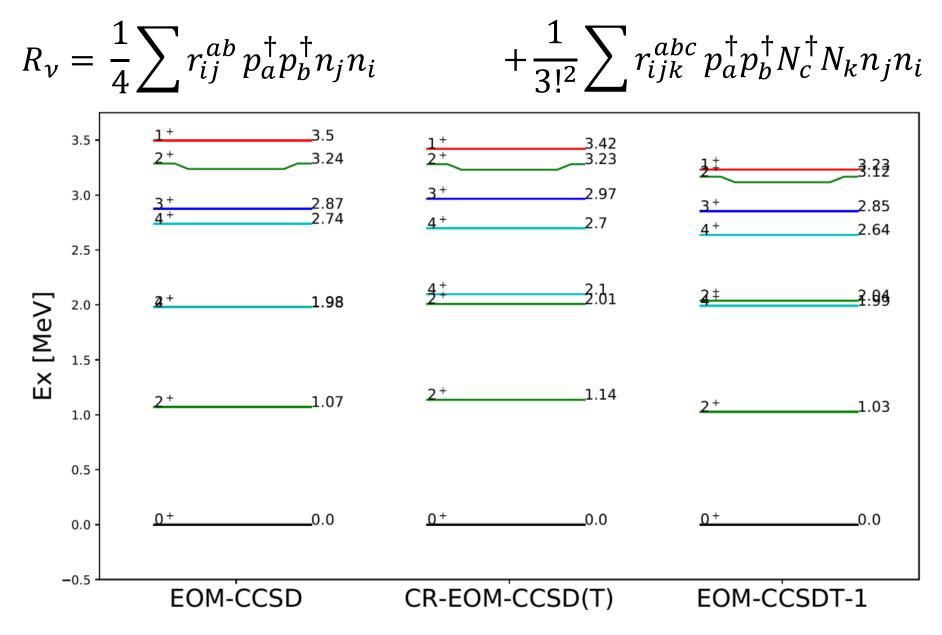
⁴⁸Ti is computed using a double $\overline{H}_N R_\mu |\Phi_0\rangle = E_\mu R_\mu |\Phi_0\rangle$ charge exchange equation of motion method with 2p2h and $\langle \Phi_0 | L_\mu \overline{H}_N = \langle \Phi_0 | L_\mu E_\mu$ 3p3h excitations

$$R_{\mu} = \frac{1}{4} \sum_{ijab} r_{ij}^{ab} p_{a}^{\dagger} p_{b}^{\dagger} n_{i} n_{j} + \frac{1}{36} \sum_{ijkabc} r_{ijk}^{abc} p_{a}^{\dagger} p_{b}^{\dagger} N_{c}^{\dagger} N_{k} n_{i} n_{j}$$
$$L_{\mu} = \frac{1}{4} \sum_{ijab} l_{ab}^{ij} p_{b} p_{a} n_{i}^{\dagger} n_{j}^{\dagger} + \frac{1}{36} \sum_{ijkabc} l_{abc}^{ijj} p_{a} p_{b} N_{c} N_{k}^{\dagger} n_{i}^{\dagger} n_{j}^{\dagger}$$

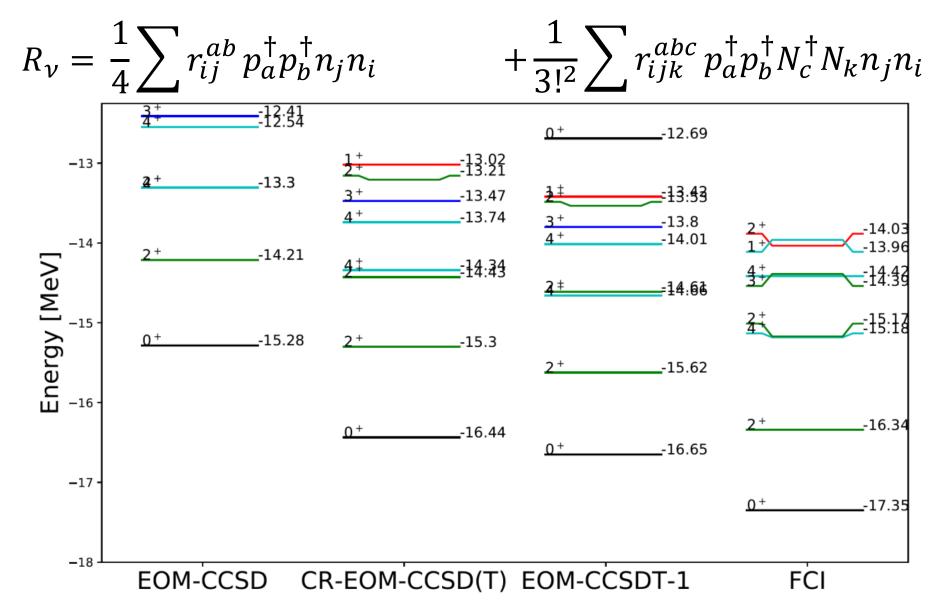
The Nuclear matrix element for $0\nu\beta\beta$ in ⁴⁸Ca is given by:

$$|\langle^{48}\mathrm{Ti}|O|^{48}\mathrm{Ca}\rangle|^{2} = \langle^{48}\mathrm{Ti}|O|^{48}\mathrm{Ca}\rangle\langle^{48}\mathrm{Ca}|O^{\dagger}|^{48}\mathrm{Ti}\rangle$$
$$= \langle\Phi_{0}|L_{0}\overline{O}_{N}|\Phi_{0}\rangle\langle\Phi_{0}|(1+\Lambda)\overline{O^{\dagger}}_{N}R_{0}|\Phi_{0}\rangle$$

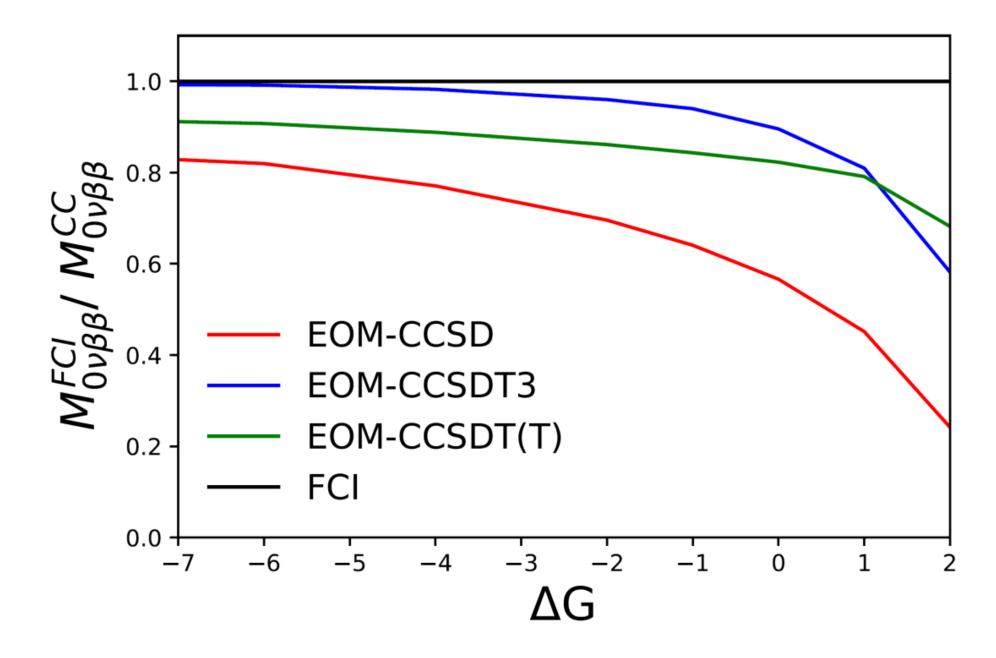
⁴⁸Ti from CR-EOM-CCSD(T)



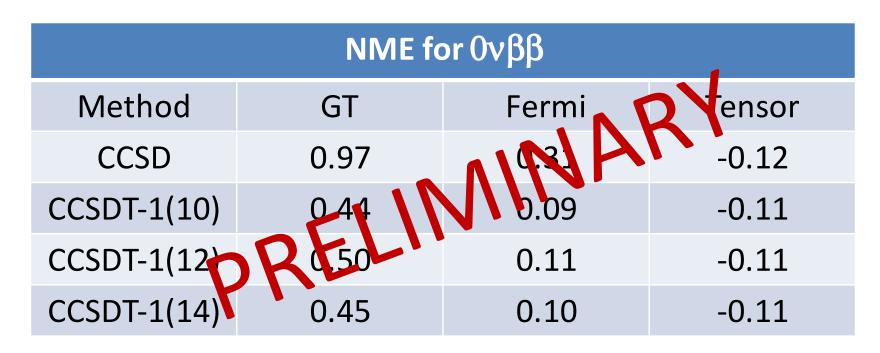
⁴⁸Ti from CR-EOM-CCSD(T)



EOM-CR-CCSD(T)



Neutrinoless ββ-decay of ⁴⁸Ca



- NME computed with the chiral NN + 3N interaction 1.8/2.0 (EM) [K. Hebeler *et al* PRC (2011)]
- Model-space N_{max} =10, hw = 22MeV.
- Not fully converged
- Consistent with IM-SRG results (See Jason Holt's talk)

Summary

- Forces and 2BCs from chiral EFT explain the quenching of GT strength in atomic nuclei (Also see talk by Jason Holt).
- Make predictions for the super allowed GT transition in ¹⁰⁰Sn
- The NME for 0vββ in ⁴⁸Ca from coupledcluster calcualtions consistent with IM-SRG results and smaller than expected

Collaborators

@ ORNL / UTK: G. R. Jansen, T. Morris, T. Papenbrock

- @ TRIUMF: P. Gysbers, J. Holt, P. Navratil
- @ Reed College: S. R. Stroberg
- @ TU Darmstadt: A. Schwenk
- @ LLNL: K. Wendt, Sofia Quaglioni