

Honor Pledge and signature:

I have neither given nor received unauthorized aid on this examination.

Instructions:

- This exam is closed book, closed notes. However, you may use a scientific calculator.
- Mark your answers to the multiple-choice questions on a Scantron answer sheet,
- Show all of your work on these test papers for full credit (no other scratch papers is allowed).
- Turn in these test pages with your Scantron answer sheet at the end of the exam.
- Each question is worth 3 points.

Equations and conversion factors that may be useful:

$$x = x_o + v_{ox}t + \frac{1}{2}a_xt^2 \qquad \theta = \omega_o t + \frac{1}{2}\alpha t^2 \qquad \overline{\omega} \equiv \frac{\Delta\theta}{\Delta t} \qquad \overline{\alpha} \equiv \frac{\Delta\omega}{\Delta t} \qquad a_c = \frac{v_i^2}{r} = r\omega^2$$

$$v = v_o + at \qquad \omega = \omega_0 + \alpha t \qquad s = r\theta \qquad v_i = r\omega \qquad a_i = r\alpha$$

$$v^2 = v_o^2 + 2ax \qquad \omega^2 = \omega_o^2 + 2\alpha\theta \qquad E_i = E_f \qquad W_{net} = K_f - K_i \qquad W = (F\cos\theta)s$$

$$\Sigma \mathbf{F} = m\mathbf{a} = \frac{d\mathbf{p}}{dt} \qquad \overline{\mathbf{F}}\Delta t = \Delta \mathbf{p} \qquad \mathbf{p} \equiv m\mathbf{v} \qquad K_i = \frac{1}{2}mv^2 \qquad U_g = mgh \qquad f_s \leq \mu_s F_N, \quad f_k = \mu_k F_N$$

$$\Sigma \tau = I\alpha = \frac{dL}{dt} \qquad \tau = rF_\perp \qquad L = I\omega \qquad K_r = \frac{1}{2}I\omega^2 \qquad U_s = \frac{1}{2}kx^2 \qquad \overline{P} = \frac{W}{\Delta t} = F\overline{v}$$

$$F_g = G\frac{m_1 m_2}{r^2} \qquad I_{\text{hoop}} = MR^2 \qquad I_{\text{disk}} = \frac{1}{2}MR^2 \qquad I_{\text{sphere}} = \frac{2}{5}MR^2 \qquad I_{\text{rod}} = \frac{1}{3}ML^2 \quad \text{or} \quad \frac{1}{12}ML^2$$

$$1 \text{ m} = 3.28 \text{ ft.} \qquad 1 \text{ mi} = 1.61 \text{ km} \qquad 1 \text{ m/s} = 2.24 \text{ mi/h} \qquad 1 \text{ lb.} = 4.45 \text{ N} \qquad 1 \text{ hp} = 0.746 \text{ kW}$$

$$M_{\text{Earth}} = 5.98 \times 10^{24} \text{ kg} \qquad R_{\text{Earth}} = 6.38 \times 10^6 \text{ m} \qquad G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \qquad g = 9.80 \text{ m/s}^2$$

$$\frac{\delta Correct}{2 - \beta_c} \text{ the eight of the car multiplied by the stopping distance}$$

$$\frac{2 - \beta_c}{\beta_c} \text{ the gravitational potential energy of the car}$$

$$\frac{(Q - C)}{2 + C} \text{ the initial kinetic energy of the car}$$

19-(C) the initial kinetic energy of the car

3-D. the momentum of the car

\$1% 2. What is the average power exerted by an 80-kg man who climbs 5.0 m up a rope in 15 s? 6-A. 26 W

 $\rho = \frac{W}{\delta t} = \frac{mgh}{\delta t} = \frac{(80kg)(9.8mGi)(5.0m)}{15c} = \frac{261W}{15c}$ 1-B. 130 W

29-(C) 260 W o-D. 520 W

0.35 642 (3) An elevator supported by a single cable descends a shaft at constant speed. The only forces acting on the elevator are the tension in the cable and the gravitational force. Which one of the following statements is true?

0.22

0.28

O-A. The magnitude of the work done by the tension is larger than that done by gravity.

W= Wg, 1 EW=0 13-B. The magnitude of the work done by gravity is larger than that done by the tension.

23 (C) The net work done by the two forces is zero.

89% 4. The work required to move a piano is reduced if you use a ramp instead of simply lifting the piano up to the same final height. A. True W= mgh + Wnc

5. Three identical balls are thrown with the same initial speed from the edge of a cliff so that they all land the same vertical distance below the cliff. Ball A is thrown straight up, ball B is thrown horizontally, and ball C is thrown straight down. Ignoring air resistance, which is the proper ranking of the kinetic energy of these balls just before they hit the ground?
they hit the ground? 3-A. $A>B>C$ $1-B$. $A=B>C$ $1-B$. $A=B>C$ $1-C$
2-C. A < B < C 29D A = B = C
7676 A bowling ball is supported by a 4.0-m cable attached to the ceiling. If the ball is released from rest when the
cable makes an angle of 30 degrees from vertical, what is the maximum speed of the ball? 0.33 0.51 1-A. 2.8 m/s $E_L = E_A$ $h = L - L \cos \theta = L(1 - \cos \theta)$
31-B) 3.2 m/s L cose D = 12/10/4 (1-cos 30°) 1-D. 8.2 m/s h T = 1/29h
1-D. 8.2 m/s h I 8- V= 1/29h V= 3.2 m/s
A 20-N crate starts from rest and slides all the way down a rough ramp that is 3.0 m long and inclined at an angle of 30° to the horizontal. The frictional force between the crate and ramp is 6.0 N. What will be the speed of the crate at the bottom of the incline? $\mathcal{E}_{\mathcal{L}} = \mathcal{E}_{\mathcal{L}}$ 0.39
17-(A) 3.4 m/s 6-B. 4.5 m/s The modes of th
9-C. 5.4 m/s h $\frac{1}{2}mv^2 = mgh - F_{\xi} dx$ $\frac{1}{2 \cdot 0 \cdot 1} = \frac{1}{2 \cdot 0 \cdot 1} \frac{1}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} \frac{1}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} \frac{1}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} \frac{1}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} \frac{1}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} \frac{1}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} \frac{1}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot 0 \cdot 1} \frac{1}{2 \cdot 0 \cdot 1} = \frac{3.4}{2 \cdot$
12% 8. A student stretches a 10-g rubber band 5 cm and launches it straight up into the air to a height of 2.0 m above the
launch point. Find the force that was required to stretch this rubber band just before it was released. (Assume
that air resistance is negligible and the rubber band obeys Hooke's law.) 19-A. 3.9 N $E_f = E_i$ $F = -E_X = -(157 M_m)(0.05 m) = 7.8 N$ 0.22 0.17
15-(B) 7.8 N
$0-C. 16 N \qquad mgh = \frac{1}{2} k x^2$
2-D. 78 N $k = \frac{2mgh}{x^2} - \frac{2(\frac{0.010 \log (10^{16})(2.0 m)}{(0.05 m)^2} - 157 N/m}{(0.05 m)^2}$
An object of mass $3m$, initially at rest, explodes into two fragments of mass m and $2m$. Which one of the
following statements is true for the fragments after the explosion?
7- A. They may fly off at right angles to each other. $D = \overline{D} = 0$
10-(B) The smaller fragment will have twice the speed of the larger fragment. 3-C. The smaller fragment will have four times the speed of the larger fragment. $ \begin{array}{cccccccccccccccccccccccccccccccccc$
22-D. Both pieces will have the same momentum. No, their directions are different m(2v) = (2m) v
42 (0) A ballistic pendulum consists of a 1.25-kg block of wood that is suspended by strings. A bullet with a mass of
5.0 g is fired horizontally at the block and becomes imbedded in it. Find the initial speed of the bullet if the
block and bullet rise together to a final height of 4.5 cm. 4-A. 15 m/s 6.33 0.38
7-B. 220 m/s
23 © 240 m/s $m = (m+M) V_f$
block and builet rise together to a final height of 4.5 cm. 4-A. 15 m/s 7-B. 220 m/s 23© 240 m/s 2-D. 280 m/s $v_i = (m+M)v_i$
79% (1) A 50-g rubber ball strikes a massive wall at 10 m/s at an angle of 60° with the plane of the wall (30° from the
normal). It bounces off with the same speed and angle. If the ball is in contact with the wall for 20 ms, the average force exerted on the ball by the wall is
5-A. 22 N 2 (0.050kg)(10 m/s) sm600
5-A. 22 N 17-B. 25 N 14. C) 43 N 0-D. 87 N 600 1 V $SP_{\chi} = F_{0}t$
0-D. 87 N
SPx = Pfx - Pix = +2mv = 2mv sin 600

ac = 2.45 m/s2 = 0.25g

25% (2) A man jumps from a bending his knees as landing. 24-A. 800 N 9-B) 8 kN 3- C. 80 kN 0- D. 800 kN	window ledge on the he lands on his feet. Fay = $\frac{1}{2}mv^{2}$ Fay = $\frac{1}{2}mv^{2}$	Estimate the average 2 = Mgh	age force of the gi $h \approx 1544 \approx 5$	round on the man	injury by during his 0,39
44% (3). A ladybug sits at the the right, the tangent 3-A. to the right (away 9-B. to the left (toward 8-C. forward 16-D) backward	ial component of her a from the center)	acceleration is:	turning and slowi $\mathcal{T}^{oldsymbol{v}}$ or $\mathcal{L}a_t$	ing down. When o, 78	- -
What is the maxim of 150 m. Assume respectively. 4-A. 28 m/s 5-B. 30 m/s 23-© 34 m/s 4-D. 44 m/s	um speed that a 100 the coefficients of s	tatic and kinetic $F_{ner} = F_p = \nu$ $M_p M_g = M_p^2$	friction for this	scenario are 0.8	and 0.6 8 0.64
of 90 degrees. What 3-A. 2.8 rad/s ² 7-B. 16 rad/s ² 6-C. 22 rad/s ² 200 870 rad/s ²	lerates from rest to a ris the angular acceleration $\omega_0 = 0$ $\omega_p = (500 \text{ resymbol })$ $\omega_p = 52.4 \text{ ra}$	ation of the CD? 217 radicu) (1min)	Ug 2 - Wo 2+	2000	56 0.54
7- A. Matchbox car, em 7- B. billiard ball, Matc 22- Matchbox car, bill 0-D. There is not enoug	ime and start from res pty soda can, billiard hbox car, empty soda	t at the top of the ball car will a	ramp: has very little in ad ball: $I = \frac{2}{5}$	rotational Mertia	-
 72 17. Short and long rods a released? 23- A. The short rod falls 5- B. The long rod falls 7- The short rod falls 1- D. The long rod falls 	faster and its accelerates faster and its accelerates faster but its accelerates	ation is constant tion is constant ation is not constant	nt-desends or 9	. What happens w $ \alpha = \frac{\mathcal{I}}{I} = \frac{m_0^2}{2} $ $ \alpha = \frac{3}{2} \frac{950}{2} $	0.33 0.33 3 KLZ 3 KLZ
78% 18. A Ferris wheel with a passengers feel at the A 50% heavier B twice as heavy C. three times as heav	bottom of the ride cor	s rotates once even npared with the to Top : $F_n = n$ Bottom: $F_n = n$	op?		do the $0.01 \qquad 0.03$ $\left(\frac{2\pi rad}{115}\right)^{2}$

 $\frac{F_{8}}{F_{7}} = \frac{W(g+a_{c})}{W(g-a_{c})} = \frac{1.25y}{0.75y} = 1.67$

42% 19. Estimate your speed here in Chapel Hill (Lat. 36° above equator) due to	o the rotation of the Earth about its axis.
---	---

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

$$R_{\nu} = \frac{1}{2}R_{0}$$

:
$$g = \frac{GM}{R^2}$$
 : $g_X = \frac{GM_X}{R_x^2} = \frac{G(\frac{L}{L}M_E)}{(\frac{L}{L}R_E)^2} = 2 \frac{GM_E}{R_E^2} = \frac{2g_E}{R_E}$

I- A. the satellite is in equilibrium

9-B. the satellite is essentially weightless as it is in free fall around the Earth

9-C. the acceleration of the satellite is zero

W= Fid , no work is done to change K